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Autoimmune diseases involve a complex dysregulation of immunity. Autoimmune

diseases include many members [e.g., rheumatoid arthritis (RA) and systemic lupus

erythematosus (SLE)], and most of them are classified according to what organs and

tissues are targeted by the damaging immune response. Many studies have focused

on finding specific biomarkers for single autoimmune diseases, but so far, there are no

universal biomarkers for detecting almost all autoimmune diseases. SerummiRNAs have

served as potential biomarkers for detecting various diseases. The purpose of this study

was to find a universal biomarker for diagnosing autoimmune diseases. Regulatory T cells

(Tregs) play a crucial role in protecting an individual from autoimmunity, and depletion of

Tregs in mice is considered a representative animal model of autoimmune disease. Two

mouse models for Treg depletion, in which Treg was depleted by CD25mAb (in C57mice)

or by diphtheria toxin (DT) (in Foxp3DTR mice), were investigated, and 381 miRNAs were

identified in the serum of mice with Treg depletion. A distinctive circulating miRNA profile

was identified in Treg-depleted mice and in patients with autoimmune disease. QRT-PCR

confirmation and ROC curve analysis determined that six miRNAs (miR-551b, miR-448,

miR-9, miR-124, miR-148, and miR-34c) in the Treg-depleted mouse models and three

miRNAs [miR-551b (specificity 73.5%, sensitivity 88.4%), miR-448 (specificity 82.4%,

sensitivity 91.3%), andmiR-124 (specificity 76.5%, sensitivity 91.3%)] in patients with RA,

SLE, Sjogren’s syndrome (SS), and ulcerative colitis (UC) could serve as valuable specific

biomarkers. These circulating miRNAs may represent potential universal biomarkers for

autoimmune diseases diagnosis and prognosis.
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INTRODUCTION

Autoimmune diseases reflect the interplay between environment and genetic factors (1–3).
The diseases share a substantial degree of immunopathology, including increased secretion of
inflammatory cytokines by autoreactive CD4+ T cells and a loss of Regulatory T cells (Tregs)
function (4, 5). Most autoimmune diseases are classified based on which organs and tissues are
targeted by the damaging immune response [e.g., primary biliary cirrhosis (6), type 1 diabetes
mellitus (1), arthritis (7), and myositis (8)]. Autoimmune diseases include many types, and there is
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an autoimmune disease specific to nearly every organ in the
body (8). Clinically, specific diagnostic methods are used for each
autoimmune disease, which is tedious and costly. Therefore, it
is urgent to find a universal marker to diagnose autoimmune
diseases, which will provide new possibilities for autoimmune
disease detection and treatment.

Tregs, characterized by expressing CD4, CD25, and Forkhead
box P3 (Foxp3) transcription factor, play pivotal roles in
protecting an individual from autoimmunity. These roles have
been identified in mice with Treg depletion or absence,
which results in the development of autoimmune gastritis,
thyroiditis, multiple sclerosis (MS), type 1 diabetes, ankylosing
spondylitis (AS), inflammatory bowel disease (IBD), systemic
lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren’s
syndrome (SS), and ulcerative colitis (UC) (4, 9–11). Thus,
Tregs depletion in mice is considered a representative animal
model of autoimmune disease. Two approaches are typically
used to deplete Tregs in mice. In the first, Treg cells are
depleted by constitutive expressing CD25. Previous studies have
demonstrated that injection of depleting antibodies directed
against CD25 will lead to a mild autoimmune disease (11–13).
The other method is to use Foxp3DTR mice, which are created
by designing a construct in which cDNA encoding the diphtheria

toxin receptor (DTR) is inserted into the 3
′

untranslated region

(3
′

UTR) of Foxp3. After continuous injection of DT, Treg cells
are efficiently depleted, which affects multiple organs and leads
to fatal autoimmune pathology (14, 15).

microRNAs (miRNAs) are small regulatory RNA molecules
that function to regulate gene expression and play vital roles
in various physiologic and pathologic processes. Our study (16)
and others’ studies (17–21) have found that serum miRNAs
can serve as potential biomarkers for detecting a variety of
diseases, including immune diseases. Song et al. (22) found that
circulating miRNAs play a key role in diagnosing congenital
heart defects (CHD) and predicting CHD risk in offspring.
Sharaf-Eldin et al. (23) determined that three miRNAs (miR-
326, miR-223, and miR-145) expression profiles are promising
diagnostic biomarkers for SLE and MS. Anaparti et al. (24)
indicated miR-103a-3p as a prognostic biomarker for preclinical
RA. Guo et al. (25) found that miRNA expression patterns are
different in inflamed and noninflamed terminal ileal mucosa of
patients with Crohn’s disease (CD), and dysregulated miRNAs
may be responsible for CD pathogenesis. According to current
knowledge, immunosuppression relies partly on Tregs and
involves in autoimmune disease and cancer, but the serum
miRNA profiles of these diseases are less similar (26–28).
Therefore, we deem that an investigation of serum miRNA
profiles in immunodeficient animal models and patients with
autoimmune diseases can be an easy and insightful pathway to
provide valuable diagnostic and therapeutic approaches in the
future.

In this study, we established two animal models of Treg
depletion by using CD25 mAb in C57 mice and DT in
Foxp3DTR mice. miRNA low density array and quantitative
reverse-transcription PCR (qRT-PCR) confirmation were used
to characterize the miRNA expression profiles in serum of
Treg-depleted mice. ROC curve analysis determined that six

miRNAs (miR-551b, miR-448, miR-9, miR-124, miR-148, and
miR-34c) could serve as valuable biomarkers for distinguishing
Treg-depleted mice from controls. Then, we identified them in
the serum from healthy controls, RA, SLE, SS, and UC patients.
We found that threemiRNAs (miR-448, miR-124, andmiR-551b)
could serve as novel diagnostic indicators and thereby provide
some useful information about the molecular pathogenesis of
autoimmune diseases.

MATERIALS AND METHODS

Animals
All animal experiments were performed in accordance with
the National Institutes of Health Guide for the Care and Use
of Laboratory Animals. Male 6–8-weeks-old C57BL/6J mice
were purchased from the Model Animal Research Center of
Nanjing University (Nanjing, China). The Foxp3DTR mice were
generously provided by Prof Alexander Rudensky (Memorial
Sloan-Kettering Cancer Center, New York). The mice were
maintained under specific pathogen-free conditions at Nanjing
University.

Reagents
TRIzol LS Reagent was purchased from Invitrogen. The mouse
Treg staining kit#1 was purchased from eBioscience. DT from
corynebacterium diphtheria was purchased from Sigma-Aldrich.
The purified rat anti-mouse CD25 antibody was purchased from
BD Pharmingen. A peripheral blood lymphocyte isolation kit was
purchased from Tianjin Haoyang Biological Company.

Depletion of Tregs
In C57BL/6J mice, Tregs were transiently depleted by
intraperitoneally injecting 0.5mg purified rat anti-mouse
CD25 antibody as we previously described (29). For Foxp3DTR

mice, frozen DT stocks were thawed once and 50 µg/kg of
DT was injected intraperitoneally unless otherwise noted.
To maximum the efficiency of CD4+ CD25+ Foxp3+ Treg
elimination, we conducted injections every day for 7 consecutive
days.

Flow Cytometric Analysis
Peripheral blood and spleen were collected and analyzed by
FACScalibur for CD4, CD25, and Foxp3 T cell expression as
previously described (29). The results were analyzed by BD
FACScalibur device.

Measurement of Cytokine Levels in Serum
Whole blood of mice was collected without anticoagulant and
centrifugated to obtain serum. The levels of TNF-α, IL-6, and
IFN-γ in serum were detected with ELISA kits (R&D) following
the instructions as we previously described (29, 30).

miRNA Microarray
A minimum of 0.1 µg of total RNA was added to the
GenoExplorer microRNA Expression System (GenoSensor
Corporation, Tempe, AZ) containing probes in triplicate
for mature miRNAs. miRNA concentrations are presented
as threshold cycle (Ct). Significant differentially expressed
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miRNAs between the groups were analyzed and normalized to
internal controls PC-U6B, U6-337, 5S-rRNA, and PC-HU5S
recommended by the manufacturer. The relative concentration
was calculated by the comparative Ct method (2−11Ct). miRNAs
were considered upregulated/downregulated if their Ct-values
were <35 in the control samples and their levels in the Treg-
depleted samples showed at least a 2-fold increase/decrease
compared to the controls.

Patients and Healthy Controls
The serum samples were collected according to protocols
approved by the Medical Ethics Committee of Nanjing Drum
Tower Hospital. All the RA patients are in the active stage
of disease and received disease-modifying antirheumatic drugs
(DMARDs), such as methotrexate (MTX), Leflunomide (LEF),
Hydroxychloroquine (HCQ). Among them, three patients
received glucocorticoids (GC) 5–15 mg/days. The Disease
Activity Score with 28 joint (DAS28) of RA is 5.42 ± 1.83.
In SLE patients, the Systemic Lupus Erythematosus Disease
Activity Index (SLEDAI) is 14.28± 5.8, all of them have received
hormone immunosuppression and the average dosage was 25
mg/days. Healthy controls are in normal physiological conditions
and show no sign of pathologic factors after health examination.
The ages of healthy individuals are matched with patients. The
demographic characteristics of patients and healthy controls are
listed in Supplemental Tables 1–8.

Serum RNA Isolation and qRT-PCR
Total RNA of serum was extracted using TRIzol LS Reagent
(Invitrogen) following the instructions. qRT-PCR was performed
on a LightCycler 480 real time PCR System (Roche, Mannheim,
Germany) using TaqMan miRNA probes (Applied Biosystems)
according to the instructions as we previously described (16, 31,
32).

Statistical Analysis
All data are representative of at least three independent
experiments. All assays were performed in triplicate, and each
experiment was repeated several times. Statistical analysis was
performed using the t-test, when the groups >2, one way
ANOVA followed by Bonferroni’s multiple comparisons test were
used. Data are presented as the means ± SEMs of at least
three independent experiments. Differences were considered
statistically significant at P < 0.05.

RESULTS

Treg Depletion by CD25 mAb or DT
First, C57BL/6mice and Foxp3DTR mice were injected with CD25
mAb or DT to eliminate CD4+ CD25+ Foxp3+ Tregs. To test
the efficiency of Treg depletion, Treg levels were measured in
peripheral blood and spleen on day 8 (Figure 1A). As shown in
Figures 1B–D, CD4+ T cell levels increased after the CD25 mAb
and DT injections. In peripheral blood, CD4+ CD25+ Foxp3+

Treg cells decreased significantly from 7.49 to 0.15% after CD25
mAb injection, and DT injection decreased the Treg levels from
6.59 to 0.06%. The levels of Treg were also reduced in spleen

(Supplemental Figure 1A). In addition, mice depleted of Tregs
weighed less than control mice (Supplemental Figures 1B,C).
The levels of inflammatory cytokines TNF-α, IL-6, and IFN-
γ were dramatically increased in serum from mice with
Treg depletion compared to the mice without Treg depletion
(Figure 1E), indicating that elimination of CD4+ CD25+

Foxp3+ Tregs is sufficient to disrupt immunological balance.
These results suggest that Treg depletion can be used as a
representative model of autoimmune diseases.

Microarray Analysis of Serum miRNAs in
Treg-Depleted Mice and qRT-PCR
Confirmation of Changed miRNAs
To identify the markedly changed serum miRNAs, we first
analyzed the miRNAs differentially expressed between Treg-
depleted and control mice by a TaqMan low density array. Of
the 381 miRNAs scanned, 110 demonstrated >2-fold changes
in the CD25 mAb group, 40 were upregulated and 70 were
downregulated (Figures 2A,C). In the DT group, 254 miRNAs
demonstrated >2-fold changes, 36 were upregulated and 218
were downregulated (Figures 2B,C). Among the scanned
miRNAs, 2 miRNAs (miR-551b and miR-448) were upregulated
in both Treg-depleted groups, while 45 miRNAs were
downregulated in both groups (Supplemental Figures 2A–C).

To verify the microarray results, we performed qRT-PCR
assay to measure the changed miRNAs in four groups (CTL,
CD25 mAb, Foxp3DTR-CTL, and Foxp3DTR-DT groups, 15
mice/group). The inclusion criteria of changed miRNAs
was as follows: mean fold change >2 and P-value < 0.05
between Treg-depleted groups and control groups. Among
the significantly changed miRNAs, we selected six to validate
(Supplemental Figure 2, Figure 2D–I). Consequently, we
identified that two miRNAs (miR-551b and miR-448) were
significantly increased and four miRNAs (miR-9, miR-124,
miR-148, and miR-34c) were markedly decreased in serum from
Treg-depleted mice.

Diagnostic Value of the Selected Serum
miRNAs
Next, we conducted receiver-operating characteristic (ROC)
curve analyses to identify the diagnostic usefulness of the 6
miRNAs for Treg-depletion mice models. ROC curve analysis
revealed that the six miRNAs (miR-551b, miR-448, miR-9, miR-
124, miR-148, and miR-34c) could serve as valuable biomarkers
for distinguishing CD25 mAb samples from controls, with the
AUC (the area under the ROC curve) values being 0.951,
0.858, 0.916, 0.991, 1.000, and 0.902, respectively (Figures 3A–F).
Likewise, the ROC curves also indicated that the six miRNAs
(miR-551b, miR-448, miR-9, miR-124, miR-148, and miR-
34c) could accurately discern DT samples from controls,
with the AUCs being 0.964, 0.884, 1.000, 0.991, 0.938, and
0.862, respectively (Figures 3G–L). The results suggest that the
diagnostic potential of these six miRNAs in distinguishing Treg-
depleted mice from controls was high.
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FIGURE 1 | Anti-CD25 mAb and diphtheria toxin (DT) depletes CD4+ CD25+ Foxp3+ Treg cells. (A) Schematic diagram illustrating the experimental design. The

C57BL/6 and Foxp3DTR mice were divided into two groups (15 mice/group). Then, C57BL/6 mice were administered PBS or CD25 mAb every 3 days, while

Foxp3DTR mice were continuously injected with DT for 7 days. On day 8, all mice were sacrificed, peripheral blood, spleen, and serum were collected. (B) Analysis of

CD4+ T cells and CD4+ CD25+ Foxp3+ Tregs in peripheral blood. (C,D) Statistical analysis of the percentages of CD4+ T cells and CD4+ CD25+ Foxp3+ Tregs in

the mice of four groups. (E) Circulating TNF-α, IL-6, and IFN-γ levels in four groups of mice (n = 15). All the values are shown as the mean ± SEM. *P <0.05, **P <

0.01, and ***P < 0.005.

Microarray-Based Go and KEGG Analyses
Revealed the Role of the Selected Serum
miRNAs
In order to understand the potential functions of these miRNAs,

we conducted bioinformatics analysis. First, Gene Ontology
(GO) analysis was performed to identify biological processes

associated with the miRNA target genes (P < 0.001, FDR

< 0.05). The high-enrichment GO terms targeted by the
six miRNAs included biological regulation, macromolecule

biosynthetic process, biosynthetic process and metabolic process
(Figures 4A,B). KEGG annotation showed that oncogenic

pathways (pathways in cancer, chronic myeloid leukemia, and
the TNF signaling pathway), immune-associated pathways (T
cell and B cell receptor signaling pathways, inflammatory
mediator regulation of TRP channels, TGF-beta signaling
pathway, cytokine-cytokine receptor interaction, and NF-kappa
B signaling pathway), and important proliferative, survival,
and apoptosis signaling pathways (MAPK, AMPK, ErbB, Ras,
Wnt, mTOR, and p53) were significantly enriched (Figure 4C).
Most of the pathways have already been reported to take
part in immunodeficiency. For example, RAS-MAPK signaling
pathway deregulation in T lymphocytes was found to result
in a previously unknown primary immunodeficiency disease
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FIGURE 2 | Hierarchical clustering of serum miRNA expression levels in Treg-depleted mice models. Hierarchical clustering of miRNAs differentially expressed in

serum of mice from four groups: (A) CTL and CD25 mAb groups and (B) Foxp3DTR-CTL and Foxp3DTR-DT groups. (C) The changed miRNAs in Treg-depleted mice.

(D–I) The relative levels of 6 selected serum miRNAs were studied in the mice from four groups. Serum samples from 15 mice in each group were pooled and

subjected to qRT-PCR quantification. **P < 0.01, and ***P < 0.005.

FIGURE 3 | Diagnostic value of selected serum miRNAs. (A–F) ROC curve for the ability of individual miRNAs (miR-551b, miR-448, miR-9, miR-124, miR-148, and

miR-34c) to separate CD25 mAb mice from controls. (G–L) ROC curve for the ability of miR-551b, miR-448, miR-9, miR-124, miR-148, and miR-34c to separate

Foxp3DTR –DT mice from controls.
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FIGURE 4 | GO and KEGG analyses of potential roles of selected serum miRNAs. (A,B) The most enriched GO biological processes and molecular functions of 6

selected miRNAs. GO, molecular function for all miRNA targets. (C) Pathway enrichment analysis based on the miRNA target genes. The vertical axis represents the

pathway category and the horizontal axis represents the enrichment score of the pathways and KEGG pathway terms (P < 0.05 and FDR < 0.05).

(33), mTOR pathway played a crucial part in regulating
lymphoproliferation and aberrant differentiation in autoimmune
lymphoproliferative syndrome (ALPS) (34), and the pivotal role
of Wnt signaling pathway in T cell development, activation,
and differentiation has recently been discovered (35). These
bioinformatics interpretations may provide more evidence that
the six miRNAs may have regulatory effects on immunity by
affecting signaling pathways.

Separation of Patients With Autoimmune
Diseases From Controls by miR-448,
miR-124, and miR-551b
To further assess the diagnostic value of miRNA signatures
in distinguishing patients with autoimmune diseases from
controls, we measured the six miRNAs in serum samples
comprising 34 healthy controls, 15 RA patients, 27 SLE
patients, 15 SS patients, 12 UC patients. Supplemental Tables

summarizes the demographic characteristics for the participants.
QRT-PCR results indicated that miR-551b and miR-448
were significantly increased in RA, SLE, SS, and UC patients
(Figures 5A,B), whereas miR-124 levels were decreased in
RA, SLE, SS, and UC patients compared to the controls
(Figure 5C). To further verify the three miRNAs are specific
for systemic autoimmune diseases, we measured them in
serum samples of inflammatory disease comprising 15
pneumonia patients, 15 HBV hepatitis patients, and 14
sepsis patients (Figures 5A–C). The results showed no obvious
differences between them and healthy controls, suggesting
that the three miRNAs may represent specific biomarkers for
distinguishing patients with autoimmune diseases from healthy
controls.

Then we performed a ROC curve analysis to evaluate the
diagnostic usefulness of the three miRNA in discriminating

patients with autoimmune diseases from healthy controls. The
ROC curve analysis showed that miR-448, miR-124, and miR-
551b could serve as valuable biomarkers for distinguishing
patients with autoimmune diseases from healthy controls,
with the AUC being 0.91(95% CI 0.85–0.97), 0.9 (95% CI
0.833–0.967), and 0.850 (95% CI 0.769–0.932), respectively
(Figures 5D–F). Then, we analyzed the predictive accuracy of
miRNA signatures: miR-448 showed a specificity of 82.4% and
a sensitivity of 91.3%, miR-124 showed a specificity of 76.5%
and a sensitivity of 91.3%, and miR-551b showed a specificity
of 73.5% and a sensitivity of 88.4%. These results suggest
that the diagnostic value of these three miRNAs to distinguish
patients with autoimmune diseases from healthy individuals was
high.

DISCUSSION

Autoimmune diseases involve a complicated immunity
disorder, leading to a loss of self-tolerance and following
assault on endogenous tissues and cells. So far, there is no
universal biomarkers for detecting almost all autoimmune
diseases.

Tregs play essential roles in maintaining immune
homeostasis and preventing autoimmunity induced by
excessive immune activation (10). Depletion of Tregs
in mice is considered a representative animal model of
autoimmune disease. In this study, we established Treg
depletion mice models in two ways: through CD25 mAb
injection in C57BL/6 mice and DT injection in Foxp3DTR

mice. Both models showed significantly reduced Treg levels
and increased CD4+ T cell levels in peripheral blood and
spleen. Inflammatory cytokines, such as TNF-α, IL-6, and
IFN-γ, were markedly increased in serum from Treg-depleted
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FIGURE 5 | Separation of patients with autoimmune diseases from controls by miR-551b, miR-448, and miR-124. (A–C) The relative expressions of 3 miRNAs were

studied in serum from 34 healthy controls, 15 RA patients, 27 SLE patients, 15 SS patients, 12 UC patients, 15 pneumonia patients, 15 HBV hepatitis patients, and

14 sepsis patients. (D–F) ROC curves for the ability of miR-551b, miR-448, and miR-124 to separate patients with autoimmune diseases from controls. All the values

are shown as the mean ± SEM.

mice. These phenomena are consistent with the common
characteristics of autoimmune diseases, so these Treg-depleted
mice can be used as representative models of autoimmune
diseases.

In a previous study, we showed that miRNAs are present
in serum and plasma of humans and many other animals
with stable, reproducible, and consistent in the serum of
individuals of the same species (16). By characterizing serum
miRNA expression profiles under normal conditions and
in various disease states, we found that serum miRNAs
are derived not only from circulating blood cells but also
from other tissues directly affected by diseases. Thus, we
concluded that serum miRNAs can serve as potential biomarkers
for detecting various diseases (16, 17, 36). Here, we first
investigated the serum miRNA profiles in animal models with
Treg depletion. Low Density Array identified miRNAs with
significantly different levels in Treg-depleted mice and control
mice and revealed that two miRNAs (miR-551b and miR-
448) were upregulated and 45 miRNAs were downregulated
(>2-fold change) in both Treg-depleted groups. QRT-PCR
further confirmed that miR-551b and miR-448 were significantly
increased and four miRNAs (miR-9, miR-124, miR-148, and
miR-34c) were significantly decreased in Treg-depleted groups.
Then, ROC curve analysis determined that 6 miRNAs (miR-
551b, miR-448, miR-9, miR-124, miR-148, and miR-34c)
could serve as valuable biomarkers for distinguishing Treg-
depleted mice from controls. GO term and KEGG pathway

annotation showed that target genes of the six miRNAs were
associated with oncogenic, immune-associated, proliferative,
survival, apoptosis, and inflammatory signaling pathways, and
most of the pathways have already been reported to take
part in immunodeficiency. Previous studies have reported
that miR-551b is deregulated in CD (coeliac disease, a
common autoimmune disorder of the small bowel) patients
(37). Wu et al. (38) found that miR-448 is deregulated in
MS patients and further promotes MS development through
induction of the Th17 response. miR-9 has been found to
be a putative GA-treatment responsive miRNA biomarker
in EAE (experimental autoimmune encephalomyelitis) (39)
and sympathetic ophthalmia (40). Previous research has
demonstrated that miR-124 plays vital roles in regulating
autoimmune inflammation (41–46). miR-148 might represent
prognostic markers for treating autoimmune disorders, such as
chronic inflammatory diseases, multiple types of cancer and heart
failure in diabetics (47, 48). Besides, miR-34 has been reported to
be correlated with RA (49).

Then, we measured six miRNAs to verify in the serum of
RA, SLE, SS, UC patients, non-autoimmune diseases patients
and healthy controls. QRT-PCR confirmation and ROC curve
analysis determined that miR-448, miR-124, and miR-551b could
serve as valuable specific biomarkers for distinguishing patients
with autoimmune diseases from healthy controls.

In conclusion, we have defined a serummiRNA profiling in an
animal model with autoimmune diseases. Moreover, our findings
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may provide a potential biomarker for diagnosing autoimmune
diseases.
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