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Primary immunodeficiencies (PIDs) are a heterogeneous group of inherited disorders

affecting one or multiple components of the innate and/or adaptive immune system.

Currently, over 300 underlying genetic defects have been discovered. The most

common clinical findings in patients with PIDs are infections, autoimmunity, and

malignancies. Despite international efforts, the cancer risk associated with PIDs, given

the heterogeneous character of this group of diseases, is difficult to estimate. The diverse

underlying mechanisms of cancer in PID add another layer of complexity. Treatment of

cancer within a context of PID is complicated by serious toxicities and long-term effects,

including second malignancies. This review will focus on the little-known crossroad

between PID and cancer genes and the value thereof for directing future research on our

understanding of cancer in PID and for the identification of early cancer biomarkers in

PID patients.
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INTRODUCTION

Integrity of the immune system is crucial in the defense toward infectious organisms
and surveillance on deviating cellular transformations, i.e., development of cancer. Primary
immunodeficiency diseases (PIDs) constitute a heterogeneous group of life-threatening heritable
genetic disorders in which parts of the human immune system are missing or dysfunctional (1). Per
definition, PIDs are thus characterized by an increased susceptibility to infections, autoimmunity,
inflammatory organ damage, and malignancy (2–4). During the last two decades, driven by
technological advances in next-generation sequencing, progress has been made in defining the
genetics of PID (5). Nowadays, more than 300 PID-causing genes are reported (6), classified into
eight categories based on the affected immune function.

An increased risk for malignancy in PIDs has been recognized for many years (7–11). Moreover,
the presence of a “malignancy” has been acknowledged as a diagnostic criterion for some PIDs
by the European Society of Immunodeficiencies (ESID) (https://esid.org) and malignancy is the
second leading cause of death in PID patients. In general, an excess of cancer risk in PID
patients compared with an age-adjusted population is observed for all cancer types. As “common
variable immunodeficiency” (CVID) is the most common PID subtype, incidence results are
often focused on this subgroup, revealing a higher incidence for lymphoma and an association
with stomach and skin cancer. This increased risk is likely multifactorial and related to viral
infections and/or sustained activation and proliferation during chronic infections causing genetic
instability in lymphocytes (12, 13). The enhanced risk for gastric cancer has been attributed to
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Helicobacter pylori infection, although the exact mechanisms
are still unknown (14). Cancer incidences for other PID
subtypes are not well-defined, but associations were noted for
lymphoma, gastric cancer, skin cancer and/or leukemia in Ataxia
Telangiectasia (AT), “diseases of immune dysregulation” and
“other well-defined immunodeficiency syndromes” (8, 9, 14–16).

The most commonly accepted theory to explain an enhanced
cancer risk in PID patients is based on the reduced cancer
surveillance caused by PID mutations (17, 18). This view has
recently been challenged (12) and it must be considered that PID
genetic defects per se alter the risk for malignant transformation
through a direct oncogenic effect, exemplified by DNA repair
disorders. In addition, PID genes cause altered T- and B-cell
functions through impaired V(D)J recombination, class switch
recombination and somatic hypermutation, causing chronic viral
infections and inflammation (19). Similarly, researchers have
shown that Natural Killer T (NKT) cells might play a major
role in tumor development in a genetic background susceptible
to carcinogenesis (20), as it has been observed that loss of
type 1 NKT cells enhances tumor development in p53+/−

mice and secondly, NKT cells protect against B-cell lymphoma
development in mice (20, 21). A comprehensive overview of the
mechanisms that may explain the enhanced risk of cancer is out
of scope of this review, and has recently been documented by
Hauck et al. (13).

Within this review, we provide a synopsis on the current
knowledge about the genetics of malignancies in PID. In
addition, we will elaborate on the presence of a largely ill-
explored intersection between PID and cancer genes and
the importance thereof for guiding future research on our
understanding of cancer in PID and for the identification of early
cancer biomarkers in PID patients.

INTERSECTION OF PID AND CANCER
GENETICS

The study by Neven et al. is unique in extensively documenting
molecular and immunophenotypical resemblance between
lymphomas in patients with IL10 and IL10R loss-of-function
mutations (causing severe early-onset inflammatory bowel
disease) and germinal center B-cell diffuse large B-cell
lymphoma (GCB DLBCL) (22). Although typical DLBCL
mutations were observed (including the mutation p.S219C in
MYD88), mutations in histone and chromatin modifying genes
were completely absent, in contrast to classical DLBCL (22).
Additional gene expression profiling revealed some similarities,
but also enriched expression of spliceosome pathway genes and
genes involved in ubiquitin-mediated proteolysis was present in
PID-associated, but not sporadic, DLBCL.

Although broad biological insights into the pathogenesis and
characteristics of PID-associated cancers remain scarce, it is
notable that many key molecules going awry in PID, have been
mentioned independently in the context of carcinogenesis. In
order to strengthen these observations, we have visualized the
intersection of PID-causing genes (https://esid.org) with true
cancer genes (https://cancer.sanger.ac.uk/census) and cancer

predisposition genes (23) (Figure 1). It is important to note that
different mutations in the same gene can lead to varying clinical
phenotypes. There is a need to characterize the mutational
landscape in sporadic cancer compared to PID-associated cancer
and additionally in PID patients with a high cancer risk compared
to those with a low risk.

PID AND CANCER PREDISPOSITION
GENES

Interestingly, several well-known PID genes are also recognized
as cancer predisposition genes, such as GATA2 and BLM. GATA2
is a key transcription factor required for the development
and maintenance of hematopoietic stem cells. The phenotype
of GATA2 mutations comprises MonoMAC syndrome (PID
associated with disseminated non-tuberculous mycobacterial
infections) and familial myelodysplastic syndrome (MDS) (25–
27). However, one should note that mutations are documented
in different domains according to the clinical phenotypes:
MDS/Acute Myeloid Leukemia (AML)-associated mutations
are located in the zinc finger motif ZF2, whereas PID-
associated mutations mostly before ZF2. Positive testing of
germline GATA2 mutations in leukemia has profound effects on
clinical management, such as adapted prophylactic antimicrobial
management during therapy (27). Importantly, screening of
familial donors for GATA2 mutations is crucial in the procedure
for hematopoietic stem cell transplantation, the only available
therapy. Similarly, the BLM gene, coding for a DNA helicase
involved in DNA repair, has a well-described role in both
cancer predisposition and immunodeficiency (28). DNA repair
is crucial in the generation of B- and T-cell antigen receptors
through T-and B-cell-specific V(D)J rearrangements, class
switch recombination and/or somatic hypermutation. Defects
in BLM thus impair lymphocyte development, explaining the
immunodeficiency phenotype. In addition, through its role
in maintaining genomic stability, an increased cancer risk is
observed in these patients (12, 13, 28). FAS, ITK, RECQL4,
CDKN2A,WAS, SBDS,ATM,NBN, and POLE are other examples
of PID-causing genes involved in genetic cancer predisposition
(29–32).

PID AND CANCER GENES

Next to these well-known relations, Figure 1 also illustrates
that several cancer genes, not yet officially recognized within
predisposition panels, are also germline mutated in PIDs. As
PID is a hallmark of cancer predisposition, one might speculate
that several of the genes listed within the cancer gene list and
intersecting with the PID list are potentially undiscovered or
underexplored cancer predisposition genes (Figure 1). This is
obviously the case for genes such as IKZF1, TYK2, MYD88.
It indeed has been proven that several of the genes known
to be somatically mutated in cancer types (i.e., IKZF1 in
leukemia), are found to be germline mutated through i.e.,
familial cancer studies, and thus getting recognized as cancer
predisposition genes (33–35). This indicates that immunologists
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FIGURE 1 | Intersection between PID genes (https://esid.org) and the Cancer Gene Census (CGC), a catalog of genes which contain mutations that have been

causally implicated in cancer (https://cancer.sanger.ac.uk/census) (24), or Cancer Predisposition Genes (CPGs) (23). PID genes also listed in the CGC or as CPG are

indicated with a dot.

should acknowledge the possibility of an underlying cancer
predisposition in PID with those genes affected, while vice versa
oncologists should be triggered to evaluate a potential underlying
PID upon a novel cancer diagnosis.

Somatic defects in IKZF1, a hematopoietic zinc finger
transcription factor, have been linked to acute lymphoblastic
leukemia (ALL) for several years and have been proven to harbor
negative prognostic effects (36). Recently, IKZF1 mutations

have been identified in familial ALL and in the germline of
presumably sporadic cases. These mutations were dispersedly
distributed over the whole protein coding sequence and were
proven to be functionally damaging, even when not located in
one of the functional domains. In the index family, individuals
without ALL, but carrying the D186fs mutation in IKZF1, had
variable lymphopenia and low-normal IgG levels, albeit not
defined as immunodeficient (33). Remarkably, germline IKZF1
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FIGURE 2 | PID genes (https://esid.org) associated with high impact mutations in lymphoma, leukemia, brain tumors, and stomach cancer. Data was generated using

the International Cancer Genome Consortium (ICGC) Data Portal, a catalog of genomic abnormalities from over 20,000 tumor genomes (https://dcc.icgc.org/) (51).

Donor age at diagnosis was restricted to age categories with an increased risk for PID-associated malignancies (0–59 years) (8, 11). PID genes with high impact

mutations found in lymphoma, leukemia, brain tumors, and/or gastric cancer are indicated with a dot.

mutations within the ZF2 DNA binding domain were reported
to be associated with an early-onset CVID (37). Similarly, an
intersection between PID and cancer genetics can be observed
for mutations in several of the JAK-STAT signal pathway genes
(STAT3, STAT5B). Indeed, somatic mutations in STAT and JAK
family members have been recognized as important drivers
in oncogenesis, especially in different leukemia types (38–40).

In addition, germline mutations in JAK-STAT signaling are
associated with PIDs. Notably, the PID phenotypes depend on
the affected gene and mutation, ranging from mild phenotypes
involving TYK2, a moderate hyper-IgE syndrome for STAT3
and severe combined immunodeficiency (SCID) in case of JAK3
mutations (41). It is only recently, that mutations in TYK2, a JAK
kinase family member, were found in the germline of patients
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presenting with a second primary leukemia, causing constitutive
JAK signaling and a propensity for developing leukemia (42).

Also, for MYD88 a role in immunodeficiency and cancer
development has been shown. MYD88 deficient animals
have an increased risk of gastric cancer upon challenging
them with H. pylori (43). In humans, deficiency in MYD88
results in impaired TLR signaling (44, 45). These patients
have recurrent invasive infections (cellulitis, sepsis, meningitis,
osteomyelitis), mainly caused by Staphylococcus aureus and
Streptococcus pneumoniae. In addition, MYD88 is found to
be mutated in several hematologic B-cell malignancies, as
Waldenström macroglobulinemia, DLBCL and IgM monoclonal
gammopathy (46).

OTHER PID GENES

Importantly, it has to be recognized that several important
gaps need to be filled. This is illustrated by the involvement
of the CTLA4 in both cancer and PIDs (47–49). Indeed, a
survey of 131 affected CTLA4 mutation carriers shows a cancer
prevalence of 12.9%, mainly lymphoma, gastric adenocarcinoma
and metastatic melanoma (50). Nevertheless, CTLA4 has not
been mentioned in the cancer census gene list.

Subsequently, we visualized the intersection between PID
genes and genes published to be somatically mutated in
lymphoma, leukemia, stomach cancer and brain tumors
(Figure 2). Notably, mutations found in lymphoma are clearly
enriched in PID genes involving “primary antibody disorders”
(PADs) and “diseases of immune dysregulation,” and less
frequent in “defects in innate immunity.” Although differences
are smaller, fewer somatically mutated genes can be observed in
PADs and “phagocytic disorders” for lymphoma, and in PADs
and “defects in innate immunity” for brain tumors. Of note is the
high intersection between PID genes and genes mutated in brain
tumors (Figure 2). The high level of intersection might partially
result from the observation that hypermutation is especially
found in brain tumors, specifically theH3.3 orH3.1 K27-wildtype
high-grade gliomas with biallelic germline mutations inMSH6 or
PMS2 (52).

DISCUSSION

The diagnosis and management of cancer in PID patients is
cumbersome. Guidelines and techniques for cancer screening
within PID are ill-defined and should be evaluated in large
international study cohorts. Although our understanding of the
mechanisms of cancer development in PID is increasing, the
genetic and molecular characteristics of cancers in PID patients
remain uncovered. Here, we show that several PID genes are
recognized as cancer predisposition genes. In addition, several
of the genes listed within the cancer gene list and intersecting
with the PID list are potentially undiscovered or underexplored
cancer predisposition genes. Although the specific mutations and
thus functional impact in both entities might be different, this
observation implies that both oncologists and immunologists
should be triggered to search for an underlying PID or potential

development of cancer, respectively. Importantly, many PID
genes might be candidates for further study in cancer research.

Improved understanding in cancer biology has led to
the development of immunotherapies. The contribution
of germline genetic factors is expected to be higher in
pediatric cancers (53, 54) and PIDs. One could question if
current immunotherapies might improve clinical outcomes
for pediatric cancer. However, studies have illustrated that
current inhibitory checkpoint immunotherapies are most
efficient for tumors with high mutational load, which is not
the case for most pediatric malignancies (55, 56). In this
respect, there is a need for novel targets, again highlighting
the importance of elucidating the genetics of PID-associated
cancers in children, which may contribute to novel targeted
treatment.

Importantly, efforts in creating awareness will be
crucial to obtain these goals. Together with increasing
technological advances (including i.e., testing cancer patients
on radiosensitivity), one could expect to see the number of PID
patients growing, especially if cancer is the first manifestation.
This increasing number unavoidably will impact our view on
the cancer landscape and incidence within PID. In addition,
PID patient registers should be established/maintained with
sufficient information on underlying genetic defects and
malignancies or, ideally, an intersection with a national cancer
registry. Furthermore, it is of utmost importance to improve
the collection of biological material of PID patients with
associated malignancy and perform “omic” studies to enhance
our knowledge on this specific disease biology, improve
on diagnosis and follow-up, and design newer therapeutic
options.

CONCLUSION

Despite international efforts, the cancer risk associated with PIDs
is difficult to estimate. Furthermore, treatment of cancer within
a context of PID is complicated by serious toxicities and long-
term effects, including second malignancies. Detailed molecular
studies are required to identify common and distinct molecular
pathways in PID-associated malignancies vs. sporadic cases and
in PID patients with a high cancer risk vs. those with a low risk.
These biological insights may allow early molecular recognition
of cancer in PID, optimization of existing therapies and the
development of targeted therapies, reducing toxicities within this
patient population.
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