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Pulmonary aspergillosis is a severe infectious disease caused by some members of

the Aspergillus genus, that affects immunocompetent as well as immunocompromised

patients. Among the different disease forms, Invasive Aspergillosis is the one causing the

highest mortality, mainly, although not exclusively, affecting neutropenic patients. This

genus is very well known by humans, since different sectors like pharmaceutical or food

industry have taken advantage of the biological activity of somemolecules synthetized by

the fungus, known as secondary metabolites, including statins, antibiotics, fermentative

compounds or colorants among others. However, during infection, in response to a

hostile host environment, the fungal secondary metabolism is activated, producing

different virulence factors to increase its survival chances. Some of these factors also

contribute to fungal dissemination and invasion of adjacent and distant organs. Among

the different secondary metabolites produced by Aspergillus spp. Gliotoxin (GT) is the

best known and better characterized virulence factor. It is able to generate reactive

oxygen species (ROS) due to the disulfide bridge present in its structure. It also presents

immunosuppressive activity related with its ability to kill mammalian cells and/or inactivate

critical immune signaling pathways like NFkB. In this comprehensive review, we will briefly

give an overview of the lung immune response against Aspergillus as a preface to analyse

the effect of different secondary metabolites on the host immune response, with a special

attention to GT. We will discuss the results reported in the literature on the context of the

animal models employed to analyse the role of GT as virulence factor, which is expected

to greatly depend on the immune status of the host: why should you hide when nobody

is seeking for you? Finally, GT immunosuppressive activity will be related with different

human diseases predisposing to invasive aspergillosis in order to have a global view on

the potential of GT to be used as a target to treat IA.
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GENERAL INTRODUCTION

The genus Aspergillus comprise different saprophytic fungal
species with a high environmental prevalence that, under
specific circumstances, might infect humans and other animals
causing different infectious diseases. Among them Aspergillus
fumigatus is a well-known human pathogen, responsible for
an important morbimortality in immunocompromised and
immunocompetent patients like cancer, transplanted, COPD and
critically ill patients (1–3). It causes several diseases including
invasive aspergillosis (IA), chronic pulmonary aspergillosis
(CPA) and allergic bronchopulmonary aspergillosis (ABPA) (4).

Among them IA is a common cause of mortality in patients
with hematological malignancies and it is an emerging problem
for solid organ transplant recipients, critical care patients and
those receiving immunomodulatory therapies, with mortality
rates ranging between 30 to 90% (1–3).

In order to colonize the host, A. fumigatus must use
different evasion strategies to avoid the host protective response.
These include physicochemical and anatomical barriers of the
respiratory track like enzymes, mucus or epithelial cells as well
as others that prevent spore and hyphae clearance by innate and
adaptive immune system. Among these strategies the production
of mycotoxins and other substances with immunosuppressive
activity has been the focus of extensive research during the last
years, although in most cases, the biological relevance of the
findings has not been completely clarified. In this short review
we will first summarize the main strategies used by the host to
fight Aspergillus within the respiratory track, focusing on cellular
innate and adaptive immune responses. Subsequently, we will
present the main mycotoxins and products of the secondary
metabolism with potential immunosuppressive activity. We will
pay special attention to Gliotoxin (GT) that has been shown to
affect a great variety of innate and adaptive immune responses
and act as a virulence factor in vivo in mouse models (5). Finally,
we will discuss unsolved questions and future directions to be
addressed on the field, with special attention in the potential
of immunosuppressive mycotoxins to exacerbate infection (act
as virulence factors) depending on the immunosuppressive host
status.

HOST LUNG IMMUNITY AGAINST
ASPERGILLUS

The respiratory system is formed by the upper respiratory tract,
nasal cavity, pharynx, larynx, the lower respiratory tract, trachea,
bronchi, bronchioles and the respiratory zone represented by
alveoli. To carry out gaseous exchange, the respiratory system is
exposed daily to thousands liters of air, introducing numerous
particles and potentially harmful microorganisms to the alveolar
surface (6). To avoid injuries and infections, the respiratory
tree has various defense mechanisms such as cough and the
mucociliary transport system, formed by four major cell types
that produce a physico-chemical barrier against microorganisms,
including ciliated cells, mucus-secreting cells and basal cells (7).
Nevertheless, if the potentially harmful microorganisms manage

to overcome these elements, the bronchial tree still presents
different defensemechanisms consisting of solublemolecules and
humoral and cellular factors belonging to the innate and adaptive
immune system.

Inhalation of Aspergillus spp. conidia is very frequent, because
Aspergillus species are found in decomposing vegetation, soil,
water, food and air. However, immunocompetent individuals are
capable to eliminate Aspergillus conidia by different immune
mechanisms, preventing germination and fungal growth (8, 9)
(Figure).

Innate Immune Response Against
Aspergillus
Resident alveolar macrophages (AM) and epithelial cells interact
with germinating Aspergillus spores in the lung. These cells
recognize pathogen-associated molecular patterns (PAMPs)
present in fungal surface like galactomannan and β-1,3-
glucan among others, through pathogen-recognition receptors
(PRR) such as Toll-like receptors (specially TLR-1,−3,−4,
and-6), the C-type lectin receptor-Dectin-1 (9) or Nod-like
receptors (10). Aspergillus recognition leads to the generation of
proinflammatory cytokines like IL-1α, IL-1β, TNF-α, IL-8, and
MIP-1α by activation of the NFkB and inflammasome pathways
(10–12).

AM are also capable of eliminating directly conidia and
initiate an inflammatory response to fungal infection.
AM phagocytose conidia and kill them using different
mechanisms including acidification of the phagolysosome
and activation of antimicrobial enzymes (cathepsin D and
chitinase), and the production of reactive oxygen species (ROS)
(13, 14). Chemokines and proinflammatory cytokines act as
chemoattractants and activators for other immune cells including
neutrophils, Natural Killer and T cells that will arrive to the
infected site to fight infection and prevent host colonization. The
role of these receptors and cytokines in humans mainly proceed
from studies showing a higher risk of IA in patients presenting
Singe Nucleotide Polymorphisms (SNPs) for these genes (15, 16).
Paradoxically, others like NOD2 SNP, decrease the risk of IA in
Stem-Cell transplanted (SCT) patients (17).

After epithelial cells and resident AM initiate the
inflammatory response, neutrophils are among the first cells
arriving at the infected site. These cells have also been found to be
critical during the immune defense against Aspergillus spp. both
mouse models and humans. This role was mainly characterized
in patients treated with neutropenia-inducing drugs as well as in
those presenting mutations in molecules involved in neutrophil
activity like NADP oxidases (18). Neutrophils are attracted to
the site of infection by chemokines and cytokines, especially IL-8
and IL-17, albeit as indicated below, the role of IL-17 during IA
is not clear (19–23). Apart from enhancing the inflammatory
response by producing cytokines and chemokines, these cells
can directly phagocyte and kill the fungus by the production
of ROS and antimicrobial compounds (24). Neutrophils have
another antifungal mechanism, the neutrophil extracellular
traps (NET). NETs are formed when neutrophils release DNA,
histones, and granular proteins, including calprotectin and PTX3
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into the surrounding environment after autolysis, avoiding
the progression of infection (24). Indeed, a recent study has
shown that Stem Cell transplanted patients with a SNPs in PTX3
present a higher risk of IA (25). The role of NET formation
in IA has also been demonstrated in patients with chronic
granulomatous disease who received a gene therapy to restore
NET and may resolve a preexisting pulmonary aspergillosis
(26). Activated neutrophils also amplified immune response
producing cytokines like IL-12 and IL-18 (24).

AM and neutrophils express cytokines and chemokines that
attract antigen-presenting cells (APC) like dendritic cells (DC)
and monocytes from the blood and surrounding tissues to the
infection site. DCs link innate and adaptive immune response
to fungal infection (27). They are a heterogeneous population
characterized by the expression of different specific surface
markers. Three main groups have been established: conventional
DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived
dendritic cells (moDCs). DCs are responsible for capturing,
processing and presenting antigens associated to HLA-I/-II
(MHC-I/-II) to CD8+ and CD4+ T cells, respectively, in the
lymph nodes. This interaction leads to the generation of CD4+

Th-1, Th-2, Treg or Th17 subsets that regulate different immune
responses. DCs also provide co-stimulatory signals (CD86,
CD80) and secrete IL-12, a cytokine necessary for acquisition
of cytotoxic activity in CD8 T+ cells (28). DCs have also been
involved in NK cell activation during IA by the expression of
SYK and IL2RA (29). It has been reported that pDCs play an
important role in vivo during the control of infection, since its
depletion inmice increased susceptibility to IA (30). Intriguingly,
these authors also demonstrated that pDCs were able to directly
inhibit the growth of A. fumigatus hyphae.

During Aspergillus infection monocytes migrate to the lungs
where they differentiate into moDC. It has been demonstrated
that moDCs are important for the maintenance and development
of protective Th1 cell response against A. fumigatus (31).
Monocytes are capable to recognize PAMPs in conidia and
hyphae during A. fumigatus infection increasing the expression
of several cytokines and chemokines. It has been recently
described a new member of the C-type lectin receptor family,
MelLec, expressed by endothelial, epithelial and myeloid cells,
that recognizes DHN-melanin in Aspergillus conidia and is
critical for host protection in a mouse model of IA (32).
The relevance of these findings in humans was provided by
showing that a SNP in MelLec increased the risk of IA in SCT
patients.

In addition, it was found that monocytes may contribute
to thrombosis and local lung tissue injury during A. fumigatus
infection, increasing the expression of urokinase type
plasminogen activator (uPA), urokinase type plasminogen
activator receptor (uPAR), plasminogen activator inhibitor
(PAI), pentraxin-3 (PTX3) and intercellular adhesion molecule-1
(ICAM-1) (33). Some evidence indicates that Natural Killer cells
(NK cells) are involved in the control of Aspergillus infection. In
vitro studies have demonstrated that NK cells exhibit antifungal
activity against hyphal form of A. fumigatus but are not able to
exhibit fungicidal activity against conidia (34). Another study
reported that antifungal activity of NK cells against Aspergillus

was IFN-γ-mediated and was independent of their cytotoxic
mechanisms (35). In vivo studies have shown the important
role of NK cells during Aspergillus infection. In a mouse model
of Aspergillosis in neutropenic mice it has been demonstrated
the beneficial effect of transference of NK cells (36). NK-cell-
derived interferon (IFN)-γ also contributes to control infection
activating macrophage-dependent fungal clearance mechanisms
(37). NK cells have been shown to interact with neutrophils. NK
cells activated by Aspergillus express TNF-α, IFN-γ and GM-CSF
which directly stimulate neutrophil activation (38). However, so
far it has not been identified any genetic deficiency, like Natural
Cell Receptors SNPs, linking NK cells with IA susceptibility in
humans, which would confirm such a role.

Other innate immune cells includingmast cells, basophils, and
eosinophils may contribute to fungal protection. The role of mast
cells in Aspergillus infection is poorly understood. An in vitro
study found that A. fumigatus hyphae induced degranulation
of mast cells via an IgE-independent mechanism (39). However
the biological relevance of this finding remains to be established
(40). The role of eosinophils in Aspergillus infection has been
established using mice that exhibit a selective deficiency in
eosinophils. These mice showed impairment in A. fumigatus
clearance and evidence of germinating organisms in the lung
(41).

Adaptive Immune Response Against
Aspergillus
The innate immunity response during Aspergillus infection
triggers the development of an acquired immune response
inducing the differentiation of CD4T helper cells into Th1, Th2,
Th17, or Treg cell phenotypes which contribute to IA protection.
However, the relative role of each subset is still a matter of
controversy.

Th1 cells may improve the antifungal activity of macrophages
and neutrophils in the site of infection throw the expression
of proinflammatory cytokines TNF-α and IFN-γ (42).
Furthermore, in healthy individuals it has been demonstrated the
predominance of Th1 response against A. fumigatus employing
peripheral blood (43). On the other hand, Th2 cells do not
seem to play a protective role during A. fumigatus infection. In
contrast, these cells may activate M2 macrophages and decreased
Th1 cell response, which could be detrimental in patients with
severe fungal infections (44). In contrast, in patients with allergic
bronchopulmonary aspergillosis (ABPA), A. fumigatus-specific
Th2 CD4+ T cells are predominant (45) and a recent work has
identified SNPs in genes related with Th2 responses like IL13 and
IL4R that increase ABPA susceptibility (46).

The role of Th17 cell response during A. fumigatus infection
is controversial. In a mouse model of A. fumigatus infection, it
has been reported that IL-17 and IL-23 do not play a protective
role due to its ability to negatively regulate the development
of Th1 cells and to affect the neutrophil antifungal activity in
vitro (19). Supporting this conclusion they showed that in vivo
blocking of IL-23 and IL-17 increased infection clearance (19).
In contrast, another mouse model of A. fumigatus infection
showed a protective role of IL-17. In this model, in vivo
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neutralization of IL-17 early during infection increased fungal
pulmonary burden (21). Concerning humans, it was found low
frequency of IL17 producing cells and high frequency of IFN-
γ producing cells after Ag-stimulation of PBMCs from healthy
donors (22) or from patients with IA (23). Intriguingly, the last
work also found a marked induction of IL-10 producing cells,
which could modulate the generation of specific CD8+ T cell
activity among other responses. More recently, it was found
that meanwhile T cells from peripheral blood from IA patients
showed a Th1 IFN-γ producing profile, the majority of lung-
derived Aspergillus-specific T-cells displayed a Th17 phenotype,
and only low percentages of cells produced IFN-γ. However,
it has been shown that SNPs in the IFN-γ gene increases the
susceptibility to IA in SCT patients (16). These results indicate
that during A. fumigatus infection both Th1 and Th17 cell
responses may play an important role in host immunity.

Treg cells may play a protective role during A. fumigatus
infections modulating the exacerbated inflammation due to a
strong Th1 response in early stage of A. fumigatus infection as
well as hypersensitivity reactions associated with Th2 responses
in later stages (47, 48).

CD8+ T cell response may play a protective role during A.
fumigatus infection. In a mouse model of A. fumigatus infection,
it has been observed an increment of IFN-γ-producing CD8+ T
cells in bronchoalveolar fluids of mice repeatedly challenged with
A. fumigatus conidia with the maintenance of airway memory
phenotype CD8+ T cells (49). However, functional evidences of
such role were not investigated.

IMMUNOSUPPRESSIVE ACTIVITIES OF
ASPERGILLUS SECONDARY
METABOLISM

Aspergillus species produce a large number of secondary
metabolites that are not critical for its life cycle, but confer
competitive survival advantages. These metabolites include
aflatoxins, naptho-γ-pyrones, ochratoxins, cyclopiazonic acid,
fumonisins, patulin, gliotoxin, kojic acid, malformins, emodin,
bicoumarins, csypyrone B1, DHBA, nitropropionic acid,
aflatrem, ophiobolins, etc. Many of these compounds exhibit
interesting biological properties like antibiotic, anti-carcinogenic
or anti-inflammatory activity (50). Thus, Aspergillus spp. are
used as biological factories with a great range of applications in
food, textile or pharmaceutical industry.

Within these metabolites, mycotoxins have focused
special attention due to its toxicity, carcinogenic and/or
immunosuppressive activity for both humans and livestock.
Among them, fumifungin, fumiquinazoline A/B and D,
fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and
verruculogen are found in A. fumigatus, being gliotoxin (GT) the
most abundant and best characterized mycotoxin produced by
A. fumigatus (51).

In Table 1 the main secondary metabolites and mycotoxins
with immunosuppressive activity are summarized, including
the main Aspegillus spp. producing them and the effect on
host immunity. Notably, aflatoxins, ochratoxin, and gliotoxin
are the most extensive studied and, thus, for which more

immunosuppressive activities have been described. It is worth
to note that in all cases these compounds mainly affect
innate macrophage and neutrophil responses, especially the pro-
inflammatory response, highlighting the importance of these cells
in the elimination and prevention of Aspergillus infection as
described above.

In several cases the immunosuppressive activity of these
compounds has been related to its toxicity against immune cells
like some aflatoxins, ochratoxin, gliotoxin or sterigmatocystin.
Ochratoxin A is toxic for several immune cells in vitro as well
as in vivo in different animal models, causing the reduction in
the size of different immune organs including spleen, tonsil or
lymph nodes (52). Sterigmatocystin has also been described to be
toxic for dendritic cells causing a reduction in its number in vivo
(66, 67).

More interestingly, other mycotoxins can affect different
immune responses at a concentration that do not cause cell
toxicity. For example, citrinin and aflatoxin B1 inhibit NO
production in macrophages without cell death (53). As indicated,
a common feature of most of these compounds is its ability to
inhibit inflammatory cytokine production by macrophages by
blocking differentmechanisms like TLR expression, RIG orNFkB
activation, all of which are involved in the synthesis of cytokines
following a pro-inflammatory stimulus (Table 1). Thus, some
of them like gliotoxin or emodin have been proposed as anti-
inflammatory agents to treat different pathologies like septic
shock or colitis in mouse models (64, 65, 74). However, its
application for humans is still pending andmight be very difficult
due to likely secondary toxic effects, unless they are formulated in
compositions that allow local selective delivery in affected tissues.

In addition to macrophages, patulin has been shown to
directly affect T cell responses, affecting the polarization
between Th1 and Th2 by a mechanism dependent on
intracellular glutathione (59). Fumonisin prevents dendritic cell
maturation and antigen presentation, blocking antigen-specific
T cell responses (52). Thus, fumonisin exposure might cause
specific T cell immunosuppression and enhance susceptibility
to intracellular pathogen infections like viruses, although this
hypothesis has not been tested yet.

Finally, some of them might regulate very specific processes
like malformin, that has been shown to inhibit IL-1β activity
by preventing IL-1β binding to its receptor (75). Indeed,
Malformin is commercialized as a specific IL-1β inhibitor.
Since inflammasome activation and IL-1β production are critical
for initiation of innate and adaptive immune responses, this
compound could regulate a broad range of immune responses,
including intracellular and extracellular pathogens. Concerning,
inflammasome activity and IL1 production Emodin has been
shown to inhibit inflammasome activation mediated by ATP and
to prevent LPS-mediated septic shock in animal models (64).

IMMUNOSUPPRESSIVE ACTIVITY OF
GLIOTOXIN

Despite the immunosuppressive properties described for several
mycotoxins, as shown in Table 1, GT is the one that affects a
wider variety of immune responses. This is likely because it has
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TABLE 1 | Main secondary metabolites from Aspergillus spp. presenting immunosuppressive activity.

Metabolite Aspergillus spp. Affected immune function References

Aflatoxins A. flavus, A. parasiticus, A. niger Macrophage

Neutrophil

Cytokine production

T cell number

(52–57)

Ochratoxin A A. niger, A. ochraceus, A.

carbonarius, A. alliaceus, A.

sclerotiorum, A. sulphureus, A.

albertensis, A. auricomus, A. wentii

Immune organ reduction

Ab production

Cytokine production

T cell death

(52)

Fumagillin A. fumigatus Neutrophils (58)

Fumonisins A. niger Dendritic cells(Ag presentation

Th1/Th2 balance

Macrophage/ Cytokne production

(52)

Patulin A. clavatus Macrophage/ Cytokne production

T cell/ Cytokne production

(59–61)

Citrinin A. carneus, A. terreus Macrophage / cytokine production

T cell/ Cytokne production

(53, 60, 62, 63)

Malformins A. niger IL1b activity (48)

Emodin A. ochraceus, A. wentii Macrophage/Cytokine production (64, 65)

Sterigmatocystin A. nidulans, A. versicolor, A. flavus T regulatory cell increase

Dendritic cell reduction

Neutrophil/NADPH oxidase

(66, 67)

Cytochalasins A. clavatus Macrophage phagocytosis

Neutrophil/phagocytosis/chemotaxis

T cell/activation

NK cell/activation

(68–70)

Gliotoxin A. fumigatus, A. flavus Macrophage and monocytes / phagocytosis, cytokine

production

Neutrophil / NADPH oxidase, phagocytosis, migration

Eosinophil / apoptosis

Mast cell / degranulation, cytokine production

Dendritic cell / Maturation, Ag presentation

T cell / activation

NK cell

Immune cell / apoptosis

(71–73)

been themost extensively studied and characterized, since it is the
most abundant mycotoxin produced by A. fumigatus, the main
Aspergillus spp. causing IA.

One the main structural features of GT that regulates
its biological activity, including toxicity (cell death) and
immunosuppression, is the presence of a disulphide bond,
conserved in most members of the epipolythiodioxopiperazine
(ETP) family (76). GT can bind and inactivate proteins through
cysteine residues and generate ROS thanks to the disulfide bridge
present in its structure. It is believed that the generation of
ROS and activation of the mitochondrial pathway by Bak is
responsible for the toxicity of the GT (77) and is produced by
redox reactions between the oxidized (GT) and reduced form
(SH2-GT) (78). Morever, the entry of GT in tumor (71) and

immune cells (79) has also been shown to be dependent on the
presence of the intact disulphide bond.

Most of the studies presented below concerning GT activity
on specific cellular functions have been shown in vitro, although
it is well known that GT also exerts immunosuppressive effects in
vivo in mouse (80) and rat models (81). Indeed, it was suggested
as a potential immunosuppressive drug during organ and bone
marrow transplantation (82, 83). The mechanism involved seems
to be related, at least in the mouse model, with the ability of
GT to kill immune cells in spleen, thymus and lymph nodes.
However, depicting the effects of GT in vivo against specific cell
responses is challenging, and in most cases, it seems that they will
be a consequence of its pleitropism to affect most of the immune
responses involved in Aspergillus immunity (Figure 1).
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FIGURE 1 | Overview of the lung immune response against Aspergillus, indicating the main targets for GT-induced immunosuppression. Resident alveolar

macrophages (AM) and epithelial cells (EpC) interact with germinating Aspergillus spores in the lung by different PRRs (mainly TLRs, C-type lectin receptors/CLRs and

NLRs), activating the NFkB transcription factor mainly responsible of the synthesis of inflammatory cytokines and chemokines. In addition, AM are able to directly kill

phagocytosed spores in phagolysosomes. In response to inflammation, several cells are attracted to the infected site and activated like neutrophils (NF), monocytes

(Mo) and NK cells. NF are the first cells extravasating from circulation to the infection site, where they phagocytose and kill Aspergillus conidia and enhance the

inflammatory response. In addition, they are able to kill hyphae generated from conidia that have avoided AM, by releasing ROS produced by NADPH oxidase (Nox) as

well as to trap them in structures released when neutrophils die known as NETs. Other cells like circulating Mo and NK cells also contribute to Aspergillus clearance,

directly or by releasing cytokines that enhance anti-fungal activity of AM and NF. Meanwhile the innate immune response tries to eliminate Aspergillus conidia and

hyphae, interstitial immature Dendritic Cells (iDC) phagocytose conidia and hyphae and migrate to lymph nodes, where fully mature DCs present these antigens to

CD4+ Th and CD8+ T cells. Here depending on the nature of the Ag presented and the cytokines produced by DC, Th cells differentiate into the different subsets,

CD8+ T cells are activated generating cytotoxic T cells (Tc/CTL) and B cells transformed in antibody producing plasma cells. All these cells migrate to the site of

infection and contribute to the elimination of the fungus (Th1 and Th17 cells) and to avoid an exacerbated inflammatory response (Treg cells), by expressing cytokines

and ligands with different activities. As described in the text GT can interfere with host immune response at different levels. The most pronounced effect seems to be

related with its ability to block the inflammatory immune response of macrophages by direct killing or by inhibiting NFkB as well as phagocytosis. In addition, GT is

able to kill epithelial cells, and, thus, the fungus could potentially use GT to completely inhibit the generation of the immune response. However, it should be noted that

GT is only produced at the hyphae level, and, thus, AM and EpC will be able to activate the immune response, before hyphae are produced. At this stage NFs are

critical to eliminate hyphae and, GT has been described as a potent inhibitor of NOX as well as phagocytosis. Finally, GT would inhibit the adaptive immune response

at different levels, contributing to host colonization. From this scheme, it seems clear that the contribution of GT to Aspergillus infection will depend on the balance

between host immune activity and hyphae development.

Monocytes and Macrophages
In late ’80s the group of Arno Mullbacher in Canberra observed
in a culture of macrophages accidentally contaminated with
a mold that cells spontaneously detached from plates and
apparently, remained alive. Macrophages are known to be very
difficult to detach from plastic surfaces without killing them,
and, thus, the group decided to characterize the compound
responsible for this activity (84). They identified it as gliotoxin.
Subsequently they found out that it presented a variety
of immunosuppressive activity in vitro in macrophages by
preventing H2O2 production and bactericidal activity (85). And
in antigen presenting cells (APCs) including anti-phagocytic
and immunomodulating activity, preventing phagocytosis and
activation of T cell responses, including cytotoxic CD8+ T
cells (84). Notably, GT did not prevent T cell mediated
cytotoxicity once cells were activated, confirming that GT

modulated APC activation, preventing APC-mediated T cell
activation.

Later on it was shown that apart from its immunomodulatory
activity, GT was able to induce apoptosis in macrophages
(86) by a mechanism involving ROS production, caspase
activation and the intrinsic mitochondrial pathway in
mouse macrophages and human monocytes (87). GT
induces apoptosis in cultured macrophages via production
of ROS and cytochrome c release without mitochondrial
depolarization (88). Notably, this effect was not observed
in neutrophils, although it does affect its phagocytic
capacity (89). The ability of GT to kill macrophages has
been related to the inhibition of macrophage function
including phagocytosis and pro-inflammatory cytokine
production in response to Listeria monocytogens infection
(90) or LPS stimulation (62). Concerning the physiological
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relevance of these in vitro findings, it was shown that
the ability of GT to inhibit macrophage function in
vitro correlated with an increase replication of Listeria
in vivo (90).

It should be noted here that the biological effects of GT
on macrophage function, as well as against other immune
cells, could be dependent on the concentration. At high
concentrations most effects are related to the ability of GT to
kill immune cells, meanwhile at lower concentrations specific
immunosuppressive effects non-related to cell death could be
observed (85).

Concerning the effects non-related to cell death, GT is
a well-known inhibitor of NFkB activation in different cells
including macrophages, which blocks the production of pro-
inflammatory cytokines in response to different stimuli (81).
However, it should be indicated that it is not a trivial question
to find out a concentration that inhibits NFkB activation
and pro-inflammatory cytokine production in macrophages,
independently of GT-mediated killing, at least in mouse
macrophages (Unpublished data), which might affect the proper
interpretation of these findings. However, the relevance of these
findings in humans is not clear, since a recent study has shown
that SNP in different molecules of NFkB pathway do not increase
the risk of IA in SCT patients (91). Thus, in order to clarify
the role of GT-mediated NFkB inhibition during IA, studies
comparing NFkB activity during infection with GT producing
and non-producing A. fumigatus strains should be carried
out.

If confirmed in relevant in vivomodels, this finding could be a
key in order to confirm GT as a prominent immunosuppressive
virulence factor: blocking NFkBwould affect host immunity early
during infection, since this transcription factor is critical for
the generation of the inflammatory response after activation of
most PRRs involved in Aspergillus immunity including TLR and
CLRs.

Another mechanism by which it has been recently described
that GT affects macrophage phagocytosis is the interference with
IP3 metabolism, which affects integrin activation as well as actin
cytoskeleton remodeling, both of which are required for efficient
phagocytosis (92).

Neutrophils and Other Polymorphonuclear
Cells
Another key feature of GT, regarding its immunosuppressive
activity, is the ability to affect several neutrophil functions in
the absence of cell death. Here it should be noted that it was
described that GT was not cytotoxic for human neutrophils at
concentrations where monocyte/macrophages were readily killed
(89). Thus, it seems that in this cell type the effects observed
for GT can be clearly analyzed in the absence of cell death
contribution and, as discussed below neutrophil inactivation
might be the most relevant immunosuppressive function of GT
during IA.

The first report on the immunosuppressive effect of GT on
human neutrophil function was published when it was found
that H2O2 production was reduced after GT exposure (85).

Subsequently, a more detailed analysis of GT on neutrophil
function revealed that it affected ROS production, but, in
addition, inhibited phagocytosis. Notably, other functions like
degranulation or myeloperoxidase activity were not affected
(89). Inhibition of phagocytosis was confirmed by another
independent study (93). The molecular mechanism behind the
anti-oxidant activity of GT was solved in 2004, showing that GT
disrupted the formation of a functional NADPH oxidase complex
(94), a key finding concerning the ability of GT to interfere
neutrophil function, since NADPH oxidase is critical for host
protection against Aspergillus.

Intriguingly, it was shown that the effect of GT on neutrophils
could be completely different in the presence of corticosteroids
(89). In this case, GT increased ROS production in neutrophils
treated with methyl-prednisolone, commonly used in patients
at risk of IA, which could enhance inflammatory and tissue
damage in non-neutropenic patients, a process that has been
related with a high infiltration of neutrophils in lungs from
Aspergillus infected patients. Thus, the contribution of GT
during IA could be related not only to its ability to favor
immune evasion, but, in addition, to an exacerbation of
tissue damage induced by neutrophils in corticosteroid-treated
patients.

Concerning other PMN cells, it was reported that inhibition of
NFkB by GT increases eosinophil apoptosis mediated by TNF-α
(95). However, the role of this inhibition during the interaction
between host eosinophils and Aspergillus is unclear. On the
one hand elimination of eosinophils could favor Aspergillus
infection since these cells contribute to host defense against
Aspergillus. In contrast, it has been recently reported that death
eosinophils release NETs after interacting with A. fumigatus (96),
which might contribute to Aspergillus clearance, although this
hypothesis was not tested and remains to be solved.

NET formation is used by death neutrophils to trap
microorganisms, facilitating its clearance and favoring the
presentation of associated antigens by dendritic cells and the
generation of adaptive immune responses. Recently, it was
shown in a mouse model of pulmonary aspergillosis, that
neutrophil NADPH oxidase activity is critical for NETosis
and apoptosis during aspergillosis (97). Here it is tempting to
speculate that GT could interfere with NETosis and Aspergillus
clearance by inhibiting neutrophil NADPH oxidase, and thus,
affect the transition from innate to adaptive immune system
by reducing the amount of Ags available for DC uptake
and processing. However, before all these hypotheses are
experimentally addressed, the role of NETosis in Aspergillus
killing should be clarified since a recent study indicates that
NETosis is not a mechanism employed by human neutrophils to
kill Aspergillus hyphae (98).

Dendritic Cells, Antigen Presentation, and
T Cell Response
As indicated above, most immunosuppressive effects of GT have
been related to innate immune responses, specially macrophages
and neutrophils, in concordance with the key role of these
cells during Aspergillus infection. However, adaptive immune
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responses, like T cells, have also found to be important for
Aspergillus host defense by enhancing the activity of PMNs
and macrophages (CD4 Th1 responses). The relevance of T
cells in Aspergillus immunity has been shown in mice (99,
100) and human (101–103). Indeed, some patients undergoing
specific therapies affecting T cell function also show increased
susceptibility to Aspergillus infection, as in the case of solid organ
transplantation (104).

Ag presentation and DC function have been shown to be
modulated by GT by several independent groups, affecting
subsequent T cell responses. Again, as in the case of macrophages,
most effects seem to be related to the ability of GT to induce
cell death on DCs. GT was found to kill monocyte-derived
dendritic cells blocking Ag presentation and T cell activation,
suppressing CMV specific T cell responses (87). In agreement
with these findings it was also found that GT killed bone marrow
derived DC inhibiting IL12 production and the generation of
Listeria-specific CD8+ T cells (78). It was also found in vivo that
GT eliminated Langerhans cells (LC), a type of skin associated
DCs (105).

Apart from the ability to block T cell generation by affecting
DC function, GT is able to directly kill and/or inhibit different T
cell functions. Indeed, GT was shown to block NFkB activation
in B and T cells by preventing IkBα degradation (106) and later
on to kill CD8+ T cells, preventing cytotoxic T cell-mediated
cytotoxicity (90). In contrast, at non-toxic doses, GT did not
prevent CD8+ T cell function (107). Regarding cytotoxic T
cell function, it was reported that GT inhibited CTL-mediated
cell death by blocking granule exocytosis- and FasL-mediated
cell death (108). The mechanism proposed for this action was
the interference with CTL:target cell conjugation. Although
authors argued that this defect was not due to GT toxicity
on CTLs, from the results presented in that work it is not
clear whether GT induced cell death on CTL or not. Notably
this work contrast with previous findings indicating that GT
did not prevent T cell mediated cytotoxicity once cells were
activated (84).

In addition, GT has been shown to affect IFN-γ production
by CD4+ T cells (60) which might reduce the ability of CD4+

T cells to enhance macrophage and neutrophil activity against
Aspergillus.

Natural Killer Cells and Mast Cells
Other cells from the innate immune system in which GT might
have immunosuppressive activity are Natural Killer cells and
Mast cells, both of which have been suggested to be involved in
the control of Aspergillus infection (109).

However, meanwhile the evidences for a role of mast cells in
Aspergillus immunity are mostly based on in vitro findings, NK
cells have been shown to contribute in vitro (110) as well as in
vivo (111, 112). However, up to date GT has not been shown to
affect NK cell activity.

Concerning Mast cells, GT was shown to block both
FcE receptor-dependent and independent activation including
degranulation and lipid and cytokine production (113). The
mechanism involved was related to the ability of GT to produce
intracellular ROS in the absence of cell death.

Unsolved Questions and Future
Perspectives
Although some secondary metabolites, especially GT, can
contribute to infection and fungal colonization, as previously
indicated (Table 1) most studies have been performed employing
human and mouse in vitro cell models, and few in vivo
evidences indicate a role for these metabolites in immune
evasion and host colonization. An exception is GT, which was
shown to act as a virulence factor in vivo in mouse models
by employing A. fumigatus mutant strains genetically modified
to delete specific genes involved in GT synthesis, like GliP or
GliZ (5, 114–117).

However, a question that remains to be solved in humans,
albeit it has been addressed in mouse models, is the fact that
the role of GT as a virulence factor might be related to the
immune status of the host; specifically, the absence of host
immune cells that are targeted by GT in immunocompromised
patients. In the studies mentioned above the results indicated
that in mice treated with cyclophosphamide and corticosteroids,
a combination that induces neutropenia, GT was unimportant
for fungal virulence (114, 116). In contrast, in mice treated with
corticosteroids, which just inhibit neutrophil activity without
inducing neutropenia, GT synthesis significantly contributed to
virulence (5, 117). Although this explanation has been accepted
to reconcile the apparent contradictory results obtained in
different studies, it is not completely clear whether this is
the only difference to explain the contribution of GT to A.
fumigatus virulence. Indeed, in mice treated with vinblastine,
a chemotherapy drug that induces neutropenia, the mutant A.
fumigatus GliP strain that did not produce GT, was less virulent
than a wild type strain. However it should be indicated that
neutrophil levels were not determined in these mice, albeit
treatment was enough to promote infection (Pardo and Galvez,
unpublished data).

Thus, it will be required further studies to solve whether
GT only contributes to virulence in corticosteroid treated non-
neutropenic host or whether it can also worsen IA evolution by
affecting other immune cells involved in host defense such as
macrophages, NK or T cells. Here it will be very interesting to test
whether GT enhances virulence by promoting immune evasion
and/or by enhancing neutrophil-mediated inflammatory tissue
damage in corticosteroid-treated host as suggested (89).

In addition, GT could promote fungal invasion by affecting
epithelial and/or endothelial cell barriers. Indeed, GT has been
shown to kill lung epithelial cells in vitro (118). However, this
hypothesis will require further experimental evaluation in mouse
in vivomodels.

Concerning humans, it will be very difficult to confirm
whether GT actually contributes to virulence. Several groups
have reported that most A. fumigatus strains isolated from
humans are able to synthetize GT as well as the inactive
derivative bmGT (79, 119) suggesting that at least ex vivo
all fungal isolates synthetize GT, irrespectively of the host
immune status from whom they were isolated (neutropenic
or not). Confirming these in vitro findings, bmGT, which is
synthetized from GT, has been identified in neutropenic (79,
120) and non-neutropenic (121) patients in vivo, suggesting
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that the fungus produces GT in vivo, even in situations where
a priori should not be required (i.e., neutropenia). Here it
should be noted that GT cannot be detected in vivo due to
its high reactivity, and thus bmGT might be considered as
a marker of GT synthesis. In order to confirm whether GT
might help Aspergillus to colonize and invade human host, it
will be required to analyze whether bmGT presence correlates
with prognosis and survival in neutropenic and non-neutropenic
patients.

Alternatively, even in situations where GT would not enhance
Aspergillus virulence, it could promote, enhance and/or re-
activate other infections by blocking macrophage, dendritic cell
NK cell and/or T cell function like CMV, EBV or tuberculosis.
Studies correlating GT (or bmGT) presence in vivo and risk of
viral and/or bacterial co-infections will be required to solve this
question.
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