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Sequential infection with antigenically distinct influenza viruses induces cross-protective
immune responses against heterologous virus strains in animal models. Here we
investigated whether sequential immunization with antigenically distinct influenza
vaccines can also provide cross-protection. To this end, we compared immune
responses and protective potential against challenge with A(H1N1)pdm09 in mice
infected sequentially with seasonal A(H1N1) virus followed by A(H3N2) virus or immunized
sequentially with whole inactivated virus (WIV) or subunit (SU) vaccine derived from these
viruses. Sequential infection provided solid cross-protection against A(H1N1)pdm09
infection while sequential vaccination with WIV, though not capable of preventing weight
loss upon infection completely, protected the mice from reaching the humane endpoint.
In contrast, sequential SU vaccination did not prevent rapid and extensive weight loss.
Protection correlated with levels of cross-reactive but non-neutralizing antibodies of the
lgG2a subclass, general increase of memory T cells and induction of influenza-specific
CD4+ and CD8+ T cells. Adoptive serum transfer experiments revealed that despite
lacking neutralizing activity, serum antibodies induced by sequential infection protected
mice from weight loss and vigorous virus growth in the lungs upon A(H1N1)pdmO9 virus
challenge. Antibodies induced by WIV vaccination alleviated symptoms but could not
control virus growth in the lung. Depletion of T cells prior to challenge revealed that CD8+
T cells, but not CD4+ T cells, contributed to cross-protection. These results imply that
sequential immunization with WIV but not SU derived from antigenically distinct viruses
could alleviate the severity of infection caused by a pandemic and may improve protection
to unpredictable seasonal infection.

Keywords: sequential vaccination, cross-protection, antigenically distinct influenza virus strains, immune
mechanism, non-neutralizing antibody
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INTRODUCTION

Influenza A virus (IAV) infections remain a worldwide
public health threat. Influenza vaccination is the most reliable
strategy to control annual epidemics and irregular pandemics
(1). Current inactivated influenza vaccines (IIV) primarily
induce strain-specific antibodies against the two major virus
surface proteins, hemagglutinin (HA) and neuraminidase
(NA). However, these strain-specific antibodies cannot provide
protection against antigenically drifted and antigenically shifted
strains. When a pandemic strain emerges, it takes around 6
months to develop and distribute a new vaccine (2), which is
too late for a vaccine to provide effective protection during the
first pandemic wave. Thus, a cross-protective vaccine that could
provide immediate protection against unpredicted influenza
virus strains is urgently needed.

Live virus infection has been shown to provide some
degree of cross-protection against A(HIN1)pdm09 infection in
animal models (3-8) and in humans (9, 10). However, the
exact mechanisms involved in cross-protection remain elusive.
Cross-reactive antibodies against conserved regions of viral
proteins, such as the HA stalk, the M2 ectodomain (M2e) and
nucleoprotein (NP), induced by (sequential) live virus infection,
correlate with cross-protection (3, 11-13). Some anti-HA stalk
antibodies can directly neutralize influenza virus particles in vitro
(14). However, most of these antibodies target antigens that are
expressed on the surface of infected cells and then provide cross-
protection via a Fc receptor dependent mechanism (14-16).

Besides antibody responses, cross-reactive T cells induced by
live virus infection have also been demonstrated to correlate with
cross-protection (5, 6, 17). Cytotoxic CD8 T cells can recognize
internal, conserved epitopes across different virus strains. In
animal models, CD8T cells induced by live virus infection
have been shown to prevent A(H5N1) or A(HINI1)pdmO09
virus infection (18). On the other hand, CD4 T cells specific
for conserved epitopes have also been shown to provide
protection against A(HIN1)pdm09 in mice (19, 20). These
CD4T cells could provide cross-protection through different
mechanisms, including help for B cells, help for CD8T cells
and direct cytotoxic activity [reviewed in (21)]. Furthermore, it
has been demonstrated in humans that the presence of memory
cross-reactive CD4 or CD8T cells is correlated with cross-
protection against A(HIN1)pdm09 or A(H7N9) virus infection
(9,22,23).

Vaccination with trivalent inactivated influenza vaccine
(ITV) did not provide protection against A(HIN1)pdmO09 virus
infection and was even found to be associated with enhanced
disease in observational studies from Canada in humans (24-
28). In animal models, published studies indicate that vaccination
with IIV could induce detectable levels of cross-reactive antibody
against A(HIN1)pdmO9 virus, yet, no cross-protection was
observed (29-31). The exception is a recent study showing
that non-neutralizing antibody induced by IIV could cause
activation of influenza-specific CD8 T cells by promoting antigen
presentation (32). If a broader immune response could be
induced by the currently available influenza vaccines, it would
benefit humans against novel virus infection.

Compared with a single virus infection, sequential infection
with antigenically distinct live viruses was found to provide
broader cross-protection (7, 8, 11). This is because the second
infection can cause a quick recall immune response to epitopes
shared between the two viruses. It has been shown that sequential
influenza virus infection can boost antibody responses to the
shared HA stalk region (11, 33).

Sequential immunization with antigenically distinct vaccines
has also been used as a strategy to induce a broader immune
response against influenza virus in animal models (34). However,
most of these studies were focused on the cross-protective
immune response induced by genetically modified vaccines (35—
38). Little is known about the protective potential of sequential
immunization with conventional inactivated vaccines derived
from different seasonal influenza virus strains. In case of a
pandemic, such a vaccination strategy could be a first means of
intervention until a pandemic vaccine becomes available.

In this study, we assessed the cross-protective immune
responses induced by sequential infection with A(HINI)
and A(H3N2) virus, or sequential immunization with whole
inactivated virus (WIV) or subunit (SU) vaccine derived from
these viruses in a mouse model. Sequential infection provided
robust cross-protection which was mediated by non-neutralizing,
cross-reactive antibody and CD8 effector memory T cells (TEM).
Partial cross-protection was provided by sequential vaccination
with WIV and was associated with CD8 central memory T cells
(TCM), and to a minor extent, with cross-reactive antibodies.
In contrast, sequential vaccination with SU vaccine induced low
levels of cross-reactive serum antibodies and no T cell immunity
against A(HIN1)pdmO09, and did not provide cross-protection.
These results imply that in case of a new pandemic, sequential
immunization with WIV but not subunit vaccines derived from
different seasonal virus strains could mitigate disease severity
until a pandemic vaccine becomes available.

MATERIALS AND METHODS

Virus and Vaccines

Influenza virus strains A/Puerto Rico/8/34 (HI1N1)(PRS),
X-31, a reassortant virus derived from A/Aichi/2/68 (H3N2),
A/California/07/09 (HIN1)pdm09, and X-181 (a reassortant
derived from (HINI1)pdm09 and PR8) were grown in
embryonated chicken eggs, and the virus preparations were
titrated on MDCK cells and in mice. Whole inactivated virus
vaccines was produced from PR8, X31 and X-181 by treatment
with B-propiolactone. PR8 SU and X-31 SU were prepared from
PR8 and X-31 WIV, respectively, as described before (39).

Vaccination, Challenge, and Sample

Collection

Female 6-8 weeks old CB6F1 mice were purchased from Envigo,
The Netherlands, and rested for at least 1 week. Mice were
housed under SPF conditions in standard polycarbonate cages (5
animals per cage) with standard rodent bedding and cardboard
cylinders as cage enrichment. Prior to the start of the experiment,
animals were randomly allocated to the different treatment
groups. All animal experiments were approved by the Central
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Committee for Animal Experiments CCD of the Netherlands
(AVD105002016599). All experimental protocols were approved
by the Animal Ethics Committee of the University Medical
Center Groningen. Group sizes were determined using Piface
software such that a power of at least 80% was reached.

Naive mice (n = 15) were immunized intramuscularly (i.m.)
with 15 pg of PR8 WIV (containing around 5 pg of HA) or 5
pg of PR8 SU vaccine. Alternatively, mice were anesthetized and
infected intranasally (i.n.) with a sublethal dose (10® TCIDsp) of
PRS8 virus (live virus = LV). Four weeks after immunization or
infection, mice were i.m. immunized with 15 pg of X-31 WIV
or 5 g of X-31 SU or i.n. infected with a sublethal dose of (10
TCIDsy) X-31 virus. Mice injected twice with PBS i.m. with 28
days interval served as negative control (Table 1).

Four weeks after the second infection or immunization, 5 mice
of each group were sacrificed for determination of infection-
or vaccine-induced immune responses. The other 10 mice
were anesthetized with isoflurane and challenged i.n. with 10%4
TCID50 of A/California/7/09 (HIN1)pdmO09 in 40 1 PBS. Three
days post infection, 5 mice were sacrificed for determination of
immune responses and lung virus titers. The remaining 5 mice
were monitored daily for body weight loss for 2 weeks. Body
weight loss exceeding 20% was considered as humane endpoint.

On day 0 (before challenge) and day 3 post challenge, mice
(n = 5 from each group) were sacrificed under isoflurane
anesthesia. Serum, nose wash and bronchoalveolar lavage (BAL)
were collected for further analysis. Lungs were perfused with
20ml PBS containing 0.1% heparin through the right heart
ventricle. Right lung lobes were collected, homogenized, snap-
frozen and stored at —80°C for virus titration. The whole lung
(day 0) or the left lung lobes (day 3) and the spleens were collected
for lymphocyte isolation.

Viral Titer in Lung

Lung tissue collected on day 3 post-challenge was weighed,
homogenized in 1ml of Episerf medium (Thermo Fisher
Scientific) and then centrifuged at 1,200 rpm for 10min.
Supernatants were collected, aliquoted, snap-frozen and stored at
—80°C until use. Lung virus titers were determined by infection
of MDCK cells in 96-well plates with serial dilutions of the lung
supernatants as described before (39). Viral titers, presented as
log10 titer of 50% tissue culture infectious dose per gram lung
(log10TCIDsg/g), were calculated based on the Reed-Muench
method (40).

TABLE 1 | Experimental design for mouse experiment.

Groups First immunization Second immunization Challenge
(Day 0) (Day 28) (D56)

1 PR8 WIV X-31 WIV H1N1pdm09

2 PR8 SU X-318SU H1N1pdm09

3 PR8 LV* X-31LV H1N1pdm09

4 PBS PBS H1N1pdm09

*LV = live virus.

Isolation of Lymphocytes From Lung and

Spleen

Spleens were homogenized in complete IMDM (with 10% FBS,
1% Penicillin-Streptomycin and 0.1% B-mercaptoethanol) using
a GentleMACS dissociator (Miltenyi Biotec B, Leiden, The
Netherlands). Cell suspensions were then forced through a cell
strainer (BD Bioscience, Breda, The Netherlands) and treated
with ACK lysis buffer (0.15M NH4Cl, 10 mM KHCOs3, 0.1 mM
EDTA, pH 7.2) to remove erythrocytes.

PBS-perfused lungs for isolation of lymphocytes were
homogenized using a GentleMACS dissociator (Miltenyi Biotec)
and then digested by treatment with collagenase D (0.5
mg/lung) (Roche, Woerden, The Netherlands) in DMEM
medium supplemented with 2% FBS at 37°C for 1.5h. The cell
suspension was passed through a cell strainer. Lung lymphocytes
in the filtered suspensions were enriched using lymphocyte
density gradients (Sanbio, Uden, The Netherlands) according to
the manufacturer’s protocol.

Elisa

For the detection of IgG, IgGl, IgG2a, or IgA antibody
against A(HIN1)pdmO09 virus in serum and nasal wash, ELISA
plates (Greiner, Alphen a/d Rijn, Netherlands) were coated
with 0.3 pg/well of X-181 WIV, conserved M2e peptide
(SLLTEVETPIRNEWGSRSNDSSD) or NP protein overnight
at 37°C and ELISA assays were performed as described
before (39). For NA-specific ELISA, recombinant NA protein
of A(HIN1)pdm09 was expressed and purified as described
previously (41). ELISA plates were coated with 0.1 pg/well of NA
overnight at 4°C and assays were performed as described (39).

Pseudotype HA Stalk Neutralization Assay

Pseudotyped viruses (PV) were produced by co-transfection
of HEK293T/17 cells using the polyethylenimine transfection
reagent (Sigma, cat: 408727). Lentiviral packaging plasmid
p8.91 and vector pCSFLW bearing the luciferase reporter
were transfected alongside the relevant HA glycoprotein
genes in the plasmid plL18 (42). Parental PV were
produced bearing the HA of A/California/7/09 (H1), or
A/duck/Memphis/546/1974 (H11). A chimeric HA (cHA)
consisting of the stalk from A/California/7/09 (H1) and head
from A/duck/Memphis/546/1974 (H11) was also produced
(43). Pseudotype based microneutralisation assays (pMN) were
performed as described previously (42). Briefly, serial dilutions
of serum were incubated with 1 x 10° relative luminescence
units (RLU) of HA bearing PV per well on a 96-well white plate
for 1h at 37°C 5% CO, in a humidified incubator. 1.5 x 10*
HEK293T/17 cells were then added per well and plates incubated
at 37°C 5% CO;, for 48 h before addition of Bright-Glo™ reagent
(Promega) and measurement of luciferase activity. Analysis
was performed using Graph-Pad Prism. Stalk-directed antibody
presence was measured via antibody titers recorded against
the cHA and both of its parental strains (H11 and H1 PV). No
(or negligible) antibodies should be present against the exotic
H11 HA, restricting neutralization of the cHA PV to antibodies
directed against the conserved HI1 stalk of the cHA. Control
antibodies used included mAb CR6261 (Crucell, Johnson,
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and Johnson) and polyclonal antiserum Anti HIIN9 World
Organization for Animal Health (OIE).

Intracellular Cytokine Staining

For IFNy intracellular cytokine staining, lymphocytes (1.5-
2 x 10°) from lung or spleen in complete IMDM medium
were stimulated with anti-CD28 (1 pg/ml, eBioscience), with
or without X-181 WIV (10 g/ml), overnight at 37°C in a 5%
CO; incubator. Protein transport inhibitor cocktail (eBioscience)
was added for the last 4h of stimulation. Stimulated cells
were stained with fluorochrome conjugated antibodies, including
Alexa Fluor 700-antiCD3 (clone 17A2), FITC-antiCD4 (GK1.5),
PerCP-cy5.5-antiCD8a (53-6.7), eFlour 450-antiCD62L (MEL-
14), APC-antiCD44 (IM7) for 45 min. After surface staining, cells
were stained with Fixable Viability Dye eFluor 780 (eBioscience)
to identify dead cells. Cells were then fixed with IC fixation buffer
(eBioscience) and permeabilized with permeabilization buffer
(eBioscience) before intracellular staining with PE-cy7-antil[FNy
(clone XMG1.2) (all monoclonal antibodies from eBioscience).
Samples were acquired on a BD LSRII and data were analyzed by
Kaluza® Flow Cytometry Analysis Software.

Elispot and Tetramer Staining

Influenza NP-specific IFNy-producing T cells were enumerated
using a commercial mouse IFNy ELISpot kit (MABTEC, The
Netherlands) according to the manufacturer’s protocol. Briefly,
splenocytes (2.5 x 10°/well) collected on day 0 post-infection
were incubated with or without 5 jug/ml of the PR8 NP3¢6_374
epitope (ASNENMDAM) in a pre-coated 96-well plate. After
overnight incubation, IFNy-producing T cells were detected
using alkaline phosphatase-conjugated anti-mouse IFNy
antibody. Spots were developed with BCIP/NBT substrate and
counted with an AID Elispot reader (Autoimmune Diagnostika
GmbH, Strassberg, Germany). The number of antigen-specific
IENy-producing cells was calculated by subtracting the number
of spots detected in the unstimulated samples from the number
in stimulated samples.

Tetramer staining for lung samples was performed as follows:
isolated lung lymphocytes were incubated with A(HIN1)pdm09
NP366-374-tetramer-PE (containing the A(HIN1)pdm09 epitope
ASNENMETM) for 40 min and then stained with mouse anti-
CD8a-PerCP-cy5.5 antibody for 40 min. Samples were acquired
on a FACS Calibur™ BD II flow cytometer. Data were analyzed
by Kaluza® Flow Cytometry Analysis Software.

Serum Adoptive Transfer

Mice were sequentially infected or sequentially immunized with
WIV as described above and serum was collected on day 28
post second infection or immunization. Serum collected from
mice that were immunized twice i.m. with A(HIN1)pdm09 WIV
served as positive control. Pooled serum was tested by ELISA
for presence of anti-A(HIN1)pdmO09 antibodies. Naive mice
(n = 5/group) received 200 w1 of pooled serum by intraperitoneal
injection 1 day before challenge with A(HIN1)pdmO09 virus. On
day 6 post challenge, lungs were collected for virus titration.

CD4 and CD8T Cell Depletion in vivo

For the T cell depletion study, mice were infected or vaccinated
as described above and rested for 28 days. Groups of mice
(n = 6/group) were injected with anti-CD4T cell depletion
antibody (200 pg/injection, GK1.5) or anti-CD8T cell (200
ng/injection, YTS169). These antibodies were given i.p on day
—1, 1, and 3 of A(HIN1)pdmO09 virus (10** TCIDs) challenge.
On day 6 post challenge, lungs were collected for virus titration.
Spleens were collected to confirm the depletion of T cells.

Statistics

Mann-Whitney U-test was used to determine the differences
between read-outs of two different groups. Statistical analyses
were performed using GraphPad Prism version 6.01 for
Windows. GraphPad Sofware, La Jolla, California, USA www.
graphpad.com. P < 0.05, 0.01, 0.001 were considered as

significantly different and were denoted by *, **, ***, individually.

RESULTS

Sequential Infection, WIV and SU
Vaccination Show Different Levels of
Cross-Protective Capacity Against
H1N1pdmO09 Influenza Virus Infection

To investigate the cross-protective immune response induced by
sequential infection or vaccination with antigens from different
influenza virus strains, we sequentially infected mice with PR8
and X-31 influenza virus or sequentially vaccinated mice with
WIV or SU vaccines derived from these viruses. These viral
strains were selected to reflect a heterosubtypic exposure history
in humans. The cross-protective capacity of sequential infection
or sequential immunization was determined by challenging the
mice with virus A/California/7/09 (HIN1)pdmO09.

After A(HIN1)pdmO09 virus challenge, mice in the sequential
SU vaccination group showed similar weight loss as mice in the
PBS control group and developed severe symptoms, necessitating
euthanasia on day 6 or 7 post challenge (Figures 1A,B). Mice
that were sequentially vaccinated with WIV showed a similar
trend of weight loss as mice in the PBS control group until
day 6 post infection. Yet, from day 7 post infection onwards,
WIV immunized mice recovered and none of the mice reached
the humane endpoint. In the sequential infection group, mice
showed no or only minor weight loss after challenge and none
of them needed to be sacrificed.

On day 3 post-challenge, lung virus titers in the sequential
SU vaccination group did not differ significantly from those
in the PBS control group (Figure 1C). In the sequential WIV
vaccination group, lung virus titers were decreased by 0.9 logio
as compared to the PBS group (p = 0.03). Sequential infection
resulted in a significant decrease of the lung virus titer by 2 logi
relative to the control group (p = 0.015).

These data demonstrate that sequential immunization with
WIV, although being less effective than sequential infection with
live virus, provided a certain level of cross-protection against
heterologous infection. In contrast, sequential SU vaccination did
not provide cross-protection.
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FIGURE 1 | Weight loss, survival rate, and lung virus titer of immunized mice after A(H1N1)pdmO09 virus challenge. Naive mice (n = 10) were sequentially infected with
sublethal doses of two different strains (PR8 and then X31) of live virus (LV) with 28 days interval or were sequentially immunized with vaccines (WIV, SU) derived from
these virus strains and then challenged with virus A/California/7/2009 (H1N1)pdm09. After challenge, mice (n = 5) were monitored daily for weight loss (A) and
survival (B) for a period of 14 days. On day 3 post-challenge, lung virus titers in 5 mice/group were determined by titration on MDCK cells (C). *p < 0.05,
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Sequential Infection, WIV and SU
Vaccination Induce Distinct
Cross-Reactive Antibody Responses

To explore the immune mechanisms involved in protection from
weight loss and lung virus growth upon challenge, antibody
responses induced by sequential infection with PR8 and X-31
or immunization with PR8 and X-31 derived vaccines were
determined.

A single infection with PR8 or immunization with PRS-
derived vaccines raised antibodies recognizing PR8 surface
proteins in all animals. Although the dose of WIV and SU
vaccines was chosen such that both contained the same amount
of surface antigens, a single immunization with WIV induced
around 30 times more PR8 HA/NA specific IgG than a single
immunization with SU (p < 0.0001) (Figure 2A). Antibody titers
raised by a sublethal infection were significantly higher than
those raised by WIV (p < 0.01) but the difference was only
1.7-fold. Upon subsequent immunization/infection with X-31,
on day 56, antibody titers to X-31 HA/NA in WIV-immunized
mice were approximately 10-fold higher than in SU-immunized
mice and around 3-fold higher than in sequentially infected mice
(p < 0.0001) (Figure 2B).

On day 56, after sequential exposure to PR8 and X-31, we also
determined antibody titers against heterologous A(HIN1)pdmO09
virus. Sequential infection induced around 20 times more cross-
reactive IgG antibody than sequential WIV vaccination and
approximately 75 times more than sequential SU vaccination
(p < 0.0001) (Figure 2C). With respect to the subtype profile

of the IgG antibodies, sequential infection and WIV vaccination
induced a Thl-type antibody response. The average ratio of
serum IgG2a to IgG1 concentration was 3 for mice sequentially
infected by live virus, compared with 1.5 induced by sequential
WIV vaccination. In contrast, sequential SU vaccination induced
a similar amount of IgG1 antibody as induced by sequential
WIV vaccination but no IgG2a (Figure 2D). However, cross-
reactive antibodies, irrespective of whether induced by sequential
infection or immunization, did not neutralize A(HIN1)pdm09
virus (Figure 2E). With respect to mucosal antibodies, only
sequential infection was found to induce cross-reactive IgA
antibody against A(HIN1)pdm09 virus in the nose (Figure 2F).
In order to reveal the target protein(s) of the observed cross-
reactive antibodies we first performed a pseudovirus-based assay
to detect antibodies to the HA stalk domain. This assay uses
a chimeric HA as antigen, with an H11 globular head, and an
H1 stalk. The chimeric HA pseudovirus particles were effectively
neutralized by the CR6261 mAb control which binds to the H1
stalk. However, no or very low amounts of antibodies reacting
with the H1 stalk were observed in any of the experimental
groups (Figure S1A). Next, we examined anti-NA antibodies
against A(HIN1)pdm09 virus. The mice from the sequential
infection group and 4 out of 5 mice from the WIV vaccination
group developed anti-NA antibodies, while only 2 out of 5
mice from the sequential SU vaccination group did so and
levels of anti-NA antibody were low (Figure S1B). Next, anti-
M2e antibody titers were determined by coating conserved M2e
peptide onto 96-well ELISA plate. Anti-M2e antibodies were
only found in the sequential infection group (Figure S1C). We
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FIGURE 2 | Cross-reactive antibody responses induced by sequential infection or immunization. On day 28 (the day of the second infection or immunization; A) and
on day 56 (the day of sacrifice or challenge; B-F), serum samples and nasal washes were collected from the mice described in the legend to Figure 1. Anti-PR8
(HA/NA) IgG antibodies (A; n = 7) and Anti-X-31(HA/NA) IgG antibodies (B; n = 7) in serum samples were detected by ELISA using PR8 SU and X-31 SU for coating.
Anti-H1N1pdm09-specific IgG (C; n = 15), IgG2a and IgG1 (D; n = 5) antibodies in serum samples were detected by ELISA. Microneutralization assay was used to
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also analyzed the presence of cross-reactive antibodies against
conserved internal proteins in serum using recombinant NP
from HK68 (H3N2), which shows 90% of sequence homology
with NP from A(HIN1)pdm09. Sequential infection and WIV
vaccination induced similar though somewhat variable amounts
of anti-NP antibodies (Figure S1D). As expected, no anti-NP
antibody was found in the sequential SU vaccination group.
These data indicate that sequential infection induced
broader and higher amounts of cross-reactive non-neutralizing
antibodies than sequential WIV vaccination, while SU
vaccination induced only antibodies against hemagglutinin and
to a limited extent against neuraminidase. Moreover, responses

to live virus and WIV were dominated by IgG2a while responses
to SU consisted exclusively of IgG1 antibodies.

Sequential Infection, WIV and SU
Vaccination Induce Different Memory

T Cell Immune Responses

Apart from cross-reactive antibody response, cellular immune
responses also play an important role in cross-protection. We
first evaluated the overall memory T cell responses in spleen and
lungs from mice after sequential infections or vaccinations. None
of these immunization strategies could significantly enhance
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the number of memory CD4+CD44+ T cells in the spleen
(Figure 3A). In contrast, numbers of CD8+CD44+ T cells were
significantly enhanced in the spleens of sequentially infected
mice compared with mice of the unvaccinated control group
(p = 0.028). Also sequential WIV vaccination enhanced the
numbers of memory CD8+CD44+4 T cells in the spleen
(p = 0.02) while SU did not have such an effect. In the lungs,
only sequential infection resulted in a moderate but significant
increase of memory T cells and this effect was restricted to
CD8+CD44+ T cells (Figure S2A). Interestingly, while the CD8
memory T cell population in sequentially infected mice consisted
of CD62L negative TEM as well as CD62L positive TCM, the
majority of memory CD8T cells from the sequential WIV
vaccination group consisted of TCM (Figure 3B, Figure S2B).
These data indicate that sequential infection and sequential
immunization with WIV are capable of stimulating CD8 memory
responses while immunization with SU is not.

For detection of CD4+4 and CD8+ T cells responding to
any influenza protein, splenocytes from sequentially infected or
sequentially immunized mice were stimulated overnight with
WIV, and IFNYy production was assessed by intracellular cytokine
staining. In live virus infected mice, percentages of IFNy-
producing CD4+ and CD8+ memory T cells in spleen and
lung were significantly higher than in mock immunized mice
(Figure 4A, Figure S2C, p < 0.05). Moreover, around 90% of
the IFNy-producing CD8T cells were effector memory cells
(data not shown). Also in WIV immunized mice, enhanced
percentages of IFNy positive CD4+ and CD8+ memory T cells
were found, yet lower than in the LV group. Significance as
compared to PBS control animals was reached only for CD4+
T cells in spleen.

In order to determine whether infection of vaccination had
induced CD8+ T cells to the dominant NP epitope an ELISPOT
assay was performed for which the splenocytes were stimulated
with NP3es_374 peptide (ASNENMDAM) from PR8 virus (the
epitope present in PR8 as well as X-31 virus). NP-specific CD8 T
cells were detected in the WIV and the sequential infection
group, but numbers were around 12 times higher in the latter
(Figure 4B, p = 0.008). Next, we assessed the cross-reactivity of
these NP-specific CD8 T cells to A(HIN1)pdm09 NP by staining
with tetramers containing the ASENENMETM epitope (from
A(HIN1)pdmO09 virus). No tetramer positive CD8 T cells were
observed in these groups of mice (Figure 4C) while tetramer
positive cells were readily detected in blood of mice infected with
A(HIN1)pdm09 virus.

Serum Antibodies Induced by Sequential
Infection Are Sufficient to Provide
Cross-Protection but Antibodies Induced
by WIV Vaccination Are Not

Our data show that sequential infection and sequential
immunization with WIV could provide protection against severe
symptoms upon infection with an A(HIN1)pdmO09 virus. To
determine the contribution of cross-reactive antibodies against
A(HIN1)pdmO09 virus challenge, serum from sequentially virus
infected, WIV vaccinated or PBS control mice was passively

transferred to naive mice 1 day before A(HIN1)pdmO09 virus
challenge. Serum from mice vaccinated with WIV derived from
A(HIN1)pdm09 virus served as positive control.

Mice receiving serum from mice immunized with
A(HIN1)pdm09 WIV (positive control, neutralizing titer
330) via adoptive transfer did not show weight loss upon
A(HIN1)pdmO09 virus challenge (Figure5A) and lung virus
titers in these animals were decreased by more than 2 logs
compared to the titers in the PBS control group (Figure 5B,
p < 0.01). Similarly, mice receiving serum from the sequential
infection group showed no or only mild weight loss. Interestingly,
despite the fact that the transferred serum did not contain any
neutralizing antibodies, lung virus titers in this group were
decreased to the same low level as in mice which had received
serum from A(HINI1)pdm09-immunized mice containing
neutralizing antibodies. Also serum from the sequential WIV
vaccination group provided partial protection; 4 out of 5 mice
receiving this serum showed no or mild weight loss, while
one mouse went down quickly. Yet, lung virus titers in the
WIV vaccination group, though slightly lower, did not differ
significantly from those in PBS-treated controls (p = 0.22)
(Figure 5B).

These data indicate that non-neutralizing antibodies induced
by sequential infection were as effective as neutralizing
antibodies induced by A(HIN1)pdm09 WIV vaccination in
providing protection against A(HIN1)pdmO09 virus challenge.
However, non-neutralizing antibody induced by sequential WIV
vaccination were not sufficient to provide full cross-protection.

Memory T Cells Induced by Sequential Live
Virus Infection or WIV Vaccination Are
Involved in Cross-Protection Against
A(H1N1)pdmO09 Virus Challenge

To determine the contribution of T cell immune responses to
cross-protection against A(HIN1)pdm09 virus infection, we used
CD4 or CD8 specific antibodies to deplete T cells before and
during A(HIN1)pdm09 challenge. On day 6 post-challenge, we
confirmed that 95% of CD8 T cells or 96% of CD4 T cells in mice
spleen were depleted by this treatment (data not shown).

Mice in the PBS mock vaccination group, no matter whether
treated with PBS, CD4 depletion antibody or CD8 depletion
antibody, showed continuous weight loss after A(HIN1)pdmo09
challenge (Figure 6A, PBS) and displayed the same virus titers in
lung tissue on day 6 post-infection (Figure 6B, PBS). In contrast,
mice in the sequential infection group were protected from
weight loss and showed low or undetectable lung virus titers
(Figure 6A, LV). Depletion of CD4 T cells in these mice had no
effect on protection. Depletion of CD8 T cells in the sequential
infection group had some effect on protection from weight loss;
on day 6 post A(HIN1)pdmO09 virus challenge 3 out of 6 mice
had lost >6.5% weight while in non-depleted mice the most
severe weight loss was 2.1% and was observed in a single mouse
only (Figure 6A, LV). In addition, lung virus titers were about
1.5 logo higher in the CD8-depleted mice than in non-depleted
control mice of the sequential infection group; yet, virus titers
were still significantly lower than in non-immunized mice. In the
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mice (n = 5) were determined by tetramer assay. Lymphocytes from the blood of mice (n = 2) infected with A(H1N1)pdmO09 virus served as positive control.

Frontiers in Immunology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 2312


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Dong et al.

Cross-Protection Through Sequential Influenza Vaccination

Days post infection

wiv LV PBS
105 105 105
£ 1004 £ 1004 £ 1004
= 2 ?
3 954 3 954 3 95
© © ©
g, 90+ .g’ 904 %, 90
= = =
S 854 O 85 S 851
) b )
x 804 x 804 X 80
75 T T T T T 1 75 T T T T T 1 75 T T T T T 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Days post infection Days post infection Days post infection
B
WIV (H1N1pdm) -
105+ 3 101 > o
-] i
gwmw S gl _ee ==
[ E . 4
E 951 S 6 ° A_A
« : 2
zE:n 90 3 e
-g 85 o 4
g 2
< 804 2 27
e o
o
75 T T T T T 1 -0 T T T T
0 1 2 3 4 5 6 wiv Lv PBS  WIV(HIN1pdm!

Day 6 post infection

FIGURE 5 | The cross-protective potential of antibodies induced by sequential infection or immunization. Mice (n = 5) were primed with PR8 virus (103TCID50) or
PR8 WIV (15 ng) and boosted with X-31 virus (103TCID5O) or X-31 WIV (15 png). Mice primed and boosted with PBS served as negative control and mice primed and
boosted with A(H1N1)pdm09 WIV (15 ng) served as positive control. Sera from these mice were collected 4 weeks after boost, pooled and injected into naive mice 1
day before challenge with A/California/7/2009 (H1N1)pdmO09 virus. Body weight loss (A) was monitored daily for 6 days. Virus titers in the lung tissue (B) on day 6
post-challenge were determined by titration on MDCK cells. **p < 0.01, Mann-Whitney U-test. The dashed line represents limit of detection. NS, not significant.

WIV vaccination group, depletion of CD4 or CD8 T cell did not
significantly alter the weight loss compared with mock depletion
but a strong trend toward less weight loss was observed in mice
depleted for CD4 T cells as compared to non-depleted mice of
this group (P = 0.054, Figure 6A, WIV). Depletion of CD4 T cells
decreased and depletion of CD8 T cells increased lung virus titers
by about 1 log as compared to non-depleted animals on day 6 post
challenge but these trends did not reach statistical significance
(Figure 6B, WIV). Moreover, virus titers in WIV-immunized
CD8T cell-depleted mice were of the same magnitude as those
in the PBS mock vaccination group.

These data above suggests that CD4 memory T cells were
most likely not involved in cross-protection while CD8 memory
T cells induced by sequential infection or WIV immunization
contributed decisively to cross-protection.

DISCUSSION

To determine whether sequential immunization with
antigenically distinct traditional vaccines could provide
cross-protection, mice were sequentially immunized with WIV
or SU vaccines derived from PR8 and X-31 viruses and then
challenged with an A(HIN1)pdmO09 virus. Another group of
mice was sequentially infected with sublethal doses of PR8
followed by X-31 prior to A(HIN1)pdm09 virus challenge.
We demonstrate that sequential infection provided solid cross-
protection which was correlated with cross-protective antibodies
and CD8 TEM cells. Sequential vaccination with WIV provided

partial cross-protection which also correlated with induction
of cross-reactive antibodies and CD8 T cells. Yet, sequential SU
vaccination did not provide cross-protection.

Neither sequential infection nor sequential immunization
resulted in induction of antibodies capable of neutralizing
A(HIN1)pdm09 virus. Yet, substantial amounts of cross-reactive
non-neutralizing antibodies were induced. Previous publications
have shown that non-neutralizing antibodies, for example anti-
HA stem antibodies, can be induced by sequential infection
with antigenically distinct viruses and may provide cross-
protection against A(HIN1)pdmO09 influenza virus infection
(11, 12). In contrast to these findings, no anti-HA stem
antibodies were found in this study. This may be due to
the fact that the two virus strains (PR8 and X-31) used for
infection/immunization belong to two different phylogenetic
groups. The HA-stem regions from PR8 and X-31 virus show
low similarity, which might have impaired boosting of HA-
stem reactive B cells induced by PR8 through exposure to
X-31. Nevertheless, we found cross-reactive antibodies against
other conserved proteins in this study. Anti-M2e, anti-NP and
anti-NA antibodies were induced by sequential infection and,
although to a lesser extent, by sequential WIV immunization.
In contrast, sequential SU immunization induced only very
moderate amounts of anti-NA antibodies cross-reactive with
A(HIN1)pdmO9 virus.

Since no neutralizing antibodies were found, the cross-
reactive but non-neutralizing antibodies likely are the reason
for the cross-protection observed in the serum adoptive
transfer experiment. Non-neutralizing antibodies can provide
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cross-protection via Fc receptor dependent mechanisms
[reviewed in (44)]. Interestingly, control of lung virus growth
by non-neutralizing antibodies evoked by sequential infection
with PR8 and X-31 was as effective as by neutralizing antibodies
evoked by A(HIN1)pdm09 WIV. Even in absence of antigen-
specific T cells, neutralizing antibodies are thus not crucial for
protection, suggesting that non-neutralizing antibodies maybe
more important for cross-protection than generally thought.
Our results are in line with studies in macaques which also
demonstrate that non-neutralizing but cross-reactive antibodies
can provide effective protection against heterosubtypic virus
challenge, most likely through antibody dependent cellular
cytotoxicity (45, 46). In this context, it is interesting that recent
studies revealed that in humans antibodies cross-reacting
with different influenza virus strains are common and are
effectively enhanced by vaccination with seasonal influenza
vaccines (47, 48). These antibodies might play a role in disease
mitigation.

Hillaire et al. and Guo et al. have shown that one dose of serum
from virus-infected animals could not provide cross-protection
against A(HIN1)pdm09 virus infection in mice (5, 6), while
Fang et al. have shown that four doses of serum could provide
cross-protection(3). These studies imply that the amount of non-
neutralizing cross-reactive antibodies may also play an important
role in cross-protection. In the present study, cross-reactive
antibody titers evoked by sequential WIV immunization were 20-
fold lower than those evoked by sequential infection. We thus
speculate that antibodies induced by WIV immunization, though
in principle cross-protective as indicated by our data, were not
present in sufficient amounts to confer complete protection.

Although sequential infection and sequential WIV
immunization induced virus-specific IFNy-producing CD4T
cells, depletion of CD4 T cells in this study did not influence the
cross-protection, neither in the sequential infection group nor
in the sequential WIV vaccination group. These results contrast
with previous findings which indicate that CD4 T cells might play
a role in cross-protection (5, 6, 21). Hillaire et al. reported that
naive mice that received T cells (a mixture of CD4 and CD8T
cells) induced by a single A(H3N2) (HK68) virus infection
acquired better cross-protection against A(HIN1)pdmO09 virus
infection than naive mice that received purified CD8T cells
only (6). Another study by Guo et al. reported that depletion of
CDA4T cells induced by a single X-31 virus infection impaired
the cross-protection against A(HIN1)pdmO09 virus infection in
mice (5). In this study, not only CD4T cells, but also robust
cross-reactive antibodies and CD8 T cell immune responses were
induced by sequential infection. These antibodies or CD8 T cells
alone could significantly reduce the virus titer in mice lung in
the absence of CD4 T cells. We conclude that CD4 T cell are not
essential for cross-protection against A(HIN1)pdm09 during
infection in this mouse model.

CD8T cells play an important role in cross-protection. In the
present study, depletion of CD8T cells induced by sequential
WIV immunization resulted in lung virus titers similar to
those in PBS mock vaccinated mice, implying that CD8T cells
are important for cross-protection induced by sequential WIV
immunization. These results agree with those reported by Furuya
et al. who showed that WIV (prepared by y-irradiation) did not
provide cross-protection against heterologous virus infection in
mice defective in CD8T cells (49). Another study by Budimir
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et al. also has shown that depletion of CD8T cells induced
by 2 doses of WIV abolished the cross-protection against
heterologous virus challenge (50). Depletion of CD8T cells
in the sequential infection group prior to A(HINI)pdmO09
challenge had a significant though moderate effect on lung virus
titers. This result implies that in the sequential infection group
CD8T cells do play a role in cross-protection, but team up
with other mechanisms, eg antibodies (Figure5), to provide
full protection. Our findings are also in line with previous
publications which demonstrate that CD4 T cells or antibody
immune responses are required to cooperate with CD8 T cells
for providing optimal cross-protection in live virus infected mice
(5,17, 51).

The tetramer experiment indicates that PR8 NPzgs_374
epitope-specific CD8T cells elicited by PR8 and boosted by
X-31 virus or WIV could not recognize the corresponding
A(HINI1)pdmO09 NP3e6_374 epitope. This result is in line with
previous findings demonstrating that X-31 NP3g6_374 epitope
cannot be recognized by A(HIN1)pdm09 NP-specific CD8T
cells (52). However, Guo et al. have reported that influenza NP
and PA proteins from PR8 and A(HIN1)pdmO09 virus share many
conserved epitopes (52). It is possible that influenza-specific
CD8T cells against these shared conserved epitopes induced
by sequential infection or WIV immunization contributed
to cross-protection against A(HIN1)pdm09 influenza virus
infection.

Different phenotypes of memory CD8T cells show different
capacities in cross-protection, for example Wu et al. have shown
that CD8 TCM induced by influenza virus infection are not
required for cross-protection (17). In the present study, we found
that sequential infection mainly induced CD8 TEM. This result is
in line with previous findings in mice and humans reporting that
a single influenza infection predominantly induces influenza-
specific CD8 TEM cells (53, 54). CD8 TEM have been shown
to be associated with a fast recall immune response to the
infection site, thus providing immediate cross-protection(53).
Interestingly, we found that sequential WIV immunization was
more likely to induce CD8 TCM. These cells have shown
high proliferation ability in secondary lymphoid organs but to
provide delayed cross-protection (55). Thus, we propose that
CD8 TEM in lung and spleen induced by sequential infection
provided immediate local antiviral effects, resulting in solid
cross-protection. In contrast, CD8 TCM in spleen induced by
sequential WIV immunization provided delayed antiviral effects
in the lung, resulting in partial cross-protection.

A limitation of our study is the fact that we did not investigate
whether sequential infection/immunization with the same virus
could also provide protection from infection by a heterologous
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