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Mast cells are highly versatile cells that perform a variety of functions depending on the

immune trigger, context of activation, and cytokine stimulus. Antigen-mediated mast

cell responses are regulated by transcriptional processes that result in the induction

of numerous genes contributing to mast cell function. Recently, we also showed

that exposure to dietary agents with known epigenetic actions such as curcumin

can suppress mast cell-mediated food allergy, suggesting that mast cell responses

in vivo may be epigenetically regulated. To further assess the effects of epigenetic

modifications on mast cell function, we examined the behavior of bone marrow-derived

mast cells (BMMCs) in response to trichostatin A (TSA) treatment, a well-studied histone

deacetylase inhibitor. IgE-mediated BMMC activation resulted in enhanced expression

and secretion of IL-4, IL-6, TNF-α, and IL-13. In contrast, pretreatment with TSA resulted

in altered cytokine secretion. This was accompanied by decreased expression of FcεRI

and mast cell degranulation. Interestingly, exposure to non-IgE stimuli such as IL-33, was

also affected by TSA treatment. Furthermore, continuous TSA exposure contributed to

mast cell apoptosis and a decrease in survival. Further examination revealed an increase

in I-κBα and a decrease in phospho-relA levels in TSA-treated BMMCs, suggesting that

TSA alters transcriptional processes, resulting in enhancement of I-κBα transcription and

decreased NF-κB activation. Lastly, treatment of wild-type mice with TSA in a model of

ovalbumin-induced food allergy resulted in a significant attenuation in the development of

food allergy symptoms including decreases in allergic diarrhea and mast cell activation.

These data therefore suggest that the epigenetic regulation of mast cell activation during

immune responsesmay occur via altered histone acetylation, and that exposure to dietary

substances may induce epigenetic modifications that modulate mast cell function.
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INTRODUCTION

IgE-mediated mast cell activation plays a critical role in the
development of allergic responses to food antigens (1, 2). Mast
cells and their mediators drive acute episodes of food allergy
resulting in the development of severe intestinal anaphylaxis,

which is often manifested as diarrhea, shock, and painful
abdominal cramps. Furthermore, the effects of mast cells are
mediated through a complex interplay of cellular interactions
involving allergen-specific Th2 cells and other cell types such as
eosinophils, epithelial cells, and ILC2s, which together contribute
to the development of acute intestinal inflammation underlying

the clinical symptoms (2–4).
The incidence of food allergy in the West has been

exponentially rising and approximately 3–6% of individuals
manifest food allergy symptoms (5, 6). However, not everyone
undergoes allergic sensitization to the same allergen and allergic
children are often able to outgrow some of the allergies they

previously exhibited. Although the cells andmolecules mediating
allergic reactions have been well-studied, the mechanisms
underlying the regulation of allergic sensitization and immune
activation are still poorly understood. Accumulating evidence
from a number of studies suggests that the development
of the allergic response is tightly regulated via a complex
network of interactions between immune cells, genes, and
the environment that result in the inhibition of tolerance
mechanisms and the promotion of allergic sensitization to
environmental allergens (2, 7). Both genetic polymorphisms and
exposure to various environmental stimuli have been shown to
increase the susceptibility of developing allergic disease. With
respect to the latter, colonizing microbiota, history of prior
infections, dietary components, and exposure to environmental
factors such as pollution or antibiotic treatment have all
been demonstrated to shape the outcome of the allergic
response (2, 6–13)). None of these variables by themselves
however can account for differences in allergic sensitization
in diverse patient subsets, suggesting that the induction of
immune activation may be finely regulated via subtle epigenetic
interactions involving environmental components and immune
genes.

Several types of chromatin epigenetic modifications
have been shown to influence gene expression (14). These
include methylation of DNA at CpG islands or various post-
translational modifications of histone tails, such as acetylation
and methylation, resulting in enhanced or decreased access
of transcriptional factors to gene promoters or enhancers.
The role of epigenetic modifications in driving T cell
differentiation and development has been well-established
(15–19). Several studies also suggest a role for epigenetic
modulation of allergic sensitization and inflammation
(18, 20–27). However, the effects of epigenetic modification
in modulating the behavior of T cells and particularly mast
cells during allergic responses to food antigens has not been
extensively examined. We previously demonstrated that
frequent ingestion of curcumin, which is an active ingredient
of the curry spice turmeric, modulates intestinal mast cell
function and suppresses the development of mast cell-mediated

food allergic responses, suggesting that exposure to dietary
components can regulate the development of food allergy
(28). This is especially interesting since a number of people
worldwide consume curcumin on a daily basis and it has
been shown to have immunomodulatory properties, which
influence the activation of immune cells. Recent studies further
suggest that the effects of curcumin may be mediated via
regulation of epigenetic modifications that enhance or inhibit
inflammatory responses (29–31). We therefore hypothesized
that mast cell function during food allergy may be epigenetically
regulated resulting in the development or suppression of allergic
reactions.

In order to examine the effects of epigenetic regulation of
mast cells, we used the well-established histone deacetylase
(HDAC) inhibitor Trichostatin A (TSA). TSA, a fungal antibiotic,
belongs to a class of extensively studied histone deacetylase
inhibitors that have been used to examine epigenetic interactions
involving histone acetylation (32–36). The addition of acetyl
groups at lysine residues in histone molecules by histone
acetyl transferases (HATs) is generally thought to increase
DNA accessibility and promote gene expression. In contrast,
HDACs remove the acetyl groups, thereby increasing chromatin
compaction and inhibiting gene transcription. TSA is a pan-
HDAC inhibitor (HDACi), inhibiting the enzyme activity of
several class I and class II HDACs, including HDAC 1, 2,
3, 4, 6 and 10 isoforms (37). As such, treatment with pan-
HDACi’s such as TSA can induce hyperacetylation of histone
molecules, with the potential to enhance gene expression (38).
Furthermore, they can also directly modulate the activity
of non-histone proteins including transcription factors and
cell cycle proteins (39, 40). However, depending on the
type of immune cell and antigen treatment, both pro- and
anti-inflammatory effects have been observed, suggesting that
HDAC inhibition can affect the activation of multiple genes
both upstream and downstream of the target molecule being
examined (32, 34, 41–44). This includes immunomodulatory
effects involving NF-κB (45–47), as well as the production
of pro-inflammatory cytokines by antigen-exposed immune
cells such as macrophages and ILC2s (48–51). Similarly, TSA-
mediated suppression of both adaptive and innate allergic
airway inflammation has also been observed in mouse models
(51–58).

Here, we show for the first time, that treatment with
TSA attenuates IgE-mediated mast cell activation during food
allergy responses. Balb/c mice sensitized and orally challenged
with chicken egg ovalbumin (OVA) develop robust allergic
responses including allergic diarrhea, intestinal mast cell
activation and the induction of Th2 responses. In contrast, the
development of intestinal anaphylaxis and mast cell activation
was significantly attenuated in TSA-treated mice. Similarly, Th2
cytokine production and gene expression was also affected in
TSA-treated animals. In vitro examination of TSA treatment on
IgE-activated mast cells demonstrated a significant inhibition
of the production of proinflammatory cytokines such as IL-6,
IL-13, TNF-α, and IL-4. This was accompanied by decreased
mast cell degranulation and FcεRI expression. TSA treatment
also modulated mast cell responses to IL-33 stimulation,
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demonstrating that the effects of TSA are not limited to the
IgE signaling pathway. Further examination revealed decreased
NF-κB activation in TSA-treated mast cells, suggesting that
exposure to TSA alters transcriptional processes regulating NF-
κB activation. Taken together, our data elucidate a novel role
for TSA in modulating mast cell function during food allergy,
suggesting that the activation and function of mast cells is
epigenetically regulated.

MATERIALS AND METHODS

Animals
Balb/c mice were purchased from Taconic Farms (Germantown,
NY, United States) and bred in house. All research was approved
by the Institutional Animal Care andUse Committee (IACUC) of
Western New England University and was conducted according
to IACUC guidelines. Animals used for research were sacrificed
using compressed CO2 gas.

Food Allergy Sensitization and Challenge
Protocol
To induce food allergy, Balb/c mice were intraperitoneally
immunized with 50 µg chicken egg ovalbumin (OVA) and 1mg
alum on days 0 and 14 of the experimental protocol as previously
described (28, 59). Both OVA and alum were obtained from
Sigma Aldrich. Two weeks after the second OVA sensitization,
mice were challenged intragastrically with 50mg OVA every
other day for a total of 6 challenges. One hour following the
sixth challenge, mice were sacrificed and the development of food
allergy was assessed.

TSA Administration
Starting 1 day before the challenge phase of the experiment 75
µg or 2.5 mg/kg by weight of TSA (Sigma Aldrich) in phosphate
buffered saline (PBS) was administered intraperitoneally
to Balb/c mice which had received OVA sensitization.
Administration was continued daily while OVA challenges
were performed on alternating days. TSA was also administered
to Balb/c mice which had received OVA sensitization but did not
receive OVA challenges.

Treatment With Curcumin
The effects of curcumin (Sigma Aldrich) on BMMCs were
examined as previously described (28). Briefly, cells were treated
with vehicle or 30µM curcumin in DMSO for varying periods
of time (1 and 24 h, respectively) and cells and supernatants
were collected for mRNA analysis and assessment of cytokine
secretion.

Measurement of Intestinal Anaphylaxis
Intestinal anaphylaxis of challenged mice was assessed by scoring
the percentage of mice exhibiting allergic diarrhea as previously
described (28, 59). Briefly, mice were observed for the presence
of diarrhea for 1 h following the sixth challenge and scored as
positive or negative for the presence of diarrhea.

Histological Analysis and Enumeration of
Mast Cells
Intestinal mast cells were enumerated, as previously described
(28, 59). Tissue sections were stained with chloroacetate esterase
(CAE) and mast cells were counted in complete cross sections of
jejunum.

Quantitative PCR Analysis and ELISAs
Quantitative real-time PCR was performed using Taqman probes
(Life Technologies) as previously described (28, 59). Expression
of IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IL-33, IFN-γ, and NF-κB
was calculated relative to GAPDH transcripts. ELISAs for murine
mast cell protease (mMCP-1) (Life Technologies) and OVA-
specific IgEwere performed on serum samples taken immediately
after sacrifice as previously described (28, 59). ELISAs for IL-
4, IL-5, IL-6, TNF-α, and IFN-γ (Biolegend) as well as IL-13
(Affymetryx) were performed on cell supernatants according to
manufacturer’s instructions as previously described (28, 59).

Mesenteric Lymph Node Stimulation
Mesenteric lymph node (MLN) cells were harvested from
animals after sacrifice and cultured with complete RPMI
medium, 200µg/mL OVA or anti-CD3 (0.2µg/ml) and anti-
CD-28 (0.2µg/ml) for 4 days. Anti-CD3 and anti-CD-28
were obtained from Biolegend. Cytokines were enumerated in
supernatants, as previously described (28, 59).

Bone Marrow-Derived Mast Cell (BMMC)
Culture
BMMCs were generated from Balb/c mice as previously
described (28, 59). Briefly, bone marrow was obtained from the
femurs of naïve mice and cultured with 10 ng/mL rIL-3 and rSCF
(Shenandoah Biotechnology) in complete RPMI medium (Life
Technologies) for 4 weeks prior to experimentation.

In vitro Studies With TSA
One million BMMCs per mL were cultured in triplicate with IL-
3 and SCF or 2µg/mL DNP-IgE (Sigma Aldrich). To determine
the effects of TSA on proliferation and cytokine production TSA
in dimethyl sulfoxide (DMSO) was added in concentrations of
10, 30,100, 300, or 500 nM for varying time points. Control
wells were treated with vehicle alone. Cells were then stimulated
with 200 ng/mL DNP-BSA (Sigma Aldrich) or 20 ng/mL rIL-33
(Biolegend).

β-Hexosaminidase Assay
BMMCs were cultured with rIL-3 and rSCF in the presence
or absence of 500 nM TSA for 1 h or overnight. Cells were
activated and supernatants and cell lysates were collected
1 h later. β-hexosaminidase (β-hex) activity was assessed, as
previously described (28, 59). Briefly, cells were washed and
supernatants and pellets were collected. Pellets were lysed
with 0.5% Triton X-100. Both supernatants and pellets were
then treated with 4-nitrophenyl-N-acetyl-β-D-glucosaminide
(p-NAG) substrate (Sigma) for 1 h. Plates were read at 405 nm
using a spectrophotometer to determine β-hexosaminidase
activity. Data are depicted as percent specific release according
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to the following formula: (Stimulated supernatants/(supernatant
± pellet)∗100−unstimulated supernatants/(supernatant ±

pellet)∗100).

Flow Cytometry
BMMCs were incubated with monoclonal antibodies for c-Kit,
FcεRI, annexin V and IgE conjugated to either APC, FITC or PE
(Biolegend). All antibodies were diluted 1:200 prior to incubation
for 20–30min. Flow cytometry and analysis was performed using
an Accuri C6 cytometer and Flowjo software.

Intracellular Cytokine Staining
Peritoneal cells were isolated by peritoneal lavage from naïve
Balb/c mice. One million cells/mL were treated with or without
DNP-IgE and TSA as described above and activated with DNP-
BSA. 3µg/mL of Brefeldin A (Thermofisher Scientific) was added
to all samples according to manufacturer’s instructions. Six hours
later, cells were surface stained for mast cells using c-Kit APC and
FcεRI/IgE-FITC. They were then treated for 10min with fixation
reagent (Thermofisher Scientific) followed by washing with 1X
Permeabilization buffer (Thermosfisher Scientific). Intracellular
cytokines were assessed by staining with IL-13, IL-6, and TNF-α
conjugated to PE (Biolegend).

Western Blot
BMMCs were cultured with rIL-3 and rSCF in the presence
or absence of 500 nM TSA and DNP-IgE for 1 h or overnight
prior to activation with DNP-BSA. After addition of antigen,
cells were incubated for 6–8 h. Whole cell extracts were
then obtained using RIPA buffer containing 1% Triton X-
100 and quantified with Coomassie Plus (Bradford) Protein
Assay (ThermoFisher Scientific). Equal amounts of protein were
loaded onto 10% SDS-PAGE gels and transferred to PVDF
membrane. Membranes were blocked for 1 h in 5% milk or
BSA and incubated overnight with primary antibodies [phospho-
relA (1:500) and β-actin (1:5,000)]. Antibodies were obtained
from Santa Cruz Biotechnology and Abcam, respectively.
Membranes were then washed with PBS tween 20 and incubated
with the appropriate secondary antibodies. Membranes were
washed once again before the addition of chemiluminescent
reagent (Invitrogen). Membranes were imaged using a Biorad
Chemidoc.

Statistical Analysis
Data are expressed as mean ± SEM, unless stated otherwise.
Statistical significance comparing different sets of mice (between
2 groups) was determined by the Student’s t-test. p <0.05 were
considered significant. Analysis was performed using GraphPad
Prism software and/or Microsoft Excel.

RESULTS

TSA Treatment Modulates Cytokine
Production in Bone-Marrow Derived Mast
Cells
Mast cells are highly versatile cells that perform a variety of
functions depending on the immune trigger, context of activation

and cytokine stimulus. Antigen-mediated mast cell responses
are regulated by transcriptional processes that result in the
induction of numerous genes contributing to mast cell function.
To examine the effects of TSA treatment on resting mast cell
function, BMMCs were treated with TSA for 24 h in the presence
of rIL-3 and rSCF and the expression and secretion of mast cell
cytokines was examined.

Treatment of resting mast cells with rIL-3 and rSCF for
24 h induced the transcriptional upregulation of TNF-α, IL-6,
IL-4, and IL-13 (Figures 1A–D). This was also accompanied
by the secretion of IL-6 and IL-13 into culture supernatants
(Figures 1E,F). In contrast, addition of TSA along with the
mast cell growth factors suppressed the expression and secretion
of these cytokines, suggesting that TSA suppresses mast cell
cytokine production in resting mast cells (Figures 1A–F). A
similar inhibition of cytokine production was observed in
curcumin-treated mast cells as we have previously demonstrated
(Figures 1A–F) (28).

Pretreatment With TSA Inhibits Cytokine
Production in IgE-Activated Mast Cells
IgE-induced mast cell activation plays a critical role in the
development of anaphylactic symptoms to allergenic stimuli. To
further examine the effects of TSA treatment on IgE-mediated
activation of mast cells, BMMCs were cultured with rIL-3
and rSCF and activated with DNP-specific IgE and DNP-BSA.
Challenge with DNP-BSA in IgE-primed BMMCs resulted in a
robust induction of the genes for TNF-α, IL-6, IL-4, and IL-
13 compared to unactivated controls (Figures 2A–D). Similarly
the secretion of TNF-α, IL-6, and IL-13 was also significantly
enhanced in IgE-activated BMMCs (Figure 2E). In contrast,
pre-treatment with TSA for 24 or 1 h resulted in a significant
suppression of both the expression and secretion of cytokines
(Figures 2A–F and data not shown). A similar pattern of cytokine
inhibition was also observed in freshly isolated peritoneal mast
cells that had been pre-treated with TSA and activated with
IgE and antigen, suggesting that the effects of TSA are not
limited to BMMCs alone, but can also extend to connective tissue
mast cells in vivo (Supplementary Figures 1A,B). To further
determine whether the effect of TSA on BMMCs was dose-
dependent, BMMCs were treated with increasing concentrations
of TSA overnight, and its effects on IgE-mediated activation
were assessed. Treatment with increasing concentrations of
TSA demonstrated a dose-dependent suppressive effect on the
secretion of IL-6 and IL-13 (Figures 2G,H). To further assess
the effects of TSA on BMMC cytokine production, we also
examined the expression levels of IFN-γ and IL-17 in BMMCs.
Interestingly, the expression of both IFN-γ and IL-17 was
detected in BMMCs, suggesting that they can produce Th1
and Th17 cytokines (Figures 2I,J). Treatment with IgE and
antigen resulted in enhanced expression of both IFN-γ and
IL-17 in BMMCs compared to unactivated controls. However,
in contrast to the expression of TNF-α, IL-6 and IL-13, no
changes in IFN-γ and IL-17 expression were observed in TSA-
treated and IgE-activated BMMCs (Figures 2I,J). These data
therefore suggest that TSA treatment can differentially modulate
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FIGURE 1 | TSA suppresses cytokine gene expression and secretion in resting mast cells. BMMCs were treated with 500 nM TSA, 30µM curcumin, or vehicle in

triplicates. 1 and 24 h later, respectively, cells were collected for mRNA analysis and supernatants were evaluated for cytokine secretion. (A–D) mRNA transcripts

relative to GAPDH are shown (E,F) Levels of IL-6 and IL-13 are shown. Data are representative of 2–3 experiments. *p < 0.01; **p < 0.001; ***p < 0.0001 by

Students t-test.

the production of cytokines by mast cells stimulated with IgE and
antigen.

TSA Treatment Attenuates Mast Cell
Degranulation and FcεRI Expression
Since pretreatment with TSA inhibited the production of
proinflammatory cytokines from IgE-activated mast cells,
suggesting that TSA can modulate the de novo synthesis of
mast cell cytokines, we wondered whether it could also similarly
regulate mast cell degranulation. Mast cell degranulation was
assessed by examining the release of β-hexosaminidase (β-hex)
in cell culture supernatants. As we had anticipated, while IgE
and antigen-activated BMMCs exhibited increased β-hex release,
24 h pre-treatment with TSA significantly decreased the percent
of β-hex release in activated mast cells, suggesting that TSA
treatment can inhibit IgE-mediated degranulation of BMMCs
(Figure 3A). Similar results were also obtained with freshly
isolated peritoneal mast cells that had been treated with IgE and
antigen (Supplementary Figure 1C). Surprisingly, however, 1 h
pre-treatment with TSA did not result in any attenuation of
BMMC degranulation (Figure 3A).

Since the IgE-mediated activation of mast cells is dependent
on the expression of the high affinity IgE receptor, FcεRI on
mast cells, we examined whether TSA treatment modulates the
expression of this receptor in resting mast cells. BMMCs were

cultured with rIL-3 and rSCF for up to 24 h in the presence
or absence of TSA and the expression of FcεRI was assessed
by flow cytometry at several time points. One and 4 h after
treatment with TSA, no changes in mean fluorescence expression
of FcεRI was observed in TSA-treated cells as compared with
untreated controls (Figures 3B,C). However, a gradual decrease
in FcεRI expression was observed starting at 8 h after treatment
with significant suppression observed at 24 h, from an MFI
of approximately 31,896–3,829 (Figures 3B,C). This suggests
that one potential explanation for the decreased IgE-mediated
degranulation of TSA-treated mast cells may be related to
decreased IgE binding. However, it does not account for
inhibition of cytokine production in IgE-activated mast cells,
since cytokine suppression was observed in mast cells pretreated
with TSA for both 1 and 24 h, suggesting that decreased IgE
binding may only partly be responsible for the observed effects.
To therefore assess whether TSA treatment prevented the de novo
synthesis of mast cell cytokines after IgE-mediated activation
had already occurred, we treated BMMCs with TSA immediately
post-activation with IgE and antigen. To our surprise, TSA
treatment after antigen-mediated activation had occurred
had no effect on the release of cytokines, suggesting that
the effects of TSA pretreatment are mediated by preventing
the transcriptional activation of antigen-induced genes
(Figure 3D).
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FIGURE 2 | TSA suppresses cytokine gene expression and secretion in antigen-activated cells. BMMCs were pre-treated with 500 nM TSA or vehicle overnight.

Some groups of cells were also simultaneously primed with 1µg/ml DNP-IgE. The next day, all cells were activated with 200 ng/ml DNP-BSA. (A–D) 1 h later, cells

were collected for mRNA analysis. Transcripts relative to GAPDH are shown (E) Levels of cytokines secreted 12 h after activation are shown. (F) In other experiments,

BMMCs were pre-treated with 500 nM TSA for 1 h prior to activation with antigen. Levels of cytokines secreted 12 h later are shown. (G,H) BMMCs were pre-treated

overnight with varying doses of TSA prior to IgE and antigen activation. Cytokines secreted 12 h later are shown. (I,J) mRNA transcripts in BMMCs pre-treated with

500 nM TSA overnight and activated with IgE and antigen. Data are representative of 5–6 independent experiments. *p < 0.01; **p < 0.001; ***p < 0.0001 by

Students t-test.

TSA Pretreatment Inhibits IL-33-Mediated
Cytokine Production in Mast Cells
Our data suggest that TSA treatment modulates cytokine
production in IgE-activated mast cells by regulating FcεRI
expression. We were curious if TSA could also regulate cytokine
production in mast cells stimulated independently of IgE. We
therefore examined the effects of TSA on IL-33-stimulated

mast cells, which is a potent inducer of mast cell cytokines.

Treatment of mast cells with IL-33 resulted in the production
of elevated levels of the cytokines IL-6, IL-13, and TNF-α

(Figures 4A–C). In contrast, pre-treatment with TSA prior to

IL-33 stimulation significantly decreased the levels of mast
cell cytokines in a dose-dependent manner (Figures 4A–C).
This suggests that TSA can also inhibit the production of
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FIGURE 3 | TSA attenuates mast cell degranulation and FcεRI expression. (A) BMMCs were treated with vehicle or 500 nM TSA for either 24 or 1 h prior to

IgE-induced activation with DNP-BSA. β-hex levels were enumerated in cell supernatants and lysates. Percent release of β-hex is shown (B) BMMCs were treated

with vehicle or 500 nM TSA for either 24 or 1 h. The expression of FcεRI was evaluated by flow cytometry. Mean fluorescence intensity (MFI) is shown. (C) Kinetics of

FcεRI expression after TSA treatment is shown. (D) BMMCs were activated with DNP-IgE and antigen. One minute after activation, cells were treated with either

vehicle or 500 nM TSA. Cytokine levels in supernatants were enumerated 12 h later. Data are representative of 2 independent experiments. *p < 0.01; ***p < 0.0001

by Students t-test.

FIGURE 4 | TSA suppresses IL-33-induced mast cell cytokines in a dose-dependent manner. (A–C) BMMCs were cultured with rIL-33 and varying doses of TSA or

vehicle for 24 h. Levels of cytokines in supernatants were assessed by ELISA. Data are representative of 2 independent experiments. ***p < 0.0001 by Students t-test.

mast cell cytokines stimulated with innate cytokines such
as IL-33.

Long-Term TSA Exposure Reduces
Survival of BMMCs and Induces Apoptosis
We have previously shown that one of the mechanisms by
which curcumin modulates mast cell function is to inhibit mast

cell survival via the induction of apoptosis (28). To determine
whether a similar mechanism may be involved in TSA-induced
regulation of BMMCs, we examined the effects of TSA treatment
on BMMC proliferation and survival. Continuous exposure to
TSA over a period of 6 days resulted in a progressive decline in

mast cell numbers, while BMMCs cultured with rIL-3 and rSCF

proliferated normally over the same timeframe (Figure 5A).
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FIGURE 5 | TSA induces apoptosis and inhibits mast cell proliferation. (A) BMMCs were cultured with rIL-3 and rSCF for 6 days in the presence or absence of 500 nM

TSA. Cells were counted daily and live and dead cells were enumerated. (B) BMMCs were cultured with varying doses of TSA for 24 h and the expression of Annexin

V was assessed by flow cytometry. Data are representative of 2 independent experiments. **p < 0.001; ***p < 0.0001 by Students t-test. ****p < 0.0001, by ANOVA.

This suggested that TSA may induce apoptosis in BMMCs
as has been described in other cell types similarly exposed
to TSA (42, 60, 61). Further examination of BMMCs treated
with TSA for 24 h demonstrated a dose-dependent increase in
Annexin V signal via flow cytometry, suggesting that TSA is
able to induce apoptosis in BMMCs after treatment for 24 h
(Figure 5B).

TSA Treatment Results in Decreased
NF-κB Activation in IgE-Activated BMMCs
To further determine the cause of decreased mast cell cytokine
production in activated mast cells, we next examined the NF-
κB signaling pathway, a key regulatory pathway that is essential
for the transcriptional activation of various cytokines. Since I-
κBα is the negative regulator of NF-κB, we assessed whether
TSA treatment would lead to transcriptional upregulation of I-
κBα upon activation in IgE-activated BMMCs. Thirty minutes
post activation with IgE and antigen, no changes in I-κBα

expression were observed between TSA-treated and control
BMMCs activated via IgE and antigen (Figure 6A). However,
12 h later, increased I-κBα expression was observed in TSA-
treated and IgE-activated BMMCs compared to similarly treated
controls (Figure 6B). Since I-κBα expression has been shown
to fluctuate over time after cellular activation (62) and NF-κB
acts as the transcription factor that directly regulates cytokine
expression, we examined BMMCs for NF-κB expression after
activation with DNP-IgE and antigen. At this time point,
NF-κB expression was completely suppressed in TSA-treated
BMMCs (Figure 6C). To further confirm the effects of TSA
on NF-κB induction, we examined the levels of phospho-
relA to determine the extent of NF-κB activation. The p65
(RelA) sub-unit of NF-κB plays a crucial role in the activation
of NF-κB and its phosphorylation at Ser276 (phospho-relA
staining) can be assessed by Western blot as we have previously
described (28). Western blot analysis demonstrated increased
levels of phospho-rel A in IgE-activated BMMCs compared to
controls. In contrast, the level of phospho-relA was attenuated
in similarly activated TSA-treated BMMCs (Figures 6D,E).
These data therefore suggest that modulation of BMMC
function by TSA may be mediated through altered activation
of NF-κB.

TSA Treatment During Oral Allergen
Challenge Inhibits Diarrhea and Mast Cell
Activation During Food Allergy Induction
Since TSA treatment had a profound suppressive effect on
mast cells in cell culture, we sought to determine whether
it could similarly modulate mast cell function in vivo during
the development of food allergy. Balb/c mice were sensitized
and orally challenged with OVA as described in Materials and
Methods and the development of food allergy was assessed.
One hour after the final oral challenge with OVA, allergen-
sensitized and challenged mice exhibited the development of
profuse diarrhea as previously demonstrated (59). In contrast,
similarly challenged TSA-treated animals exhibited a lower
incidence of diarrhea overall in comparison with untreated
animals (Figure 7A). Examination of sera for mast cell markers
revealed elevated levels of murine mast cell protease-1 (mMCP-
1) in OVA-challenged animals, suggesting increased mast cell
activation (Figure 7B). Similarly, elevated levels of OVA-specific
IgE were also present in the sera of allergic animals (Figure 7C).
In contrast, the levels of both mMCP-1 and OVA-IgE were
decreased in TSA-treated allergic animals (Figures 7B,C).
Furthermore, the numbers of intestinal mast cells in TSA-
treated mice were also decreased compared to untreated mice
(Figures 7D,E).

To further assess the effects of TSA treatment on modulation
of cytokine production during food allergy, we examined
the local and systemic production of Th2 type cytokines in
allergic mice. As anticipated, examination of jejunal tissue for
mRNA transcripts revealed the induction of a number of Th2-
type cytokine genes in OVA-sensitized and challenged animals
compared to controls (Figures 8A–F). In contrast, except for
IFN-γ, decreased expression of these cytokines was observed in
the intestines of most of the TSA-treated mice, suggesting that
TSA is able to modulate cytokine production during food allergy
development (Figures 8A–F). To further investigate the effects
of TSA on NF-κB expression in vivo, we also examined jejunal
tissue for NF-κB transcripts as a measure of transcriptional
regulation during food allergy development. While OVA-
sensitized and challenged mice exhibited increased levels of total
NF-κB mRNA in jejunal tissue compared to control mice, the
expression of NF-κB was significantly reduced in the intestines
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FIGURE 6 | TSA induces I-κBα expression and inhibits NF-κB activation. (A–C) BMMCs were pre-treated with vehicle or 500 nM TSA overnight prior to activation with

DNP-IgE and DNP-BSA. The expression of I-κBα and NF-κB was assessed by RT-PCR. (D,E) Western blot was performed on whole cell lysate protein extracts from

BMMCs pre-treated with vehicle or TSA and activated with DNP-IgE and DNP-BSA. The amounts of phospho-relA and β-actin were assessed. Data are

representative of 2 independent experiments. *p < 0.01; **p < 0.001 by Students t-test.

of similarly challenged and TSA-treated animals, confirming
the results we had observed in cell culture with BMMCs
(Figure 8G).

To further confirm the effects of TSA on modulation of
cytokine production by T cells, we examined the production
of cytokines in mesenteric lymph node (MLN) cells from
experimental animals in response to stimulation with OVA or
T cell agonists. In comparison to controls, exposure to OVA
induced the production of Th2 cytokines in MLN cells from
WT OVA mice that had been sensitized and challenged with
OVA (Figures 9A–D). In contrast, MLN cells from several
OVA-sensitized and challenged TSA-treated animals exhibited
a tendency toward lower levels of cytokine production overall
compared with untreated animals (Figures 9A–D). Interestingly,
however, TSA treatment had no effect on modulating the
potential for cytokine production, since polyclonal activation
of T cells in both groups resulted in equivalent levels of
cytokine production (Figures 9A–D). These data therefore
suggest that TSA can regulate the expression of cytokines
in intestinal tissue and differentially modulate the production
of cytokines by mast cells and T cells during food allergy
development.

DISCUSSION

Epigenetic regulation of immune cell behavior is becoming
increasingly accepted as a likely mechanism by which immune
cell subsets mediate responses to widely differing stimuli.

Mast cells, like many other immune cell types are extremely
versatile and perform numerous functions contributing to the
development of both innate and adaptive immune responses
(63–66). As cells that can be rapidly activated during immune

responses, they respond to diverse stimuli including alarmins
such as IL-33, pathogen components such as TLR ligands, and
antigen engagement via antibodies such as IgE and IgG. It is
therefore extremely likely that the activation and function of
mast cells during immune responses is regulated via epigenetic
modifications induced by environmental exposure such as

dietary antigens (67, 68).
In this report, we show for the first time that the inhibition

of HDAC enzymes has a significant effect on mast cell activation
and function during food allergy. Furthermore, we demonstrate
that HDAC inhibition profoundly inhibits mast cell activation,
degranulation and cytokine production in vitro in response to
both IgE-dependent and independent stimuli, suggesting that

Frontiers in Immunology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 2414

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Krajewski et al. Histone Deacetylase Inhibition Suppresses Mast Cells

FIGURE 7 | Treatment with TSA inhibits the development of allergic diarrhea and mast cell activation in OVA-sensitized and challenged mice. Mice were sensitized

and challenged with OVA as described in Materials and Methods. Beginning 1 day prior to OVA challenges, mice were treated with vehicle or 75 µg TSA i.p. daily until

sacrifice. (A) Percent of mice exhibiting diarrhea (B) serum mMCP-1 levels (C) serum OVA-IgE levels and (D) average numbers of jejunal chloroacetate

esterase-positive mast cells/ 3 high powered fields (HPF) are shown. (E) Representative histological sections from individual mice are shown. Mast cells are indicated

by an arrow. Data are representative of 3 independent experiments. n = 6 mice/group. *p < 0.01 by Students t-test. ND, not detected.

modification of histone acetylation may be a putative mechanism
involved in modulating mast cell function.

TSA is a broad spectrum HDACi that has several pleiotropic
effects on cellular gene expression, including both the
upregulation and downregulation of genes involved in cellular
functions. Examination of TSA in a number of disease
models suggests that in general it has beneficial effects on
cellular function, promoting the downregulation of chronic
inflammation and the induction of apoptosis and anti-oxidative
pathways (49, 52, 54, 57, 69–73). This has resulted in the FDA
approval of several HDACi (not including TSA) as therapeutic
agents, as well as further pursuit of the mechanisms by which
HDACi promote or inhibit cellular function (33, 42, 44).

We have previously shown that frequent ingestion of
curcumin, the active ingredient of the curry spice turmeric,
results in the suppression of mast cell responses and the
attenuation of mast cell-mediated experimental food allergy (28).
Several studies have suggested that the effects of curcumin in
vivo are mediated via epigenetic modulation of HDACs as well as
HATs, prompting us to investigate whether the observed effects
of curcumin on mast cells in our previous study were similarly
induced via modification of histone acetylation (31). Emerging
evidence from a number of studies suggests that both the
expression of genes governing immune cell differentiation as well
as the induction of allergic sensitization may be epigenetically
modulated, further warranting examination of the effects of TSA

treatment in our model of food allergy (25, 26, 74). Lastly,
while some studies examining the effects of histone deacetylase
inhibition on T cell and ILC2-mediated allergic inflammation
have been published, its effects on mast cell-mediated allergic
responses have not yet been examined (51, 52, 54, 55).

Examination of the effects of TSA in animal models of
allergic airway disease (AAD) have yielded mixed results. TSA
treatment in models of both acute and chronic AAD resulted in
inhibition of airway inflammation, cytokine production, collagen
deposition, mucus production and airway hyperresponsiveness
(AHR) (52, 55). In contrast, another study reported that TSA
treatment inhibits AHR, but not airway inflammation in a
model of asthma (54). The effects of TSA in this model
were induced by blocking calcium mobilization and inhibiting
intracellular calcium release in airway smooth muscle cells. More
recently, Toki et al. and Thio et al. demonstrated that TSA
also inhibits ILC2-mediated and IL-33-dependent innate allergic
inflammation (51, 58).

In this study, we sought to examine the effects of TSA
treatment on mast cells in both cell culture as well as in vivo
during the development of food allergy. Our data demonstrate
that TSA can modulate the function of both resting mast cells,
as well as mast cells activated via IgE and non-IgE pathways. A
previous study suggested that TSAmay have dichotomous effects
on mast cells, inhibiting IL-6 production after IgE-mediated
activation, but not when stimulated with LPS (75). In contrast,
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FIGURE 8 | TSA modulates intestinal cytokine and NF-κB gene expression in allergic mice. (A–G) OVA-sensitized and challenged mice were sacrificed and RNA and

cDNA were prepared from jejunal extracts. The expression of jejunal cytokines was assessed relative to GAPDH using Taqman probes. n = 6 mice/group. Data are

representative of 2 independent experiments. *p < 0.01; **p < 0.001; ***p < 0.0001 by Students t-test. ND, not detected.

we demonstrate that the inhibitory effects of TSA are conferred
irrespective of the type of stimulus and can be induced in both
activated as well as resting mast cells. This is further corroborated
by our observations demonstrating that while downregulation of
FcεRI expression by TSA may partly account for the observed
decreases in cytokine production, cytokine production is also
inhibited in IL-33-stimulated mast cells, suggesting that the
effects of TSA are mediated independently of the IgE pathway.
Interestingly, however, TSA treatment immediately after IgE-
mediated activation had occurred resulted in the reversal of
cytokine inhibition, suggesting that the effects of TSA may be
mediated by increasing the expression of an upstream negative
regulator of transcription such as I-κBα, which is turned on soon
after antigen-induced cross-linking has occurred.

Treatment with TSA also resulted in the apoptosis of mast
cells over time and decreased their proliferation and survival, as
has been observed with other cell types such as eosinophils and
neutrophils (61). The anti-proliferative effects of TSA may partly

contribute to the decreased cytokine production in activatedmast
cells, but it does not explain the complete suppression of cytokine
production as observed in Figures 1–4, since there are still a
significant number of nonapoptotic cells after 24 h of treatment
with TSA andwe observe significant downregulation of cytokines
as early as 1 h after treatment.

Since we had previously shown that the effects of curcumin in
our model of food allergy were mediated via inhibition of NF-
κB activation, we examined the effects of TSA treatment on the
induction of I-κBα andNF-κB, hypothesizing that TSA treatment
may enhance the expression of I-κBα in activated mast cells.
Examination of BMMCs 30min after IgE-mediated activation
demonstrated equivalent expression of I-κBα in both untreated
and TSA-treated cells. However, this is not surprising since the
expression of I-κBα is regulated through complex interactions
with NF-κB in nuclear and cytoplasmic compartments involving
an inducible autoregulatory pathway which results in increased
I-κBα induction by activated NF-κB (46, 76, 77). As such, further
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FIGURE 9 | TSA modulates cytokine secretion in OVA-stimulated mesenteric lymph node (MLN) cells. (A–D) MLN cells were collected from experimental animals

sensitized and challenged with OVA and stimulated for 96 h with either OVA or anti-CD3 and anti-CD28 as described in section Materials and Methods. Culture

supernatants were evaluated for secretion of cytokines. n = 6 mice/group. Data are representative of 2 independent experiments.

examination several hours later revealed a significant increase
in expression of I-κBα in TSA-treated cells compared with
untreated controls. Taken together with the decreased NF-κB
expression and phospho-relA levels in BMMCs, this suggests
that TSA may modulate BMMC function by altering I-κBα

transcription and NF-κB transcription and activation.
The suppressive effects of TSA on mast cells were also

observed in vivo during the development of food allergy. TSA
treatment during the challenge phase resulted in the inhibition
of allergic diarrhea, the attenuation of mast cell activation
and intestinal mast cell numbers, and the suppression of Th2
cytokine genes, suggesting that histone deacetylase inhibition can
modulate mast cell function in vivo and ameliorate the mast cell-
mediated effects of food allergy such as intestinal anaphylaxis.
Furthermore, the protective effects of TSA were conferred during
the challenge phase in already sensitized animals, suggesting that
TSA can modulate the mast cell-dependent phase of the response
and attenuate mast cell-mediated effects during acute episodes of
allergic inflammation.

Further studies aimed at elucidating themechanisms by which
HDACi modulates mast cell function are warranted. In particular
this includes examining the roles of upstream negative regulators
of transcription such as I-κBα as well as genes involved in
mitotic pathways such as the MAP kinase genes. The effects
of TSA on mast cell responses during food allergy also need
to be further examined. It will especially be important to
assess the differential effects of TSA on mast cell homeostasis
and function vis-à-vis its known epigenetic effects on histone
acetylation as well as its effects on the recruitment and survival
of mature mast cells during allergic responses. Furthermore,
TSA is a pan-HDACi and potentially has a wide range of other
effects. As such, examination of the effects of specific HDACs
in modulating allergic inflammation will provide further insight

into the epigenetic regulation of mast cell function. In this
context, a recent study demonstrated therapeutic effects of both
HDAC6 and HDAC8 inhibitors in a mouse model of asthma
(78). Similarly, other studies have demonstrated that HDAC
enzymes such as HDAC6 and HDAC8 have a number of effects
on non-histone targets including α-tubulin, actin and HSP90
(79–82). Thus, inhibition of these proteins has the potential
to modulate the cytoskeleton as well as cellular morphology,
migration and cellular interactions, which may contribute to the
observed effects.

In summary, our data demonstrate that HDAC inhibition
by TSA has a profound inhibitory effect on the activation
and function of mast cells both in cell culture and during
the development of food allergy, suggesting that the activation
of mast cells is epigenetically regulated and that exposure to
epigenetic modulators, including dietary components can alter
the outcome of allergic disease in sensitized patients.
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Supplementary Figure 1 | TSA suppresses cytokine production in peritoneal

mast cells. Peritoneal lavage was isolated from naïve mice and pooled. Cells were

incubated with DNP-IgE in the presence or absence of 500 nM TSA overnight.

The next day, cells were activated with DNP-BSA and cultured with Brefeldin A for

6 h. (A) Intracellular cytokine staining was performed on mast cells and the

percent of IL-13 and TNF-α producing cells were assessed. (B) The total numbers

of cytokine producing cells relative to absolute numbers are shown. (C) β-hex

activity in cell culture supernatants was assessed.
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