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Pregnancy success is orchestrated by the complex balance between the maternal and

fetal immune systems. Herein, we summarize the potential role of innate lymphoid

cells (ILCs) in the maternal and fetal compartments. We reviewed published literature

describing different ILC subsets [ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer

(LTi) cells] in the uterus, decidua, fetal tissues [liver, secondary lymphoid organs (SLO),

intestine, and lung] and amniotic cavity. ILC1s, ILC2s, and ILC3s are present in themurine

uterus prior to and during pregnancy but have only been detected in the non-pregnant

endometrium in humans. Specifically, ILC2s reside in the murine uterus from mid-

pregnancy to term, ILC1s increase throughout gestation, and ILC3s remain constant.

Yet, LTi cells have only been detected in the non-pregnant murine uterus. In the human

decidua, ILC1s, ILC3s, and LTi-like cells are more abundant during early gestation,

whereas ILC2s increase at the end of pregnancy. Decidual ILC1s were also detected

duringmid-gestation in mice. Interestingly, functional decidual ILC2s and ILC3s increased

in women who underwent spontaneous preterm labor, indicating the involvement of such

cells in this pregnancy complication. Fetal ILCs exist in the liver, SLO, intestine, lung, and

amniotic cavity. The fetal liver is thought to be the source of ILC progenitors since the

differentiation of these cells from hematopoietic stem cells occurs at this site, and mature

ILC subsets can be found in this compartment as well. The interaction between LTi cells

and specialized stromal cells is important during the formation of SLO. Mature ILCs are

found at the mucosal surfaces of the lung and intestine, from where they can extravasate

into the amniotic cavity. Amniotic fluid ILCs express high levels of RORγt, CD161, and

CD103, hallmarks of ILC3s. Such cells are more abundant in the second trimester than

later in gestation. Although amniotic fluid ILC3s produce IL-17A and TNFα, indicating their

functionality, their numbers in patients with intra-amniotic infection/inflammation remain

unchanged compared to those without this pregnancy complication. Collectively, these

findings suggest that maternal (uterine and decidual) ILCs play central roles in both the

initiation and maintenance of pregnancy, and fetal ILCs participate in the development of

immunity.
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INTRODUCTION

Successful pregnancy requires the participation of numerous
immune cell subsets that must be maintained at perfect
equilibrium in the maternal and fetal compartments (1, 2). Both
innate and adaptive immune cells have been shown to play
important roles in the maintenance and completion of pregnancy
(3, 4). The discovery of innate lymphoid cells (ILCs), which
bridge the innate and adaptive immune systems, has opened up
a new field of investigation with the potential to further uncover
the complex immune state of pregnancy.

Innate lymphoid cells (ILCs) are defined by the following
characteristics: (1) a lack of antigen-specific receptors, (2)
the absence of the expression of known immune cell lineage
markers, and (3) lymphoid cellular morphology (5–7). ILCs were
divided into three primary groups based on their phenotype
and functions (6). Type 1 ILCs (ILC1s) include the prototypical
natural killer (NK) cells as well as non-cytotoxic IFNγ-producing
ILC1s, identified by expression of the transcription factor T-bet
(6, 8, 9). Type 2 ILCs (ILC2s) function through the release of type
2 cytokines such as IL-5 and IL-13 (10–15) and are thought to
rely primarily on GATA-binding protein 3 (GATA3) and retinoic
acid receptor-related orphan receptor-α (RORα) during their
differentiation (6, 16, 17). These ILC2s participate in immune
responses such as parasitic infection (12) and allergy (18) but
also serve as systemic regulators of homeostasis (19–21). Type 3
ILCs (ILC3s) were divided into twomain groups: lymphoid tissue
inducer (LTi) cells and non-LTi ILC3s, referred to hereafter as
ILC3s (6). LTi cells are critical for the formation of secondary
lymphoid organs (SLO) and isolated lymphoid tissues (i.e.,
Peyer’s patches) during fetal development (22–26). Such cells are
also found in adults, where they are referred to as LTi-like cells
since they do not generate new lymphoid tissue (27). LTi cells
and ILC3s rely on expression of RORγt for their development
(26) and can express IL-17A and/or IL-22; however, multiple
ILC3 subsets with slightly different phenotypes and functional
profiles have been described (6). Moreover, a degree of plasticity
exists between ILCs, creating an additional layer of complexity
within the ILC family (28–31). Recently, it was proposed that
the classification of ILCs be expanded to five subsets in order
to reflect their distinct developmental pathways: NK cells, ILC1s,
ILC2s, ILC3s, and LTi cells (7).

In this review, we aimed to highlight the potential roles of
ILCs in the uterus, the decidua, which is the site of direct
contact between the maternal and fetal (chorion or trophoblast)
tissues, the fetal organs, and the amniotic cavity. Within the field
of perinatal immunology, it has been established that uterine
(decidual) NK cells play important roles in the maintenance
of pregnancy, and their functions are well reviewed elsewhere
(32–35). Recent studies have shown that the other ILC subsets
exist in the maternal and fetal tissues, suggesting that they also
contribute to pregnancy maintenance and outcome. Therefore,
in this review, we have focused on ILC1s, ILC2s, ILC3s, and
LTi cells. Despite recent advances in the study of ILCs during
pregnancy, several gaps still exist in the current knowledge. This
review may provide insight into the known roles of ILCs during
pregnancy and reveal new potential areas for future studies.

UTERINE INNATE LYMPHOID CELLS

Over the last decade, valuable information has been provided
about the presence of ILCs in both the non-pregnant and
pregnant uterus. A subset of ILC-like cells was first described
in the human uterine mucosa (36). Such cells were originally
considered precursors to uterine NK cells, yet showed a divergent
phenotype and functionality through the expression of ILC3- and
LTi-specific genes such as RORC, LTA, and IL22 (36), indicating
a different role for these cells. These results were confirmed later
by the detection of ILC1s (37), ILC2s (38), and ILC3s (37, 38)
in the human non-pregnant endometrium and reinforced by the
demonstration that such cells are present in the murine uterus
during pregnancy as well (37–41). Such studies have formed a
foundation for the understanding of uterine ILCs; yet, future
research is needed to further elucidate the role of these cells
during pregnancy.

UTERINE ILC1s

Uterine ILC1s were first described in non-pregnant mice
as a distinct subset of NK-like cells (42). This ILC1-like
population was maintained in the murine uterus of Nfil3−/−

and Tbet−/− mice, whereas NK cell subsets were affected (42).
The transcription factors Nfil3/E4BP4 (43–45) and Tbet (6, 8,
9, 46) are both thought to be important for general NK and
ILC development; thus, this study indicates that uterine ILC1s
may have alternative developmental pathways. This study was
confirmed by the detection of a similar ILC1 subset in the uterine
mucosa of non-pregnant mice which was negative for CD127
expression (38), highlighting the variability of uterine ILCs since
CD127 (IL-7Rα) is also considered to be important for ILC
development (6).

In mice, uterine ILC1s are increased throughout gestation
compared to the non-pregnant state (37, 39, 40). The production
of IFNγ by stimulated total uterine ILCs is increased during
gestation (40), which would suggest that these cells have an
enhanced capacity for activation in this reproductive tissue.
Indeed, uterine ILC1s were shown to contribute to IFNγ

production during pregnancy, although not to the same extent
as uterine NK cells (38). Consistent with previous findings (42),
the uterine ILC1 population was not affected by the knockout
of Nfil3 (38); indeed, ILC1s were increased in these mice (38,
39), indicating that alternative developmental pathways exist
for such cells. Since Nfil3 is crucial for expression of Eomes
(47), a transcription factor associated with NK cells (48), it
was proposed that the uterine ILC1 population observed in
Nfil3−/− mice includes developmentally arrested NK cells (38).
However, these residual ILC1smay not be sufficient formediating
uterine adaptation during pregnancy since placental and fetal
abnormalities are observed in Nfil3−/− mice (39).

In humans, ILC1s are found in the non-pregnant
endometrium as a subset of Lin-CD56+CD127-CD117-
RORγt-cells, which are further distinguished based on
expression of NKp44 and CD103 (37). ILC1-like cells, which
are CD103+NKp44–, are the most significant source of IFNγ

(37). Expression of CD103, which facilitates the communication
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between lymphocytes and epithelial cells (49), was previously
described on tonsillar ILC1s (50), suggesting an epithelial
association of such cells in the uterus. However, additional
research is needed to determine the role of uterine ILC1s prior to
pregnancy and whether such cells are present during gestation.

UTERINE ILC2s

A low frequency of ILC2s has been detected in the human
non-pregnant uterine wall (38, 51). In addition, ILC2s and
ILC2-like cells have been identified in the non-pregnant murine
myometrium (38, 40, 41). The ILC2-like population is the most
abundant ILC subset in the pregnant murine myometrium (40).
The proportions of murine uterine ILC2s and ILC2-like cells are
higher during pregnancy compared to the non-pregnant state,
reaching their peak during mid-gestation (38, 40, 51). However,
the uterine ILC2-like population (CD45+Lin-Thy1.2+RORγt-
NKp46-KLRG1+ cells) identified by Li et al. may have also
included other cell types since conventional ILC2 markers such
as GATA3 (16) or CRTH2 (52) were not included (40). A
recent study utilizing conventional ILC2 markers identified
a population of CD127-ILC2s in the non-pregnant human
endometrium and in both the non-pregnant and pregnant
murine myometrium, confirming the presence of such cells (51).
Total uterine ILCs expressing IL-5 and IL-13 were increased
during gestation (40), supporting functional roles for uterine
ILC2s such as promotion of homeostatic immune cell phenotypes
and resolution of inflammatory responses (51).

Uterine ILC2s are almost completely ablated in Nfil3−/− mice
as opposed to the other subsets (38, 39), confirming that these
cells are developmentally reliant on this transcription factor.
It is possible that the placental and fetal changes observed
in Nfil3−/− mice are due to the loss of ILC2-dependent
regulatory mechanisms in the myometrium (39); however, since
conventional NK cells were also greatly impacted in such mice
(38, 39), this finding will require further studies to confirm.

It was recently shown that murine uterine ILC2s express the
IL-33 receptor, ST2 (IL-1RL1) (41). A previous report highlighted
the importance of IL-33/ST2 signaling for homeostatic immune
responses such as those mediated by T helper 2 cells, regulatory
T cells, M2-polarized macrophages, and ILC2s, among others
(53). In line with these findings, uterine ILC2s were increased
in proportion after in vitro stimulation with IL-33 (41). ILC2
activity was also increased by in vitro IL-33 stimulation as
indicated by enhanced release of IL-5 and IL-13 (41). Moreover,
an IL-5 reporter mouse (54) was used to verify that in vivo
administration of IL-33 increased uterine ILC2 proportions
and expression of IL-5 (41). Interestingly, the original research
describing the IL-5 reporter mouse model demonstrated that
the majority of IL-5+ cells in different murine tissues had
an ILC2 phenotype, including expression of CD127 and ST2
(54), providing further evidence that IL-33-receptive ILC2s are
important for the production of IL-5. Pups born to ST2−/−

dams had significantly reduced viability (41), suggesting that
this pathway may be beneficial for fetal development; however,
IL33−/− mice do not experience any fertility or pregnancy
complications (55). Additionally, IL-33 is important for type 2
mucosal immune responses (55). Together, these observations

support pregnancy-specific functions for IL-33-receptive ILC2s
in the murine uterus.

Murine uterine ILC2s can also express the estrogen receptor
α (41). The proportion of these cells is increased in response
to in vitro stimulation with 17β-estradiol; however, such a
response is not seen in ILC2s from the murine lung (41),
providing evidence for specific female sex hormone-driven
regulation of uterine ILC2s during pregnancy. Yet, whether
female sex hormones specifically target ILC2s, or the observed
ILC2 proliferation was a secondary response due to signaling
within the uterine tissues, has not been shown (41).

Collectively, these findings provide firm evidence of ILC2s in
the non-pregnant uterine tissues from humans andmice, and that
such cells are enhanced in number and function during murine
gestation. Further studies are required to uncover the specific
mechanisms and cellular interactions of uterine ILC2s.

UTERINE ILC3s

ILC3s were first described in the human non-pregnant
endometrium as a distinct subset of NK precursor-like cells
expressing ILC-associated markers such as CD127 and CD161
(36). Further analysis of these cells revealed expression of the
RORC and IL22 genes, indicative of an ILC3 phenotype (36).
Later studies confirmed the presence of ILC3s in the human
endometrium (37, 38) and indicated that these cells could be
divided into two main subsets: NCR– (human NKp44-; mouse
NKp46-) and NCR+ (human NKp44+; mouse NKp46+) ILC3s
(7), with the NCR– ILC3s being the dominant population in
mice and the NCR+ ILC3s in humans (38). During murine
pregnancy, uterine ILC3s are elevated compared to non-pregnant
mice (38) with the highest proportions occurring in early- and
mid-gestation (40). Uterine ILC3s from both pregnant and non-
pregnant mice constitutively produce IL-17A and IL-22, which
is further upregulated in response to in vitro stimulation with
IL-1β and IL-23 (38). Yet, production of IL-17A and IL-22 by
uterine ILC3s from pregnant mice is not significantly elevated in
mid-gestation compared to that of non-pregnant mice (38, 40),
suggesting that either an increase in ILC3-specific functionality
is not required for successful pregnancy, or that such an increase
may only occur in late gestation/prior to parturition. Further
studies are required to pursue this concept.

In contrast with ILC2s, the uterine ILC3 population is not
affected in non-pregnant Nfil3−/− mice (38, 39); however, such
cells fail to undergo the pregnancy-specific expansion observed
in wildtype mice (39). This lack of ILC3 expansion is associated
with fetal growth compromise and defective placentation (39),
indicating that uterine ILC3s may be important for the
physiological progression of pregnancy, e.g., decidualization (see
decidual ILC section for more information).

UTERINE LTi-LIKE CELLS

Information regarding LTi-like cells in the human and murine
uterus is scarce. One potential explanation is that LTi-like cells
have been identified as ILC3s due to the shared expression
of markers such as RORγt (6). LTi-like cells were reported in
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the non-pregnant murine uterus in similar proportions to the
closely-related ILC3s (38). Moreover, similar to ILC3s, LTi-like
cells were not affected in the uterus of non-pregnant Nfil3−/−

mice (38), suggesting a distinct developmental pathway for these
cells. It will be interesting for future studies to uncover the
functions of LTi-like cells in the human uterus.

In conclusion (Figure 1A), ILC1s, ILC2s, and ILC3s are
present in the murine uterus prior to and during pregnancy,
but have only been detected in the non-pregnant endometrium
in humans. Specifically, ILC2s reside in the murine uterus from
mid-pregnancy to term, ILC1s increase throughout gestation,
and ILC3s remain constant. Yet, LTi cells have only been detected
in the non-pregnant murine uterus. Further studies are needed
to confirm the presence and functions of uterine ILCs during
human pregnancy.

DECIDUAL INNATE LYMPHOID CELLS

Upon implantation, endometrial stromal cells undergo
a specialized transformation that includes significant
morphological and functional changes to the endometrium, a
phenomenon termed as “decidualization” (56, 57). This process
facilitates invasion of the fetal trophoblast (56) and leads to
formation of the area of contact between the endometrium
and the placenta (decidua basalis) or fetal membranes
(decidua parietalis). The decidua is therefore an interface
in which maternal and fetal cells converge and unique immune
interactions take place.

ILCs have been identified in the decidua as early as 9–12
weeks of gestation (58). The origin of decidual ILCs is unclear.
Several sources have been proposed for the prototypical ILC1s,
NK cells, in the reproductive tissues including derivation from
hematopoietic precursors (59), maturation from already-present
endometrial NK cells (36), or migration from the periphery
(60). Since hematopoietic precursor cells can express the ID2
transcription factor [required for ILC differentiation (61)], this
is one plausible explanation for the source of decidual ILCs
(59). The origin and developmental timeline of decidual ILCs
requires further investigation. Importantly, phenotypic (58) and
functional (62) evidence suggests that decidual ILC subsets have
unique profiles that are not found in other non-reproductive
tissues.

DECIDUAL ILC1s

ILCs expressing an ILC1-like phenotype distinct from NK cells
have been detected in the human decidua during the first
trimester (37, 58). Two ILC1 subsets were detected. The first
was identified within the CD56+ population (Lin-CD56+CD94-
CD127-CD117-) and expressed the ILC1-associated Tbet as well
as Eomes (37, 58). Interestingly, this ILC1 subset also expressed
CD103 (36, 37), indicating a possible epithelial association
(50). The other subset fell within the CD56- population (Lin-
CD56-CD127-CD117-Tbet+Eomes-) and was therefore more
distinguishable from decidual NK cells (36). In line with
defined ILC1 phenotypes, both described subsets expressed IFNγ

(37, 58). In mice, ILC1s were also described in the decidua during
mid-gestation, where they produced IFNγ (38).

At the end of pregnancy, ILC1s are the rarest ILC subset in
the human decidua and were not altered with the presence of
spontaneous labor, suggesting that such cells may have only a
minor role in late gestation that may be shared by other decidual
ILC subsets due to the unique cytokine profile observed in such
cells (62).

DECIDUAL ILC2s

The first-trimester human decidua has been reported to contain
a small proportion of ILC2s (38, 51, 58). The expression of
the ILC2 marker CRTH2 (52) was only minimally detected on
decidual ILCs (38, 58); however, CD161 (52) was expressed by
two of the potential ILC subsets described, indicating possible
plasticity or shared expression of ILC2 markers by other
subsets (58). ILC2s were found in the murine uterus, but not
the decidua, in mid-gestation (38, 51) and at term (51). In
contrast, ILC2s were the most abundant decidual ILC subset
in the third trimester (62) where they may play a role in
maintaining the homeostatic environment at the maternal-fetal
interface. ILC2s are considered to have a homeostatic phenotype
(19, 20), rendering them unnecessary in early pregnancy
when the inflammatory mechanisms of implantation and tissue
remodeling occur within the endometrium. Interestingly, ILC2s
were increased in the decidua basalis of women with spontaneous
preterm labor compared to those who delivered preterm without
labor (62), suggesting that this ILC subset may participate in the
chronic inflammatory process that occurs during pathological
pregnancy. Moreover, ILC2s from the third-trimester human
decidua seemed to share the expression of cytokines such as IL-13
and IL-22 with ILC3s, suggesting that decidual ILC subsets may
have shared functionality toward the end of pregnancy (62).

DECIDUAL ILC3s

Among the described ILC subsets in the human decidua, ILC3s
have been themost extensively studied (37, 38, 58, 62, 63). During
the first trimester, a subset of ILCs expressing the traditional
ILC3-associated transcription factor RORγt (26) is found in the
human decidua (37, 38, 58). Decidual ILC3s expressed GM-
CSF (63), IL-22 (58), and IL-8 (58). Notably, GM-CSF and IL-8
released by decidual ILC3s were shown to promote neutrophil
migration and survival in the first-trimester decidua (63). This
finding is consistent with a previous study that showed the
participation of neutrophils in spiral artery remodeling during
pregnancy (64), and adds a new layer of complexity to the role of
decidual ILC3s in the successful establishment of pregnancy (63).
Interestingly, the murine decidua did not contain ILC3s during
mid-gestation (38).

During the third trimester, human decidual ILC3s express a
unique cytokine profile that includes IFNγ, IL-13, IL-17A, and
IL-22 (62). Previous findings have suggested that some degree of
plasticity exists between ILC subsets (28, 29, 65), which would
explain the expression of the ILC1-associated cytokine IFNγ by
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FIGURE 1 | Innate lymphoid cells in the uterus and decidua. (A) ILC1s, ILC2s, and ILC3s are present in the murine uterus prior to and during pregnancy, but have

only been detected in the non-pregnant endometrium in humans. ILC2s reside in the murine uterus from mid-pregnancy to term, whereas ILC1s increase throughout

gestation and ILC3s remain constant. However, lymphoid tissue inducer (LTi) cells have only been detected in the non-pregnant murine uterus. Further studies are

needed to confirm the presence and functions of uterine ILCs during human pregnancy. (B) In the human decidua, ILC1s, ILC3s, and LTi-like cells are more abundant

during early gestation, whereas ILC2s are increased at the end of pregnancy. Decidual ILC1s were also detected during mid-gestation in mice. Interestingly, functional

decidual ILC2s and ILC3s are increased in women who underwent spontaneous preterm labor (PTL), indicating the involvement of such cells in this pregnancy

complication.

decidual ILC3s. This may also explain the low proportions of
decidual ILC1s in late gestation (62), since their presence may
be redundant.

Interestingly, increased proportions of ILC3s in the decidua
parietalis are found inwomenwho undergo spontaneous preterm
labor (62), suggesting that a local dysregulation of such cells
may occur in these patients. Whether decidual ILC3s directly
participate in the inflammation associated with spontaneous
preterm labor or are increased as a consequence of such a process
remains to be determined.

DECIDUAL LTi-LIKE CELLS

Human LTi cells have important functions in the formation
of fetal SLO (66), a process described in more detail below;
however, their role at the maternal-fetal interface is less
understood. A population of LTi-like cells has been described
in the human first-trimester decidua where they express IL-
17A and TNFα (58). These decidual LTi-like cells are closely
related to ILC3s as evidenced by the shared expression of
RORγt and production of IL-17A (58). Moreover, both decidual
LTi-like cells and ILC3s display lymphoid tissue inducer-like
functions (22–25, 67–69) through the upregulation of ICAM-1
and VCAM-1 on decidual stromal cells (58), further indicating
a degree of redundancy between these two cell types (27, 70).
However, the developmental pathways of LTi cells and ILC3s
are different and, unlike other ILC subsets, no LTi plasticity
has been reported (27). It is possible that the initiation of
a lymphoid tissue induction-like process in the decidua is
necessary for recruitment of other immune cells and pregnancy
maintenance. Therefore, it is important for future studies to

investigate the purpose of LTi-like activity at the maternal-fetal
interface.

In conclusion (Figure 1B), the human decidua contains
ILC1s, ILC3s, and LTi-like cells, which are more abundant during
early gestation. In contrast, decidual ILC2s are increased at the
end of pregnancy. Decidual ILC1s were also detected during
mid-gestation in mice. Functional decidual ILC2s and ILC3s
are increased in women who underwent spontaneous preterm
labor, indicating the involvement of such cells in this pregnancy
complication.

FETAL INNATE LYMPHOID CELLS

Fetal ILCs are reported to exist in the human liver, SLO, intestine,
and lung, which are described in detail below. The fetal liver
is a center of hematopoiesis (71, 72), and it has been shown
that ILC progenitors (ILCP) originate from this compartment
(65, 73–76). Indeed, ILCPs can be detected in the cord blood
as well, indicating that such cells may migrate to other sites of
organogenesis (76). It has been proposed that the differentiation
of ILCPs to mature ILC subsets primarily takes place after such
cells have migrated to their sites of residence (76). In the fetus,
the presence of specialized ILCs (i.e., LTi cells) is important for
the successful formation of SLO such as the spleen, mesenteric
lymph nodes (mLN), and Peyer’s patches (23, 26, 77, 78). At
non-lymphoid sites such as the intestine and lung, mature ILC
subsets may participate in mucosal immunity after birth by
regulating inflammation during colonization with commensal
bacteria (79, 80).

In mice, development of the fetal lymphatic system is
described as early as gestational day 10.5 (81). The murine
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fetal lymph nodes follow a staggered developmental timeline
beginning with the mLN at gestational day 10.5, closely followed
by the sacral and cervical lymph nodes and ending with the
complete formation of Peyer’s patches in the intestine [for more
information about fetal lymphogenesis, please see (82, 83)]. The
mesenteric and peripheral lymph nodes are present in the fetus by
gestational day 16.5 (68). ILCPs are detected in the murine fetal
liver at day 12.5 (84–88), and in both the fetal liver and intestine
at day 13.5–14.5 (74, 89). Information regarding the presence of
ILCPs in the fetal tissues in early pregnancy is lacking; therefore,
further studies are required to determine the complete timeline
for the generation of ILCPs and mature ILC subsets during fetal
development.

ILCs IN THE FETAL LIVER

A subset of ILCPs was described in the human fetal liver during
the second trimester (76). It was shown that these ILCPs were
generated from the CD34+ hematopoietic stem cells (76) also
found in this compartment (71, 72, 76). These ILCPs primarily
express RORγt and, after in vitro expansion, mainly produce IL-
17A, indicating an ILC3 phenotype (76). However, subsets of fetal
liver ILCPs also produce IFNγ or IL-13, suggesting that such cells
have differentiation potential for ILC1s and ILC2s as well (76).
The murine fetal liver also contains an ILCP subset with potential
for differentiation into ILC1s, ILC2s, or ILC3s (75). Ablation of
Zbtb16, which encodes the ILCP-associated transcription factor
PLZF [reviewed in (88)], affected fetal ILC1s and ILC2s but not
ILC3s or NK cells (75), supporting the existence of alternative
progenitors or developmental pathways for these ILC subsets.

The human fetal liver also contains mature ILC populations
during the first and second trimester (90). ILC1s, ILC2s, and both
NCR+ and NCR– ILC3s are detected (90). Prior to 15 weeks of
gestation, only NCR– ILC3s can be distinguished, whereas the
remaining subsets appear later (90). A population of fetal liver
ILC3s express neuropilin-1 (NRP-1) (90, 91), suggesting an LTi
phenotype (92). Together, these findings indicate that the fetal
liver is the primary site of ILC progenitors. Mature ILC subsets
also exist within the fetal liver, yet their role is currently unknown.

ILCs IN THE FETAL LYMPHOID TISSUES

Murine experiments have shown that the interaction between
LTi cells and mesenchymal stromal cells is fundamental for the
formation of SLO (93). It has been observed that during murine
embryogenesis a subset of stromal cells interacts with LTi cells
at the site of LN formation (25, 26, 68). LTi cells express ligands
such as lymphotoxins α and β (LTA and LTB) that activate
specific stromal cells (25, 94–96). Such activated stromal cells
will upregulate expression of the adhesion molecules ICAM-1
and VCAM-1 (25, 69, 78, 97) and begin the process of forming
SLO (26).

A subset of Lin-CD127+ ILCs was originally described in
human fetal mesenteric tissue (97). It was shown that these
ILCs were localized at the same locations at which the mLN
developed (91, 97), indicating that lymph node-specific ILCs

are present in the fetal mesentery even prior to the complete
formation of the mLN. Moreover, stromal organizer cells form
a niche for LTi cells in the human fetal spleen and LN between
8 and 15 weeks of gestation (78), providing further evidence of
an important role for fetal LTi cells in tissue neogenesis. The
mLN from first- and second-trimester human fetuses have been
shown to contain an ILC subset that expressed RORγt and had
increased gene expression of IL17A and IL22 (98), and a similar
subset was described in the fetal spleen that also expressed NRP-1
(91, 92). NRP1−/− knockout mice have severely affected yolk sac
and embryonic development (99), suggesting that the expression
of this receptor is required for organogenesis. Additionally,
RORγt+ ILCs are found in specific physiological locations in
the human fetal LN and spleen in the second trimester, where
they are co-localized with specialized stromal cells (78). This
interaction leads to induced expression of ICAM-1 and VCAM-1
on the stromal cells (78, 97), indicating that these ILCs have LTi
functions. LTi cells in the human fetal LN express IL17A and IL22
and participate in LN formation (97).

ILCs IN THE FETAL INTESTINE

LTi cells cluster at the site where Peyer’s patches are formed in
the developing murine fetal intestine (22, 89). The development
of intestinal lymphoid tissues such as the Peyer’s patches is
imperative for regulation of mucosal immunity in the intestine
(100, 101), and fetal LTi cells have been shown to be crucial to
this process (23, 26). Importantly, a subset of transitional ILCPs
exists in the fetal intestine that can further differentiate into other
ILC subsets, indicating that some of these ILCs are not terminally
differentiated and can provide other functions even after SLO
formation is complete (89).

Recently, the presence of mature ILC subsets in the
fetal intestine was confirmed using mass cytometry (102).
All known ILC subsets were detected together with several
novel intermediates that included a subset with potential to
differentiate into ILC3s or NK cells (102). These findings
confirmed previous studies that indicated the presence of ILC2s
(52) and ILC3s (52, 98, 103) in the second-trimester human fetal
intestine. ILC2s in the fetal intestine produce IL-13 (52), whereas
ILC3s and LTi-like cells produce IL-17A and IL-22 (98). ILC3s
are increased in the fetal intestine during the second trimester
compared to the first (98, 103). Importantly, fetal CD103+ ILC3s
can be found in the amniotic fluid during the first and second
trimesters (see amniotic cavity section for more information)
(103), suggesting that these cells canmigrate from the fetal tissues
into the amniotic cavity.

ILCs are increased in the intestinal tissues from neonates
with gastroschisis compared to those from healthy controls
(104). This finding was corroborated using a murine model
with gastroschisis-like symptoms showing that ILC2s and ILC3s
are increased in the intestines of affected mice compared to
littermate controls (104). Neutralization of IL-5 [a primary ILC2
cytokine (13)] during late gestation results in a dramatic decrease
in eosinophil and ILC2 infiltration in the fetal intestine (104),
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FIGURE 2 | Fetal innate lymphoid cells. Fetal ILCs exist in the liver, secondary lymphoid organs (SLO), intestine, lung, and amniotic cavity. The fetal liver is thought to

be the source of ILC progenitors (ILCP) since the differentiation of these cells from hematopoietic stem cells (HSC) occurs at this site, and mature ILC subsets can be

found in this compartment as well. The interaction between lymphoid tissue inducer (LTi) cells and specialized stromal cells is important during the formation of SLO.

Mature ILCs are found at the mucosal surfaces of the lung and intestine, from where they can extravasate into the amniotic cavity. These findings support a role for

ILCs as central regulators in fetal development and immunity.

implicating ILC2s in the chronic inflammatory process that
accompanies this condition.

Collectively, these data confirm the requirement for LTi cells
during the formation of fetal SLO, and indicate that mature
ILC1s, ILC2s, and ILC3s are found in the intestinal mucosa where
they may participate in inflammatory processes; however, their
specific role during fetal life is unclear.

ILCs IN THE FETAL LUNG

A single report established the presence of ILC2s (identified by
CRTH2 and CD161 expression) in the human fetal lung mucosa
during the second trimester (52). In the neonatal and adult lungs,
the primary function of ILC2s is to protect against threats such
as helminth infection (12, 13, 105). ILC2s are also implicated in
asthma and its complications as well as allergy (18, 106, 107).
A subset of CD103+ ILC3s is also detected in the human fetal
lung, which is increased in the second trimester compared to the
first (103). Recently, a population of ILC2s was described in the
murine fetal lung just prior to birth (gestational day 19), which
rapidly expanded during the first 2 weeks of life (108). It was

suggested that these homeostatic cells may help prevent hyper-
inflammation resulting from exposure of the newborn lungs to
airborne particles (108). Future studies may further reveal the
specific role of ILC2s and ILC3s in this fetal compartment.

In conclusion (Figure 2), fetal ILCs exist in the liver, SLO,
intestine, lung, and amniotic cavity. The fetal liver is thought
to be the source of ILC progenitors since the differentiation of
these cells from hematopoietic stem cells occurs at this site, and
mature ILC subsets can be found in this compartment as well.
The interaction between LTi cells and specialized stromal cells is
important during the formation of SLO. Mature ILCs are found
at the mucosal surfaces of the lung and intestine, fromwhere they
can extravasate into the amniotic cavity. These findings support
a role for ILCs as central regulators in fetal development and
immunity.

INNATE LYMPHOID CELLS IN THE
AMNIOTIC CAVITY

The amniotic cavity serves as the fetal habitat, which is
surrounded by the protective liquid termed amniotic fluid

Frontiers in Immunology | www.frontiersin.org 7 October 2018 | Volume 9 | Article 2396

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Miller et al. Maternal and Fetal Innate Lymphoid Cells

FIGURE 3 | Innate lymphoid cells in the amniotic cavity. Functional ILC3s are found in the mucosal epithelium of fetal tissues such as the intestines, from where they

may extravasate into the amniotic cavity. Amniotic fluid ILCs reach their highest proportions during the second trimester, yet are still present at the end of gestation.

(109). Besides providing mechanical cushioning, the amniotic
fluid contains nutrients as well as other factors required
for fetal growth and represents an immunological barrier
against invading pathogens (109, 110). In clinical medicine,
the amniotic fluid is used to assess fetal well-being (111–
114), lung maturity (115–117), karyotype (118, 119), and intra-
amniotic inflammation associated with bacteria [intra-amniotic
infection (120–132)] or danger signals [sterile intra-amniotic
inflammation (133–138)]. In the context of intra-amniotic
inflammation, the most abundant leukocytes in the amniotic
fluid are neutrophils (139, 140), which can be of fetal and/or
maternal origin (141, 142). These innate immune cells actively
participate in the mechanisms of host defense against microbial
invasion of the amniotic cavity by releasing cytokines (140) and
anti-microbial molecules (143–145), performing phagocytosis
(146), and forming neutrophil extracellular traps or NETs (147,
148). Therefore, it was thought that, in the absence of intra-
amniotic inflammation, the cellular component of the amniotic
fluid was of limited research value. Recent studies have shown
that, indeed, the opposite is true (103, 149). The amniotic fluid
contains both innate (monocyte/macrophages, neutrophils, NK
cells, and ILCs), and adaptive (T cells and B cells) immune cell
populations, each of which fluctuates independently throughout
gestation (149).

Amniotic fluid ILCs are abundant during the second trimester
(103) and their numbers decay as gestation progresses (149)
(Figure 3). In this compartment, ILCs express high levels of
RORγt (103, 149), a hallmark of ILC3s (6, 26). Amniotic fluid
ILC3s also express CD127, CD117, CD161, and CD56 but not
NK cell-markers such as Eomes, T-bet, CD94/NKG2A, and CD16
(103). Such ILCs are functional since they produce high levels

of IL-17A and TNFα upon PMA/ionomycin stimulation (103).
The fetal origin of amniotic fluid ILC3s was demonstrated by the
expression of HLA class Imolecules, which were not expressed on
maternal peripheral bloodmononuclear cells (103). Interestingly,
amniotic fluid ILC3s seem to originate in the fetal lungs and
intestine since a similar ILC subpopulation was identified in
these organs (103). Amniotic fluid ILC3s expressed CD103,
indicating an epithelial association (49, 50) that was confirmed
by detection of these cells in the fetal intestinal epithelium (103).
Moreover, CD103+ ILC3s were not detected in the amnion or
chorion (chorioamniotic membranes), eliminating those tissues
as a source of such cells in the amniotic fluid (103). Together
with the observation that immune cells in the amniotic fluid
during preterm gestation can be predominantly of fetal origin
(142), evidence points to the fetus as a likely source of CD103+
ILC3s (Figure 3). It was proposed that these cells participate
in regulating intra-amniotic infection (103); yet, their numbers
remain constant between patients with and without this clinical
condition (149). This finding does not discard the possibility that
amniotic fluid ILC3s can acquire a regulatory phenotype, which
can then participate in controlling the inflammatory response
induced by microbes or danger signals in the amniotic cavity.

Together, these studies demonstrate the presence of functional
ILC3s in the amniotic cavity, which are likely derived from
the fetal tissues. Such cells reach their highest proportions
in the second trimester yet are still present at the end of
gestation. Moreover, the detection of ILC3s in the amniotic
cavity of patients with intra-amniotic inflammation suggests the
participation of these cells in such a clinical condition.

Molecular studies have suggested that there is a placental
microbiome (150–161). Nonetheless, recent publications have
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not confirmed that the placenta harbors a unique microbiome
[(162); Theis et al., Am J Obstet Gynecol; in press], which
supports the ongoing controversy [(162–166); Theis et al., Am J
Obstet Gynecol; in press]. The absence of a placental microbiota,
however, does not exclude the possibility that the fetus is
exposed to microbial products from the mother. This concept
is supported by another recent study showing that transient
microbial colonization of the maternal gut during pregnancy
induces short- and long-term innate immune changes in the
offspring (167). Of interest to the ILC field, neonates born to
mothers transiently microbial-colonized displayed an increased
number of ILC3s in their mucosal tissues (167). The proposed
mechanism for fetal exposure to maternal gut microbiota was
mediated by transmission of microbial-derived metabolites via
antibodies (167). Such education of the neonatal immune system
was enhanced by breastfeeding (167). Therefore, microbial-
derived metabolites, rather than viable bacteria, may be required
for fetal and neonatal development of the ILC system.

CONCLUSION

The discovery of ILCs in the reproductive and fetal tissues
has led to new knowledge of the immune cellular processes
required for successful pregnancy and fetal development. At the
same time, new questions have arisen as to the functions and
interactions of ILCs in the maternal and fetal compartments.
The studies reviewed herein have provided evidence that ILCs
fill an important role during pregnancy, especially in mucosal
defenses and fetal development, yet also share certain functions
with other innate and adaptive immune cell subsets. In the
mother, uterine ILCs may participate in mucosal immunity and
help facilitate tissue remodeling and homeostasis during and
after implantation, while decidual ILCs take part in the immune

interactions required for pregnancy maintenance and maternal-
fetal tolerance. Meanwhile, fetal ILCs mediate the formation
of lymphoid tissues during organogenesis and reside at key
mucosal surfaces, such as the intestine and lung, in preparation
for fetal exposure to both commensal and pathogenic microbes.
Importantly, such fetal ILCs may migrate to the amniotic
fluid during intra-amniotic infection/inflammation to further
participate in host defense. Collectively, the presented findings
paint a complex picture of the ILC network during pregnancy,
and future studies will be required in order to reveal the complete
story of these unique immune cells.
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