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Schistosomiasis is amajor cause of morbidity in humans invoked by chronic infection with

parasitic trematodes of the genus Schistosoma. Schistosomes have a complex life-cycle

involving infections of an aquatic snail intermediate host and a definitive mammalian host.

In humans, adult male and female worms lie within the vasculature. Here, they propagate

and eggs are laid. These eggs must then be released from the host to continue the

life cycle. Schistosoma mansoni and Schistosoma japonicum reside in the mesenteric

circulation of the intestines with egg excreted in the feces. In contrast, S. haematobium

are present in the venus plexus of the bladder, expelling eggs in the urine. In an impressive

case of exploitation of the host immune system, this process of Schistosome “eggs-iting”

the host is immune dependent. In this article, we review the formation of the egg

granuloma and explore how S. mansoni eggs laid in vasculature must usurp immunity to

induce regulated inflammation, to facilitate extravasation through the intestinal wall and

to be expelled in the feces. We highlight the roles of immune cell populations, stromal

factors, and egg secretions in the process of egg excretion to provide a comprehensive

overview of the current state of knowledge regarding a vastly unexplored mechanism.
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INTRODUCTION

Schistosomiasis (Bilharzia) is one of the worlds most common parasitic infections with over
200 million people requiring preventive treatment in 2016 (1, 2). While the majority of people
at risk live in the endemic regions of Africa, Schistosoma species are also prevalent in the
Middle East, the Caribbean, South America, and South East Asia. Autochthonous transmission of
schistosomes has also been reported in Corsica, France (3, 4). Using novel, more sensitive diagnostic
techniques to reveal “egg-negative/worm-positive schistosomiasis,” Colley et al. highlighted that
the global prevalence of schistosomiasis may actually exceed current estimates (5). The main
human pathogenic species causing intestinal schistosomiasis are Schistosoma mansoni, Schistosoma
japonicum, Schistosoma mekongi, Schistosoma intercalatum, and Schistosoma guineensis. with
Schistosoma haematobium causing urogenital schistosomiasis. While S. haematobium is a major
cause of mortality, frequently causing renal failure, chronic morbidity is the major health concern
with schistosome infection causing 3.3 million disability-adjusted life years (6). For the purpose of
this review we will concentrate on the most prevalent species causing intestinal schistosomiasis,
S. mansoni.
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S. mansoni is well-adapted to chronically infect humans
as a result of ∼200,000 years of co-evolution with modern
humans (7). This is reflected by the life-span of S. mansoni
worms estimated to be 5.7–10.5 years in human hosts (8).
Evidently, successful adaptation has established a host-parasite
relation such that asymptomatic infection are present in more
than 90% of individuals, however, some infected develop
hepatic fibrosis, severe hepatosplenomegaly, and portal
hypertension (9). Immunopathology during schistosome
infection of humans is predominately caused by granulomatous
inflammation around parasite eggs that are trapped in
various organs. In this review, we will focus on S. mansoni
and the immune-dependent process of egg granuloma
formation, which facilitates the parasite egg excretion from
the mammalian host and completetion of the trematodes life
cycle.

LIFE CYCLE OF SCHISTOSOMA SPP.

Schistosoma species have complex life-cycles involving infection
of a freshwater snail intermediate host as well as a mammalian
definitive host, such as humans. The S. mansoni egg stages
are excreted from the human host within fecal material (or
urine in case of S. haematobium). Under optimal conditions
the eggs hatch in fresh water and–via asexual replication in the
intermediate snail host, Biomphalaria genus for S. mansoni–
thousands of free-swimming infective cercariae are released into
the water. The cercariae locate a mammalian host and penetrate
the skin, and then transform to the now so-called schistosomulae
stage. The schistosomulae remain in the skin for several days,
after which they enter the circulation via the lymphatics and
venules to reach the lung 5–7 days after skin penetration.
After >2 weeks, they re-enter the circulation and reach the
hepatoportal circulation. Here, they remain and sexually mature
into adult male or females worms after encountering a partner
of the opposite sex. The monogamous pair migrate to the
mesenteric veins, mate and begin egg production after ∼28
days. Adult S. mansoni worms are predominantly found in the
small inferior mesenteric blood vessels that surround the colon
and caecum. Eggs laid by female worms are deposited onto
the endothelial lining of the capillary walls. From here, the
eggs are either disseminated through the blood flow into other
organs or they translocate through the intestinal epithelia into
the intestinal lumen. The eggs are metabolically active and highly
antigenic–they evoke inflammation that leads to the formation
of a granuloma around the egg necessary for the translocation
through the lamina propria. Excretion of eggs within the fecal
material then completes the parasites life cycle.

Acute clinical symptoms may include the development
of a light rash, commonly referred to as “swimmers itch.”
“Katayama fever” is characterized by fever, fatigue, and dry
cough–among other symptoms–and may occur 2–12 weeks after
infection resulting from a systemic reaction against the migrating
schistosomulae. During chronic stages of infection, half to two
thirds of the eggs deposited in mesenteric venules are swept away
in the circulation to multiple organs, with the majority ending

up in the liver (10). In the liver, granulomatous inflammation
around eggs and the subsequent fibrosis lead to the major
pathologies associated with schistosomiasis mansoni. Fibrosis in
the liver portal tract often leads to obstructive portal lesions and
portal hypertension, and may result in gastrointestinal bleeding,
hepatic encephalopathy and liver failure. Interestingly, despite
the constant translocation of eggs from the vasculature into
the intestinal lumen, cases of S. mansoni-associated sepsis are
rare, reinforcing the highly adapted process of egg excretion
(11).

SCHISTOSOME ANIMAL MODELS ARE
REQUIRED TO STUDY THE EGG
EXCRETION PROCESS

Human studies are generally undertaken in endemic settings
and commonly are based on observations before and after
drug treatment for schistosomiasis. While analysis of human
material (blood, tissue, stool) are definitely required to translate
findings from animal experiments to the human system (12),
these samples come with some caveats: heterogenic background,
medical history, co-infections, environmental factors, etc.
Perhaps these may be overcome someday by the growing
computational power and the use of high throughput “omics.”
More intriguingly, the ongoing studies involving controlled
human infection with S. mansoniwill provide new insight tomost
aspects of infection of humans (13). However, to formally address
the egg excretion process in humans the deliberate experimental
chronic infection with mixed sex cercariae, resulting in egg
producing male and female worm infections and egg associated
tissue immunopathology leading to morbidity and the risk of
mortality, may pose ethical concerns. Alternatively, longitudinal
studies in endemic areas are logistically demanding as they would
require colonoscopy to access the intestinal epithelium.

Animal models have greatly advanced our understanding
of the pathophysiology of schistosome infection. While
chimpanzees and baboons are the most faithful models
recapitulating all features of human schistosomiasis including
peri-portal fibrosis and intestinal lesions (14–18), today the
most frequently used species is the mouse, although not all
findings are translatable. This suitability of mice as a model,
must be considered in the context that S. mansoni may have
adapted some 125,000 years ago to humans from the rodent
trematode S. rodhaini (19). While the mouse shows differences
in hepatic fibrosis and pathology, which is more associated
with the granulomatous response to trapped parasite eggs in
the liver and intestine (20), the development of granulomas
adequately reflects human disease. As the process of egg
excretion is dependent on the immune-dependent formation
of granulomatous inflammation mice are a well-suited model
to mechanistically study egg translocation, which is facilitated
by the availability of reagents and transgenic mice ultimately
guiding the studies on infected humans. In this review, we will
rely mostly on data generated in mice as a model of S. mansoni
infection and immunopathology.
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DIFFERENCES IN GRANULOMATOUS
INFLAMMATION OF LIVER AND INTESTINE

Immune Response to S. mansoni
Following infection, schistosomulae migrate through the host
body and a type 1 immune dominated response is elicited,
persisting for ∼5 weeks. This response is characterized by
increased release of Interleukin (IL)-12 and interferon (IFN)-
γ and is mainly targeted at worm antigens. However, as the
parasite matures and starts to produce eggs (∼5–6 weeks
postinfection), a shift toward a type 2-biased immune response
occurs. Consequently, IFN-γ production decreases, while CD4+

T helper (Th) 2 cell polarization is induced. The switch from
type 1 to type 2 is elicited by the eggs released by adult female
worms. Indeed, whole S. mansoni eggs or their soluble egg
antigens (SEA) potently induce type 2 responses when injected
into naïve mice (21). Importantly, a defect in switching the type
of immune response leads to aberrant intestinal inflammation
and fatal disease (22, 23). The protective type 2 immune response
is characterized by expansion of Th2 cells, eosinophils, and
basophils, increased production of IL-4, IL-5, and IL-13, an
isotype switch toward IgG1 and IgE, as well as polarization
of macrophages toward the M2 phenotype (24, 25). During
the chronic phase of infection (>3 months), the magnitude
of the Th2 response decreases, coincident with a reduction in
granulomatous inflammation around eggs, and regulatory T and
B cells emerge leading to a state of immune hyporesponsiveness.

Granuloma formation around eggs trapped within hepatic
and intestinal tissue is a hallmark of schistosome infection
and the major cause of pathology in infected hosts. However,
the egg granuloma functions for both the host and parasite
(26): (a) intestinal granulomatous inflammation facilitates the
translocation process for the egg into the gastrointestinal lumen,
(b) it ameliorates bacterial translocation from the intestine into
the circulation of the host, (c) it protects host tissues from
exaggerated immune responses against the antigenic eggs, and
(d) it ultimately benefits the adult parasites to keep the host intact.

Intestinal Granulomas
Female S. mansoni worms deposit their eggs close to the
vasculature surrounding the intestines and exploit the host
protective mechanism to facilitate egg transgression in order to
get them transported through the endothelium and intestinal wall
into the gut lumen. It has been estimated that S. mansoni eggs are
viable for ∼3 weeks indicating that eggs complete the transition
through the intestinal wall well within that time frame but in no
less than 6 days (27). Therefore, the intestinal granulomas will
have characteristics of what is seen in early stage liver granulomas
(Figure 1). Moreover, histological analysis has shown that colon
granuloma composition differs from liver granulomas harboring
more macrophages but less eosinophils, T and B cells (28).
However, to date, a comprehensive in-depth characterization
of the composition of the intestinal granuloma remains to
be published. Due to the longevity of infection and constant
egg deposition, assessing the temporal order of events during
granuloma formation in the intestine is challenging. Recently, a
novel approach has been published, in which S. mansoni eggs are

surgically implanted into the sub-serosal tissue of small intestine
or colon of mice (29), facilitating the direct and kinetic analysis
of egg priming of the immune system in the intestine and within
the local draining mesenteric lymph nodes.

Hepatic Granulomas
The formation of granulomas around eggs disseminated into
the liver is better understood (Figure 1). In contrast to
intestinal granulomas, the liver granuloma cannot be shed and
becomes fibrotic over time. Recently, a histological analysis of
granulomas revealed that the majority of productive, collagen
rich granulomas during natural and experimental S. mansoni
infection develop in the liver, probably as eggs are trapped in
the hepatic tissue as opposed to intestinal granulomas, which
appear more organized and with fewer, circumferal collagen
fibers (30). Interestingly, hepatic granuloma size decreases from
weeks 8 to 20 post-infection, at which point it stabilizes for
at least another 32 weeks (10). This down modulation of egg
granuloma size reflects the hyporesponsive state of immunity
that develops as the infection progresses to chronicity. While
normal lobular liver architecture is retained, angiogenesis occurs
and contributes both to the genesis of schistosomal portal
fibrosis and to fibrotic degradation (31). Indeed, experimentally
infected and treated mice showed significant remodeling of
hepatic schistosomal lesions over time. A notable feature of the
granuloma surrounding the the liver is its protective function
to encapsulate hepatotoxic secretions from the egg (26)–in
particular omega-1 (ω1) (32).

The Egg-Immune Interface
It is important to highlight that the egg is a live and biologically
active organism that proactively interacts with the host to
manipulate immunity and achieve its successful excretion from
the host. The shell of the egg itself, aided by factors released
from maturing eggs, likely contributes to the initial attachment
of the egg to the endothelium. This activating process facilitates
granuloma formation and ultimately egg excretion. Indeed, these
egg secretions (ES) are the active interface between the egg and
the host (33, 34). The egg shell and its ES bear a number of
molecules with potential immunomodulatory (IM) activity. The
two major secreted egg IM are described in more detail here
as they may play an excretion-promoting role in the intestinal
granuloma.

Alpha-1 (α1)/IPSE/smCKBP
Alpha-1 (α1) is a dimeric glycoprotein that was first described
by Dunne and Doenhoff (35, 36). Haas and colleagues identified
that native α1 induced IL-4 release from basophils and cloned
the recombinant molecule; subsequently termed IL-4-inducing
principle of S. mansoni eggs (IPSE) (37, 38). Furthermore,
IPSE has a nuclear localization signal in the C-terminus that
conveys “infiltrin” activity, an ability to infiltrate through the cell
membrane and cytoplasm and translocate to the nucleus (39, 40).
Importantly, IPSE/α1 further contributes to the enlargement of
hepatic granulomas (41). In many pathogens, host subversion
strategies utilize immunomodulators to interact with and
manipulate chemokines and alter local cellular recruitment
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FIGURE 1 | Differences in hepatic and intestinal granuloma composition. Cellular granuloma composition in the liver (left) and the intestine (right). While early (upper

half) granulomas may appear similar, intestinal granulomas harbor less eosinophils, T cells, and B cells than hepatic granulomas, more macrophages are present. Only

few neutrophils and basophils can be observed in both sites. During later stages (lower half) eggs in the liver become trapped and fibrosis develops. In contrast, eggs

deposited in the gut must be released to the intestinal lumen by yet to define mechanisms. However, they may also become trapped and may resemble chronic liver

granulomas in shape and collagen content. Illustrations modified from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Unported License.

and activation–termed chemokine binding proteins (CKBP)
(42). A screen of homogenates or ES from the S. mansoni
life cycle stages that infect the mammalian hosts identified a
CKBP (SmCKBP), within only SEA (∼10 µg per mg), that
was enriched in ES (∼150mg per mg). SmCKBP selectively
bound certain chemokines and when recombinant SmCKBP
was administered to mice, it blocked chemokine activity and
inflammation (43). SmCKBP has an active role in granuloma
formation around live eggs and is released from the maturing
egg. This has been evidenced in vitro by circumoval precipitation
and in vivo by detection within hepatic as well as intestinal
granulomas (43) (Figures 2A,B). The vastly different biological
properties of α1/IPSE/smCKBP–inducing release of IL-4, binding
chemokines, infiltrin activity, and enlargement of granulomas–
highlight the dynamism and duality of functions for helminth
IM. Indeed, the immunomodulating activity of the molecule
extends beyond helminths, with recombinant forms shown
to suppress inflammation and pathology in models of skin
inflammation as well-bladder disease (43, 45).

Omega-1 (ω1)
The initial identification of Omega-1, a hepatotoxic egg
glycoprotein, is also attributed to Dunne and Doenhoff (32,
36). ω1 possesses both T2 RNase activity (46) and potent Th2
inducing activity (47, 48). The ability of ω1 to prime dendritic
cells to elicit Th2 cell expansion is mTOR-independent. Rather,
it is dependent on ω1 RNase activity in addition to its native
glycosylation, enabling the molecule to bind to the mannose
receptor on dendritic cells and be internalized (49, 50). It is
noteworthy that both α1 and ω1 within SEA are glycoproteins,
with many functional activities of such egg molecules being
glycan dependent, requiring interactions with selected C-type
lectin receptors on immune cells (51–54).

Recombinant ω1 has been shown to have therapeutic activity
in reducing the incidence and development of diabetes in
NOD mice (55), modulating inflammasome-dependent IL-1β
release (56) and inducing FoxP3 expression in CD4+ cell to
drive Treg development (57, 58). Regarding metabolic effects,
ω1 binds to mouse and human adipocytes and, in mouse
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FIGURE 2 | Release of smCKBP from S.mansoni live eggs under in vitro conditions and detection in vivo adjacent to eggs within granulomas in the liver and intestine

of infected mice. (A) Live eggs were cultured in vitro with anti-smCKBP rabbit sera or normal rabbit sera (NRS), with SmCKBP-antibody precipitate formation (arrows)

when cultured with anti-smCKBP sera. (B) Immohistochemistry detection of smCKBP (brown stain) within the granulomas surrounding eggs in liver or intestines of

infected mice. Bar, 50µm. ©2015 Smith et al. Originally published in The Journal of Experimental Medicine. https://doi.org/10.1084/jem.20050955. (C) Smaller

granulomas forming around eggs within intestines of S. mansoni-infected mice treated with anti-CD4 mAb compared to control mice, as described (44). H&E-stained

sections. Bar, 100µm.

models of diet-induced obesity, was shown to induce release
of IL-33 resulting in weight loss (59). Further studies are
required to investigate whether ω1-induced IL-33-release is
responsible for DC modulation and Th2/Treg induction. These
immunomodulatory effects may play an important role in
regulating optimal granuloma formation and transition through
the lamina propria.

MECHANISM OF “EGGS-CRETION”

While the S. mansoni egg excretion process still remains ill-
defined to date, it can be broadly divided into four stages
(Figure 3):

I Egg release into the bloodstream and attachment to the
endothelium

II Immune-dependent granuloma formation
III Transition between endothelium and epithelium
IV Release into the intestinal lumen

Stage I. Egg Release Into the Bloodstream
and Attachment to the Endothelium Is
Triggered by Adult Worm and Egg
Secretions
Within the mesenteric vasculature, adult male and female
schistosomes reside. Here, they move against the blood toward
the endothelium facing the intestinal epithelium as a response
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FIGURE 3 | Proposed four-stage process of intestinal egg excretion. I: Adult schistosomes deposit eggs into the vasculature close to the lamina propria. Platelets and

fibrinogen adhere to the eggs and activate the endothelium. Endothelial cells actively grow over the egg supporting its extravasation. Eggs that do not cross the

endothelial border are disseminated by the blood flow and become trapped mostly in the liver portal system. II + III: Immune cells, such as macrophages, T cells and

eosinophils start to encapsulate the egg. Granuloma formation occurs around the egg and together with other processes, such as fibrinolysis, egg secretions-induced

necrosis, leads to the passage of the egg toward the intestinal lumen. IV: Entrapped eggs become fibrotic and calcified. Interaction with the microbiome, epithelial cell

death and remodeling may lead to the active release of eggs, which are then released to the environment with host feces. Illustrations modified from Servier Medical

Art, licensed under a Creative Common Attribution 3.0 Unported License.

to a nutrient gradient. Female S. mansoni worms release roughly
300 eggs per day–equalling approx. one egg every 5 min–a rate
that stays constant for at least 1 year (10). Although female worms
flex backwards during oviposition (thereby releasing the egg in
close proximity to the endothelium), active penetration of eggs
through the endothelium is unlikely (34). Themetabolic enzymes
enolase (phosphopyruvate hydratase) and glyceraldehyde-3-P-
dehydrogenase (GAPDH) have been identified as parts of the
eggshell and act as surface receptors to bind plasminogen (60, 61)
increasing the fibrinolytic activity of the egg. Further, lack of
enolase has been shown to decrease binding of other pathogens
to the endothelium (62, 63). Although both enolase and GAPDH
are present in exosome-like vesicles (ELVs) produced by adult
S. mansoni worms (61), it is not known if ELVs are also released
from the egg stage. The release of such metabolic enzymes within
the surrounding egg milieu induces a localized metabolic niche
that modulates local cell functions to achieve egg excretion.

Indeed, human enolase has been shown to activate pulmonary
endothelial cells and to increase surface expression of the cellular
adhesion molecule ICAM-1 (64). It has been reported that
endothelial cells actively migrate over freshly deposited eggs
in vitro (65), a process enhanced in the presence of sera.
Furthermore, eggs can bind to and activate platelets, which may
subsequently activate endothelial cells (66). This process also
seems to contribute to extravasation, with thrombocytopenia
impairing egg excretion (67). Interestingly, schistosome eggs

also bind other host plasma proteins, including von-Willebrand
factor, which may assist in the initial attachment to the damaged
or activated endothelium (68). Enolase, present in the egg
shell, can also act as a plasminogen receptor and induce
plasminogen activation and plasmin generation (69). Plasmin
can subsequently contribute to blood clot lysis (important for
adult worms) and may induce monocyte recruitment (70).

The initial recruitment of immune cells to the site of
granuloma formation is dependent on cellular adhesion
molecules, such as ICAM-1. ICAM-1 is upregulated by SEA
and high expression can be observed within hepatic granulomas
(71). Here, it is essential for granuloma formation, especially
during early acute stages (72–74). Ileal and colonic granulomas
also showed high expression of ICAM-1 as well as LFA-1 and
VLA-4 in acute and chronic infection (75). In ICAM-1-deficient
mice, VCAM-1 was upregulated in hepatic granulomas, whereas
no expression of ICAM-2 or PeCAM was observed (71).
Interestingly, close correlation has been identified between
soluble ICAM-1 and fecal egg counts from infected patients feces
(73) where it was proposed to function as a negative regulator
by inhibiting leukocyte recruitment and downmodulation of
granuloma formation.

It has been suggested that the presence of the characteristic
lateral spine of the eggs may facilitate attachment to the
endothelium, perhaps causing cell damage to elicit a danger
signal and while intestinal peristalsis may also contribute to
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the extravasation process, its actual function remains unclear.
However, a study published in 2013 showed that the location
of egg deposition within the intestinal tract may contribute to
efficient egress of eggs (76). S. mansoni eggs are significantlymore
abundant in areas with Peyer’s patches, where egg secretions
cause loss of cellularity facilitating transition. Indeed, in support
of this, mice without Peyer’s patches excrete fewer eggs (76).

Stage II. Immune-Dependent Granuloma
Formation Is Driving Egg Excretion
The main mechanism that facilitates egg excretion is the
formation of the granuloma around the egg. As most findings
concerning granulomatous inflammation have been found in
hepatic granulomas, the following events have to be treated
with caution as experimental data for the formation of intestinal
granulomas is largely missing.

It has been noted earlier that the process of S. mansoni
egg excretion is an exquisite, immune-dependent process
(Figure 3) as illustrated by significant reduction in fecal egg
excretion in T cell- (44, 77, 78) and nude mice (79). Severe
combined immunodeficient mice were almost incapable of
passing parasite eggs in the first weeks of oviposition (80,
81). Indeed, S. mansoni-infected HIV+ patients with acquired
immunodeficiency syndrome had fewer eggs in their feces than
HIV seronegative patients with the same levels of S. mansoni
infection (82, 83), which correlated with CD4T cell counts after
anti-retroviral therapy (84). However, the role for CD4+ cells in
schistosome egg excretion of humans was not evident in studies
on other HIV+ patient cohorts (85, 86).

Strikingly, mice deficient in the Th2-associated cytokines
IL-4 and IL-13 passed almost no eggs in their feces (23).
IL-4-deficient mice display significantly impaired granuloma
formation and increased mortality associated with intestinal
pathology (22). This is also observed in mice with a combined
deficiency in IL-4 and IL-13 (23) which also develop fatal
endotoxemia. Furthermore, IL-4-deficient mice show a
significant accumulation of eggs in the intestinal wall, a finding
supportive of the function of the granuloma in facilitating egg
excretion (23). Similarly, mice with specific deficiency in IL-4
and IL-13 within T cells succumb to acute S. mansoni infection
(25). Also, IL-4Rα−/− mice may develop fatal hemorrhaging
following S. mansoni indicative of a protective role of the
granuloma from exacerbated immunopathology in the intestine
(87). IL-4Rα-signaling involves both IL-4- and IL-13-mediated
receptor engagement and the particular role of IL-13 was
revealed to drive hepatic fibrosis (23, 88).

While there has been a focus on T cells, other immune
cells also contribute to both granuloma formation and the
excretion of eggs. Indeed, eosinophils are a major constituent of
intestinal granulomas (89). Although their precise role remains
unclear, it has been reported that eosinophils may promote
egg excretion (90). However, studies using anti-IL-5 antibody-
mediated eosinophil blockade found normal numbers of eggs
passed in the feces (91, 92), with no marked alterations in
hepatic granuloma formation noted in transgenic mouse models
of eosinophil deficiency (93). Another possible function of

granuloma eosinophils may be the destruction of miracidia
within the surrounded (trapped) egg (94), in part explaining the
higher abundance of eosinophils in hepatic granulomas (28, 30)
and the occurrence of eosinophil pyroptosis in vivo (95).

Basophils can be directly activated by IPSE/α1 to release IL-4
(38) and are present in intestinal granulomas (96). Additionally,
a new molecular mechanism of action has been revealed whereby
IPSE, a member of the βγ-crystallin superfamily, can bind IgE
through the IPSEs crystallin fold thereby activating basophils
independently of formal IgE cross-linking (97). Although
basophils have been shown to drive Th2 polarization in other
helminth infection models (98, 99), whether or not they
contribute to intestinal granuloma formation and egg excretion
is unclear to this date (25, 100).

While neutrophils are found to acquire a pro-inflammatory
phenotype during S. japonicum infection (101), they do not seem
to participate in the granuloma formation in S. mansoni infection
(87), which may be in part due the presence of the kunitz-
type protease inhibitor SmKI-1, capable of inhibiting neutrophil
function (102).

The more recently described group of innate lymphoid cells
(ILC) have gained a lot of attention as they are capable of
initiating type 2 immune responses against certain helminths
and during allergic responses (group 2), maintaining intestinal
homeostasis (group 3), and enhancing type 1 responses via IFN-
γ release [group 1; reviewed in (103, 104)]. To date, only limited
data is available on the contribution of ILC, and in particular
ILC2, during S. mansoni infection toward granuloma formation
and egg excretion. In a pulmonary model of schistosome egg
injection we have shown that ILC2 can contribute to pulmonary
fibrosis (105). Because ILC2 are abundant in the intestine
and they can directly interact with CD4T cells to enhance
polarization toward Th2, they may play non-redundant roles
in the excretion process by instructing T cell responses. ILC2
are mainly activated by the alarmin cytokines IL-33, IL-25, and
TSLP to produce IL-5 and IL-13. While individual ablation
of each of these cytokines did not impair hepatic granuloma
formation in chronic schistosomiasis, the combinatorial targeting
of all three cytokines led to reduced hepatic fibrosis, impaired
eosinophil recruitment and fewer numbers of IL-13-producing
ILC2 (106). Thus, while the impact on early intestinal granuloma
formation and egg excretion remains obscure, the marked effect
of alarmins is highly likely to impact on intestinal granuloma
formation. Omega-1 released from eggs within the intestines
may–in addition to cytotoxic effects–increase the release of IL-
33 and therefore the activation of ILC2. Additionally, ILC3might
exert similar functions as they have been shown to be involved
in the maintenance of tolerance toward commensal microbiota
through the interaction with CD4T cells in the gut (107).
Interestingly, altered numbers of ILC2 have been detected in the
circulation of S. haematobium-infected patients (108). However,
further investigation is required to fully elucidate the role of
ILC populations in schistosoma infection and granulomatous
inflammation.

Dendritic cells (DCs) are capable of processing and presenting
schistosome egg antigens (109) and depletion of DCs during an
ongoing S. mansoni infection severely disrupts the generation of
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the Th2-polarized immune response (110). While hepatic
conventional DCs act in an immunogenic, rather than
tolerogenic, capacity, their function in the intestine may be
different (111). Using an injection model for the direct delivery
of schistosome eggs into the subserosal intestinal tissue revealed
that IRF4-expressing CD11b+ DCs promote Th2 responses in
the intestine (29). It further has been shown that Omega-1 is the
major component conditioning DCs for Th2 polarization (48).

Macrophages are the most abundant cell population in
intestinal granulomas (28). During S. mansoni infection of
immunocompetent mice macrophages acquire a protective
alternatively activated phenotype through IL-4- and IL-13-
mediated IL-4Rα-signaling. TheM2 phenotype is associated with
the increased expression of Arginase-1, an enzyme converting
L-arginine to L-orthinine, which is further converted to proline–
a critical amino acid for the production of collagen, and
therefore, the development of fibrosis (112). While this process
is detrimental to host survival through fibrotic liver damage, it
might not be as critical in the intestinal granulomatous response
as the surrounding granulomas are overall more temporarily
restricted. Therefore, other properties of IL-4Rα-mediated M2-
polarized macrophages, such as IL-10 production, PD-L2 and
Relmα expression, may be more crucial to prevent aberrant
inflammation.

When macrophages are unable to respond to IL-4 and
IL-13 cytokine signals in IL4RαLysMCre mice the hosts
succumb to endotoxemia, which can be in part rescued
by antibiotic treatment (87). More inflammatory cells were
observed surrounding intestinal granulomas suggesting that
M2 macrophages are specifically required to prevent excessive
damage to the intestinal wall and promote the efficient transport
of eggs into the intestinal lumen. In contrast, Arginase-1-
expressing macrophages were shown to limit Th2 responses
(113) and prevent the formation of exacerbated granulomas in
the liver. Later, it was found that Lyz2lo macrophages were
able to escape LysMCre-mediated IL-4Rα-deletion and acquire
M2 properties in response to S. mansoni egg injection, which
may account for some of the observed differences between
studies (114). It was further shown that during S. mansoni
infection macrophages require IL-4/IL-13 released from Th2
cells to acquire an M2 phenotype (25). Importantly, granuloma
formation was significantly impaired in mice with T cell-
derived IL-4/IL-13-deficiency and egg excretion in the feces was
compromised, although it did not reach statistical significance.
These results suggest that while M2 macrophages contribute to
the increased fibrosis surrounding the trapped eggs in the liver,
they also promote efficient shielding of the eggs in their transition
through the intestinal tissue in order to prevent excessive
damage. Macrophage phenotype and granuloma formation is
ultimately determined by Th cell polarization.

T cells are themost important cells for successful egg excretion
in the intestine. Antibody-mediated depletion of T cells was
shown decades ago to lead to impaired granuloma formation, egg
retention and exacerbated disease resulting in increasedmortality
(78). Later targeting of L3T4 (CD4) T cells phenocopied anti-
CD3 mediated depletion highlighting the role of the T helper
subset (115). In S. mansoni infected mice subjected to anti-CD4

mAb-depletion the size of the granuloma is significantly reduced
in liver and intestines [Figure 2C, (116)]. Furthermore, the
cellular granuloma composition in CD4-depleted mice consists
of fewer eosinophils and more neutrophils, which are virtually
absent in the eosinophil-rich granulomas of immunocompetent
mice. Similarly, the absence of T cell-derived IL-4/IL-13, e.g., the
functional absence of Th2 cells, impairs granuloma formation
and egg excretion, and was found to increase mortality (25).

The critical role of Th2 cells for the protection of host
tissue from cytotoxic effects and correct granuloma formation is
further substantiated by studies showing that injection of the Th1
cytokine IFNγ interferes with granuloma formation and IL-12-
deficiency–in fact Th1-ablation–increases granuloma size and
Th2-mediated inflammation (117, 118). Although Th1 cells seem
to be required for the early release of IFNγ and IL-2 facilitating
granuloma formation as part of a delayed type hypersensitivity
response, prolongation of the Th1 response led to increased
pathology and mortality (44, 117, 119, 120). Furthermore, it was
shown that hepatosplenic schistosomiasis in human patients is
associated with increased levels of TNFα and IFNγ, while type 2
cytokines are reduced (121).

IL-17-producing Th17 cells have also been implicated in
schistosome granuloma formation as IL-17 levels in susceptible
and resistant mouse strains correlated with granuloma formation
(122). This has been shown to be a direct effect on the IL-
23 and IL-1 release of DCs in response to SEA (123, 124). In
the context of the roles of egg glycans in immune priming,
theses pathological effects are mediated through the C-type lectin
receptor CD209a (125).

In the absence of Th1 cells (Tbet−/−) Th17 cells drive
exaggerated inflammation with an increase of neutrophil
infiltration into the granuloma, while the combined absence of
Th1 and Th17 cells led to smaller granulomas with increased type
2 biased infiltration of M2 macrophages and eosinophils (126).

Regulatory T cells expand during the chronic stage
of S. mansoni murine infection and are present in
S. mansoni infected patients (127–129). It has speculated
that immunosuppression by Treg cell by the release of IL-10 and
TGFβ may limit tissue pathology toward trapped eggs during
infection (130–132).

The role of B cells and antibodies in S. mansoni infection of
mice has been extensively investigated. While B cells were found
to be involved in the development of Th2 polarization, their
role in granuloma formation is still not entirely clear (133–135).
Antibodies specific for SEA arise after egg deposition and expand
throughout infection (136) and multiple studies have shown
regulatory roles of antibodies in granuloma formation (137–139).
Interestingly, immune complexes of chronically infected patients
were capable to inhibit granuloma formation in vitro (140).
Indeed, infection of Fc-receptor deficient mice (γ or ε) led to
the formation of larger and collagen-rich granulomas (138, 139),
suggesting regulatory potential of Fc-bearing effector cells within
the granuloma or sequestration of egg antigens. Whether this
process is involved in the maintenance of intestinal granulomas
remains to be investigated.

Identification of regulatory B (Breg) cells in response to
schistosome eggs (141) and their production of IL-10 in response
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to the schistosome glycan LNFPIII (142, 143) led to subsequent
studies using live S. mansoni infections (144–146). Indeed, α1
drives the expansion of Breg cells (147). Because Bregs arise late
during chronic infection it seems unlikely that they contribute
to the natural intestinal granuloma formation facilitating egg
excretion and rather may contribute to limit chronic intestinal
inflammation.

The functions of the tuft cell as IL-4Rα-expressing IL-13-
responsive cell type in the intestine has been described during
gastrointestinal nematode infections (148–150). Whether these
cells contribute to the intestinal granuloma formation by their IL-
25 release or facilitate the egg excretion process during S. mansoni
infection has not been investigated.

Taken together, egg excretion through the intestinal wall can
only be achieved in the presence of a Th2-biased granulomatous
inflammation. All cells described here take part in the shaping
of the intestinal granuloma and may therefore influence Th2
polarization, toxicity protection and promote or inhibit egg
excretion. While the roles of CD4+ T cells and macrophages is
well-understood, more research is required focusing on other
immune cells function in intestinal granulomas.

Yet, the question remains: What drives the egg+granuloma to
transit from the endothelium toward the epithelium?

Stage III. Transition Through the Lamina
Propria Is Achieved by Toxic Effects and
Displacement
The mechanism of how the viable egg transits through the
intestinal lamina remains elusive, however, some findings suggest
a role for the developing granuloma, extracellular matrix
degradation, and schistosome egg antigens.

Recently, the collagen, fibronectin and plasmin contents
of intestinal granulomas have been investigated (151).
After extravasation, fibrinolysis can be observed around the
biologically successful eggs, i.e., those that will achieve egg
excretion, in contrast to trapped eggs that are not excreted
(Figure 3). Plasma fibronectin is part of the blood clotting
and wound healing response and it was recently found that
S. mansoni is able to express extracellular tegumental calpains
that cleave fibronectin (152). Fibronectin was also found in
early granulomas, while chronic granulomas are collagen-rich
(30, 153). Eggs also express SmCalp1 and may actively contribute
to the fibronectin degradation (152). Further, SmEnolase, is
highly expressed by eggs, and is able to promote plasminogen
activation (69). Plasmin degrades fibrin and fibronectin–among
other targets–and thereby contributes to the degradation of
extracellular matrix proteins. Indeed, a striking difference
exists between hepatic and intestinal granulomas with regard
to perioval fibrin and fibronectin deposition (151). While they
were found in 23 and 77% in hepatic granulomas, respectively,
only 3 and 11% were positive in the intestine. Viable eggs
actively degrade fibrin and fibronectin, therefore the increase
of these ECM components in hepatic eggs might stem from
the increased proportion of dead eggs. However, as the data
set is limited, in-depth investigation of the plasmin, fibrin,
fibronection, and collagen content of intestinal granulomas is

warranted. Fibrinolysis and plasmin around eggs could be a
result of macrophage invasion or proteolytic activity of the eggs.
At the moment, it remains unclear what the exact order of events
in fibrin and collagen deposition, plasminogen activation and
fibrinolysis is and thus a more detailed investigation is required.

While collagen deposition leads to immunopathology in the
liver, collagen degradation may be more important in intestinal
granulomas. Eight weeks after infection the collagen content
in hepatic granulomas is already significantly increased but
only minimal deposition is observed in the small intestine and
even less in the colon (154). While collagen content increased
over time in all three organs, in intestinal granulomas collagen
marks chronic granulomas–and therefore trapped eggs (153).
Furthermore, collagen structure appeared concentric in the
liver while a discontinuous deposition was observed in the
intestine (154). While eggs themselves were not able to degrade
collagen in vitro (155), egg-activated plasmin may contribute
to collagen degradation. Furthermore, M2-like macrophages
can degrade collagen in a mannose receptor-dependent manner
(156). Additionlly, manymatrixmetalloproteinases are expressed
during S. mansoni infection with elevated expression of MMP-
2, MMP-3, and MMP-8 transcripts in the colon of chronically
infected mice (157), all of which possess collagenase activity.

While this array of ECM-degrading mechanisms may
promote the movement through the lamina propria–but where
does directionality come from? One possibility is that the influx
of immune cells follows the egg through the initial crossing of
the endothelium. Therefore, the granuloma first develops basally
at the egg. The first cells may shield from the cytotoxic effects of
the SEA, while SmEnolase and calpains exert their effects apically
and degrade the ECM in front of the egg. Over time, macrophages
will surround the egg and become activated by IL-4 and SEA to
promote collagen degradation. It was shown that excretion is a
relatively quick process compared to the development of liver
fibrosis (158), therefore collagen deposition may occur only at
the rim or basally of the granuloma to maintain the surrounding
tissue architecture, while the apical ECM is degraded and more
cells and fluid infiltrates from the basal side displacing the egg
forward toward the epithelium. Simultaneously, cells around the
egg succumb to the cytotoxic effects of IPSE/α1 and ω1. If the
cells infiltrate from the basal side of the granuloma the cells at
the apical side are more exposed to the cytotoxic molecules and
therefore the first to die from necrosis. Further studies using
intravital microscopy approaches are required to get more insight
into the mechanisms by which the granulomas move the egg
through the intestinal wall.

Another possibility is that because eggs are more or less
deposited at the same site in the vasculature and often more
than one egg is found in a granuloma, the intestinal tissue may
develop an ill-defined “tunnel” structure with more collagen,
fibrin and fibronectin deposition at the “tunnel wall,” while the
inner tissue has a less rigid composition from repeated ECM
degradation. Peristaltic movement of the bowel may also play a
supportive role in moving the egg+granuloma along the beaten
path. However, to date there is no experimental data available
to support this theory, mainly because the larger granulomas
surrounding unsuccessful eggs trapped in the intestinal wall may
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gain more attention and are more similar to what we expect from
the research on hepatic granulomas than smaller successful egg
granulomas.

Stage IV. Release Into the Intestinal Lumen
The process of actual release of the egg after transit through
the intestinal wall into the gastrointestinal lumen has not–to our
knowledge–been addressed in detail experimentally. The parasite
eggs that are found in the feces of infected humans, as well as
experimental mice, are devoid of an encapsulating granuloma
suggesting that the egg leaves the granuloma as it enters the
fecal matter. This poses the questions: How does it leave the
granuloma? What happens to the remaining granulomatous
tissue in the intestinal epithelia? A possible mechanism of
granuloma resolution may be interaction of microbiota and the
immune cells at the outer rim of the granuloma that come
in direct contact with the mucous layer and get successively
destroyed concomitant to the cytotoxic and fibrinolytic effects
mediated by the egg and its secretions. Whether the composition
of the mucus layer affects the survival of schistosome eggs is
currently unclear. After the egg is released the remaining cells
in the granuloma will likely be resolved as part of the intestinal
wound healing response, where the already present macrophages
may contribute to (Figure 3). Clinically, the colonic mucosa
becomes atrophic and acquires a granular yellowish appearance
(159), which are probably macrophages from the granulomas
shed with tissue remodeling.

One complication observed in patients is the occurrence
of colon polyps that are shed and cause intestinal bleeding
(160). Probably this may happen when unsuccessful trapped eggs
become calcified, losing their fibrinolytic potential and leading to
chronic granulomas as seen in the liver.

Microbiome Influences on Egg Excretion
In recent years it became increasingly understood that the
microbiome composition will impact on the outcome of
most immune responses (161) and perturbations of this
complex system may lead to detrimental consequences
for the hosts health (162–164). A significant alteration
of the microbial communities that impacts on the hosts
immune response has been shown for gastrointestinal
helminth infections with Heligmosomoides polygyrus
(165), Trichuris muris (166), and Trichinella spiralis
(167).

With respect to S. mansoni infection one study found that
the absence of gut microbiota through the administration of
antibiotics alters the immune response against S. mansoni (168).
Further, intestinal inflammation was significantly reduced in
antibiotics treated mice and fecal egg secretion was impaired. As
the microbial translocation in immunocompromised mice will
only occur after the first eggs have traversed the intestine–or at
least entered it to compromise the integrity of the gut barrier–
the importance of the microbiome composition for egg secretion
itself becomes evident. In infected humans, while one study
failed to find statistically significant differences (albeit a relatively
small cohort size) between the microbiome composition of
non-infected, S. mansoni-infected and praziquantel-treated

children (169), it has to be noted that another study found
significant differences in S. heamatobium-infected children
(170).

For future studies it would be interesting to infect
germ free or gnotobiotic mice to further investigate the
impact of the microbiome during schistosome infection on
the immune response or to comprehensively analyze the
microbiome composition of infected mice and perform fecal
transplantation experiments.

CONCLUSION AND FUTURE DIRECTIONS

Research over the past decades has uncovered many fascinating
facets of Schistosoma mansoni biology and the host immune
response against both worms and eggs. The immunology of
egg granuloma formation has been extensively investigated
due to its central role in S. mansoni infection-associated
immunopathologies. We previously posited on helminth
immunobiology that despite such discoveries, there are many
unknown unknowns yet to be not only identified but also to be
experimentally investigated (171). Indeed, the processes involved
in the granulomas evolutionary role in facilitating egg transit
through the intestinal wall is still relatively unclear. With more
sophisticated approaches, lessons learned from studying the
hepatic granulomas, and ever more transgenic mouse models
together with translational studies, the mechanism of egg transit
may finally be unveiled.

Novel techniques, such as the injection directly into the
epithelium will greatly improve our understanding of the
intimate processes happening in the formation of a functional
egg granuloma within the intestine (29). However, the initial
interaction of the egg with the immune system–when it
is deposited in the blood stream–will not be accessible
by this system. High-resolution ultrasonography has been
recently shown to be applicable for noninvasive time-course
observations of hepatic lesions in S. japonicum infection in
mice (172). Furthermore, the development of other noninvasive
techniques, such as small-animal PET-MRI or intravital 2-
photon microscopy may be helpful tools to study early events
of granuloma formation, as undertaken in the liver (173).
Furthermore, the manipulation of S. mansoni eggs by lentiviral
transduction, as it has been shown for ω-1 knockdown
(174), will make noninvasive observation techniques more
powerful. Identification of immune-modulation egg products
has also been facilitated by the fact that the cost and
availability of core facilities for transcriptome sequencing
became feasible (175) and “omics” data is made available
at WormBase ParaSite (176). Using the lentiviral knockdown
model or schistosome egg-antigen coated beads (177, 178)
either in vivo or in in vitro models, such as intestine-on-a-
chip (179), intestinal organoid cultures (180), or other novel
models (181, 182), are potential approaches to provide new
insights.

Future studies on this unique S. mansoni immune dependent
“eggs-cretion” process will reveal novel insights on the host-
pathogen-interface that will impact on our understanding of
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fundamental functions of the immune system in both health and
disease.
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