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CD137 (4-1BB, Tnsfr9) is a member of the TNF-receptor (TNFR) superfamily without

known intrinsic enzymatic activity in its cytoplasmic domain. Hence, akin to other

members of the TNFR family, it relies on the TNFR-Associated-Factor (TRAF) family

of adaptor proteins to build the CD137 signalosome for transducing signals into the

cell. Thus, upon CD137 activation by binding of CD137L trimers or by crosslinking

with agonist monoclonal antibodies, TRAF1, TRAF2, and TRAF3 are readily recruited

to the cytoplasmic domain of CD137, likely as homo- and/or heterotrimers with different

configurations, initiating the construction of the CD137 signalosome. The formation of

TRAF2-RING dimers between TRAF2 molecules from contiguous trimers would help to

establish a multimeric structure of TRAF-trimers that is probably essential for CD137

signaling. In addition, available studies have identified a large number of proteins that are

recruited to CD137:TRAF complexes including ubiquitin ligases and proteases, kinases,

and modulatory proteins. Working in a coordinated fashion, these CD137-signalosomes

will ultimately promote CD137-mediated T cell proliferation and survival and will endow T

cells with stronger effector functions. Current evidence allows to envision the molecular

events that might take place in the early stages of CD137-signalosome formation,

underscoring the key roles of TRAFs and of K63 and K48-ubiquitination of target

proteins in the signaling process. Understanding the composition and fine regulation of

CD137-signalosomes assembly and disassembly will be key to improve the therapeutic

activities of chimeric antigen receptors (CARs) encompassing the CD137 cytoplasmic

domain and a new generation of CD137 agonists for the treatment of cancer.
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BRIEF INTRODUCTION TO THE TRAF PROTEIN FAMILY

TNF Receptor Associated Factors (TRAFs) are a family of 6 proteins (TRAF1 to 6) characterized
for having a protein region composed by a coiled coil followed by a seven-eight anti-parallel β-
sheets at the C-terminus of the protein forming what has been coined as the TRAF domain (TD)
(1, 2). This domain is also known as the Meprin and TRAF-C homology domains (MATH), since
meprins, a family of extracellular proteases, also have a protein domain with high homology to the
TD (3). In addition, there are also 3 proteins in humans encompassing internal bona fide TRAF
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domains: tripartite motif (TRIM)-37, ubiquitin specific protease
(USP)-7 and speckle-type POZ protein (SPOP) (4). Of note is
that there is a protein known as TRAF7 that lacks a TD but has a
RING and zinc finger domains similar to those of some members
of the TRAF family proteins (5) and whose membership to the
TRAF family is controversial.

TRAF1 to 6 were first identified as TNF-Receptor
(TNFR) binding proteins, but it soon become evident that
different members of the TRAF family were also involved
in the regulation of pattern recognition receptors, including
members of the Toll-like receptors (TLRs), nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs) and
retinoic acid-inducible gene (RIG)-1-like Receptors (RLRs),
thus demonstrating the key role of TRAF family proteins in the
regulation of both innate and adaptive immunity [Reviewed by
(6)]. Moreover, some members of the TRAF family also regulate
cytokine receptors (6, 7). A role for TRAF family members in
development has also been described (8–10).

TRAFs are the molecules that first engage the activated
TNFR and act as scaffold proteins recruiting other proteins,
including kinases, ubiquitin ligases and deubiquitinases among
other regulatory proteins to conform the TNFR-signalosome.
TRAF family members, with the exception of TRAF1, have a
RING finger domain that endows some of them with the capacity
to act as E3 ubiquitin ligases. Thus, TRAFs can ubiquitinate
different components of the signalosome, including the TRAFs
themselves, and modulate the activity of the complex (6).

There is a redundancy in the ability of different members
of the TRAF family to interact with similar TRAF-binding
peptidyl regions located in the cytosolic tails of the TNFRs
[reviewed in (1, 2, 11)]. Moreover, besides this critical binding
region, the surrounding amino acids to the peptide core motif
in the cytosolic tail of TNFRs might also provide structural
constrains that may have an effect on the binding affinity. In
addition, the crystal structures of TDs bound to the cytosolic
region of distinct TNFR family members have shown that
particular structural features of the TD of each TRAF family
member, in particular of those forming the TNFR-binding
crevice, are critical in determining their specificities and binding
affinities to the TNFRs [reviewed in (12)]. Altogether, these
differences determine the binding specificity and affinity of the
members of the TRAF family for the different TNFR family
members (1, 11–14). Therefore, it is expected that a competition
would be established between different TRAFs trimers to dock
at the ligand-activated TNFR trimer, raising the possibility
that neighboring TNFR trimers in the very same cell will
hold TRAF trimers with different configurations. In addition,
some TRAF family members can form heterotrimers (see
below and Figure 1), adding further complexity to the system.
Consequently, the composition of the signalosome mounted
by each member of the TNFR family is likely to be highly
influenced by the recruited TRAF family members. Besides, the
signalosome composition would likely be cell type and activation
state dependent, as it will be contingent on the expression levels
and subcellular localization of the different proteins that could be
part of this complex.

CD137 AS A MODEL OF HOW TRAFS
CONFIGURE A TNFR-SIGNALOSOME

CD137 (4-1BB, TNFSFR9) is one of the TNFRs having a more
restricted number of TRAF family members involved in its
regulation, since only TRAF1, TRAF2, and TRAF3 interact
with and control CD137 activity. CD137 is a member of the
TNFR family whose expression is highly induced in CD8T
and NK lymphocytes upon activation, where it works as a
critical costimulatory receptor (16–18). Moderate to low levels
of CD137 expression could also be found in other activated
immune populations, including CD4T cells, B cells, monocytes,
macrophages, granulocytes and dendritic cells and, in these cells,
CD137 can also convey costimulatory signals (17, 19).

CD137 delivers potent costimulatory signals to the activated
CTLs and memory T cells promoting cell proliferation and
survival and also endowing CD8T cells with CTL effector
functions. As such, in the last 15 years, CD137 has become one
of the most exciting targets to enhance anti-cancer immunity for
its ability of boosting CTLs with anti-tumor effector functions
(20–22).

CD137 binds to CD137-Ligand (CD137L, 4-1BBL, or tnfsf9),
a member of the TNF superfamily (TNFSF). CD137L is mostly
expressed on macrophages, activated B cells, and dendritic cells
(23). In this regard, it is noteworthy that antigen presenting
dendritic cells in tumors and tumor draining lymph nodes
and tumor associated macrophages seem to be responsible for
providing CD137L to cytotoxic T lymphocytes (CTLs) migrating
to tumors (24). CD137L remains the sole intercellular ligand
known for CD137, but binding of CD137 to extracellular
matrix proteins, such as fibronectin, vitronectin, laminin
and collagen VI (25) has been reported, albeit functional
consequences of the binding to these additional putative
ligands remain unknown. Interestingly, binding of CD137
to galectin-9, a member of the β-galactoside–binding family
of lectins, has also been shown (26). Interestingly, galectin-
9 binding to CD137 does not interfere with the binding of
either CD137L or agonistic anti-CD137 mAbs to the receptor.
Instead, it positively regulates CD137 function by keeping
preassembled CD137 complexes together (26), which could
be then further cross-linked by CD137L or by anti-CD137
mAbs.

The crystal structure of the CD137L trimer shows distinctive
structural features that differ from those of other TNF family
members. In this regard, CD137L trimer resembles a three-
bladed propeller which is different from the cork-like shape of
the trimers of other members of the family (27). This shape
also confers some structural particularities to CD137/CD137L
complex, which folds as a windmill-like shape structure. Despite
these structural differences with other TNF and TNFR family
members, these results are still fully consistent with a model for
CD137/CD137L interaction similar to that of other members of
the TNFR family, in which a trimeric ligand binding to three
receptors conforms the basic unit of signaling (28, 29).

As for many other members of the TNFRSF, CD137 uses
TRAFs as scaffold proteins to build its signalosome. CD137
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FIGURE 1 | Schematic representation of the proposed TRAF trimer configurations and interactions in the CD137L/CD137 hexagonal lattice. (A) Lateral view

representing the various TRAF-trimer configurations that could be recruited to the activated CD137 trimers. The figure also shows the TRAF2-RING finger dimers that

would likely be formed between the RING finger domains of two TRAF2 molecules from adjacent trimers, which is a requirement for E3 ubiquitin ligase activity. Similar

interactions between the RING domains of cIAP1/2 from contiguous trimers are also expected. (B) It is show in top view how the CD137-recruited TRAF trimers

would arrange forming a large hexagonal network that would be stabilized by the establishment of RING finger domains dimers between the TRAF2 molecules from

adjacent trimers or between the RING finger domains of contiguous cIAP1/2 molecules. Further explanation in the text. Protein structure coordinates were obtained

from the PDB database and molecular graphics were performed with UCSF Chimera (15).

has been found to bind to TRAF1, TRAF2, and TRAF3 (30–
32) through two poly-acidic TRAF-binding consensus regions
located in its cytosolic tail 234TTQEE238 and 246PEEEE250, which
are similar to those found in other TNFR family members

[reviewed in (1, 2)]. Point mutations studies showed that all
three TRAFs seem to have binding preferences for the C-terminal

246PEEEE250 TRAF-binding region, suggesting that they might
compete with each other for interacting with the activated
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receptor (31). Due to the proximity of the two TRAF binding
sites, binding of one TRAF trimer to one of these regions, would
render the other region unavailable by steric hindrance. However,
this does not rule out the presence of different TRAFs associated
to the same activated CD137 trimer, since TRAF1 and TRAF2
form heterotrimers that can associate to the activated TNFR (33).

Cross-linking of CD137 by either CD137L (30, 34) or bivalent
agonistic antibodies (35) readily results in the recruitment of
TRAF1 and TRAF2 to the receptor. The involvement of both
TRAF family members in the regulation of CD137 signaling and
function is further confirmed by several reports showing that
CD137 activity is significantly affected in model systems lacking
of either TRAF1 or TRAF2 (32, 36–38). However, the role of
TRAF3 as a scaffold protein building the CD137 signalosome
has not been confirmed and awaits further research, although
the evidence indicating the induction of NF-kB2 activation by
CD137 (38) implies that TRAF3 should be directly or indirectly
recruited to the CD137 signalosome (see below). In addition,
recent evidence shows that TRAF3, as well as TRAF1 and TRAF2,
are essential for the activity of CD137-based chimeric antigen
receptors (CARs) (39), further supporting TRAF3 role in CD137
function.

The absence of a RING finger domain in TRAF1 indicates that
it lacks any E3 ubiquitin ligase activity and no other intrinsic
enzymatic activity for TRAF1 has been identified so far (6, 40).
However, TRAF1 interacts with and regulates the activity of
a variety of ubiquitin ligases and proteases (33, 41, 42) and
it plays critical roles in the regulation of several members of
the TNFR family [Reviewed in (43)]. Initially, since TRAF1
expression is induced upon cell activation and it has similar
TNFR-binding preferences than TRAF2, it was thought that
TRAF1 would work toning down TNFR signaling in activated
cells by outcompeting TRAF2 from binding to the TNFRs
(43). Indeed, T cells from Traf1-deficient mice were hyper-
responsive to TNF, supporting a role for TRAF1 as a negative
TNFR2 regulator (44). However, it was soon recognized that
TRAF1 was not just a TRAF2 competitor but, in some instances,
rather the contrary. In this regard, TRAF1 positively modulates
CD40 activity by cooperating with its activity and preventing
TRAF2 degradation (45, 46). In addition, TRAF1 has been also
implicated in CD137-mediated survival of activated CTL (47, 48)
and of memory T cells (49).

The other TRAF family members that is critical for CD137
function is TRAF2. The RING domain that TRAF2 encompasses
at its N-terminus endows it with an E3 ubiquitin ligase activity.
Ubiquitin-conjugating protein (Ubc)-13 (Ube2N) is thought to
be TRAF2 major E2 enzyme companion, providing TRAF2 with
the capacity of mediating K63-ubiquitination and subsequent
activation of itself and other target proteins (50–52). In addition,
TRAF2 can also catalyze K48-ubiquitination of target proteins
(53, 54). Interestingly, the crystal structure of the TRAF2 RING
and the first zinc finger domains described by Wu et al. (55)
revealed structural constrains that would preclude Ubc13 and
other related E2 ubiquitin ligases from binding to the TRAF2
RING, raising questions on the actual ability of TRAF2 to act as
an E3 ubiquitin ligase. However, these discrepancies were solved
when sphingosine-1 phosphate (S1P) was identified as a cofactor

required for TRAF2 E3 ubiquitin ligase activity (50). Indeed, S1P
seems to act as a bridge between the RING finger domain of
TRAF2 and the E2 proteins. Thus, in the presence of S1P, TRAF2
was able to ubiquitinate RIP1 and itself (and/or other TRAF2
molecules in the trimer) at K63 in the presence of Ubc13 or Ubc5
(Ube2D) (50).

CD137 SIGNALING: A RELATION OF
KNOWN AND SUSPECTED EVENTS

While TRAF2 is expressed in resting and activated T
lymphocytes, TRAF1 expression is induced upon activation
(60, 61). Thus, as CD137 expression will also be induced in
activated T cells (16, 17), both CD137 and TRAF1 will likely
coexist in activated T cells where CD137 costimulatory activity is
needed for CTL expansion and for boosting effector functions.
Therefore, the composition of the CD137-TRAF signaling
complexes would depends on the activation state of the cell and
the relative expression levels of TRAF1 and TRAF2.

The kinetics of CD137 expression in activated CD8T cells
implies that at early activation stages low levels of CD137 will
be found on the T cell surface (62, 63). However, even these
low levels might be sufficient to trigger CD137 signaling upon
interaction with the CD137L. In this regard, it has been proposed
that the ligand-free form of TNFR family members exists on the
cell surface as anti-parallel dimers arranged in a two-dimensional
hexagonal lattice that brings three receptor monomers together
at each lattice point [Reviewed in (28)]. This model would
imply that even low level of ligand-free TNFRs might be already
prearranged on the cell surface in high-density spots. In the
case of CD137, galectin-9 might contribute to the maintenance
of these bi-dimensional hexagonal structures (26). Assuming
this model, when CD137L or other TNF family member and
their corresponding TNFRs come together, the ligand trimer
will shift the equilibrium from the CD137 dimeric interaction
to the CD137 trimeric structure. The CD137/CD137L trimers
will still occupy each lattice point preserving the hexagonal
structure and maintaining neighboring activated CD137 trimers
close, thus facilitating the establishment of molecular interactions
between adjacent trimers. TRAF trimers will be readily recruited
to the activated CD137 receptor binding to the poly-acidic TRAF-
binding consensus regions located in CD137 cytosolic tail. As
stated above, the composition of the TRAF trimers that would
be recruited to the activated CD137 will likely depend on the
expression levels of the TRAF family proteins that interact
with CD137, which are TRAF1, TRAF2, and TRAF3. Since
TRAF1 and TRAF2 have been shown to be critical for CD137
activity it is likely that these two TRAF family members will
have a major role in building the CD137 signalosome. Wu and
coworkers (33) have shown that TRAF1 and TRAF2 can associate
in heterotrimers, but preferentially forming a trimer with a
TRAF1:(TRAF2)2 configuration. Therefore, a mix of TRAF1 and
TRAF2 homotrimers and TRAF1:(TRAF2)2 heterotrimers would
be recruited to the activated CD137 in a way that would depends
on their amounts and specific affinities to the TNFR.
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FIGURE 2 | Schematic representation of the distinct CD137 signalosomes that would be formed upon CD137 activation. This figure illustrates the distinct

signalosomes that could be formed in response to CD137 activation depending on the TRAF trimer configurations that get associated to the activated CD137.

(A) cIAP1/2 bridging between 2 TRAF1(TRAF2)2 trimers. What other molecules, besides E2 proteins, would be specifically recruited to this configuration is yet

unknown. The binding of Lymphocyte specific protein-1 to the N-terminal region of TRAF1 is shown. (B) The formation of a dimer between the RING finger domains of

2 TRAF2 molecules from adjacent trimers will trigger K63 ubiquitination of TRAF2 and the subsequent recruitment and activation of the TAK1/TAB1/TAB2/TAB3

complex (TAB1 is not shown). K63-TAK1-mediated IKKβ phosphorylation will activate the IKK complex activation initiating a signaling cascade that will result in

NF-κB1 and ERK activation. A20 might inhibit this signaling cascade by K48-ubiquitinating Ubc13 thus inhibiting TRAF2 E3 ubiquitin ligase activity. * A20 can form

dimers, but a sole A20 molecule is represented for clarity. (C) Hypothetical organization of a signalosome that includes a TRAF3:(TRAF2)2 trimer. The cIAP1/2

molecules associated either to a TRAF2 homotrimer and the hypothetical TRAF3:(TRAF2)2 trimer will form a dimer by the interaction of their RING fingers domains

causing the activation of

(Continued)
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FIGURE 2 | the E3 ubiquitin ligase activity. Thus, the cIAP1/2 dimer will K48-ubiquitinate TRAF3 and TRAF2 molecules targeting them for proteasome degradation

and effectively releasing NIK from its interaction with TRAF3, resulting in the activation of NF-κB2 as has been observed following CD137 stimulation. # The TRAF

region binding to NIK is still controversial, since reports indicating that is mediated by either the TRAF domain (56, 57) or the RING-zinc finger region (58, 59) are

available. (D) CYLD interacts with the same crevice in the TRAF domain that binds to CD137 cytosolic tail. CYLD might works as a gate keeper preventing

ligand-independent TRAF activation but it might also participate in the termination of CD137 signaling by outcompeting CD137 from binding to TRAF2 as shown in the

figure. Further explanation in the text. Protein structure coordinates were obtained from the PDB database and molecular graphics were performed with UCSF

Chimera (15). When this information was absent for a protein of interest, we modeled the proteins according to their domains using available structures of similar

domains to provide an approximate representation of the protein structure and size.

Since the five zinc fingers and the RING finger domains of
each TRAF2 molecule in the trimers will likely emanate from the
intertwining coils in opposite directions (28, 64) and the active
E3 ubiquitin ligase requires the formation of RING-finger dimers
(65), TRAF2-RING finger dimers will likely be formed by the
RING finger domains of two TRAF2 molecules from adjacent
trimers, similar to what has been described for TRAF6 (66)
(Figure 1). This inter-trimer bonding would help the clustering
and stabilization of the two-dimensional hexagonal lattice (28,
64). In this case, since TRAF1 lacks of a RING finger domain, the
presence of one TRAF1 molecule in a trimer would impede the
formation of one intertrimer bonding but would not have any
effect on the ability of the 2 TRAF2 molecules in the trimer to
establish these TRAF2-RING dimers with neighboring TRAF2-
containing trimers (Figure 1). The TRAF2-RINGs now in their
active dimeric form will bind S1P and Ubc proteins (Ubc13
or UbcH5A) (Figure 2), getting ready to catalyze the K63-
ubiquitination of TRAF2 itself and other target proteins (50).
In addition TRAF2 trimers and TRAF1:(TRAF2)2 heterotrimers,
but not TRAF1 trimers, will recruit a single cIAP1/2 (33).
Indeed, cIAP1/2 will interact through its BIR1 domain (67)
with the TRAF trimers by asymmetrically engaging two cIAP-
interacting motifs in the coiled coil of two TRAF molecules in
the trimer (33, 42). Of note is that cIAP1/2 interaction with
the TRAF1:(TRAF2)2 heterotrimers is stronger than that with
TRAF2 trimers and, therefore, cIAP1/2 would preferentially
be bond to the TRAF1:(TRAF2)2 heterotrimers. Interestingly,
TRAF1 homotrimers have a cIAP2 dissociation constant two
orders of magnitude weaker than that of TRAF2 homotrimers,
effectively precluding the interaction of cIAP2 with TRAF1
homotrimers (33). The interaction of cIAP1/2 BIR1 domain
with TRAFs would release the cIAP-RING from its inhibitory
interaction with the cIAP-CARD domain (68), allowing the
formation of cIAP1/2-RING dimers and the binding of the E2
ubiquitin ligases. Since only one cIAP1/2 molecule associates
to a TRAF trimer, the cIAP1/2-RING dimer would have to be
formed by two cIAP1/2molecules each one associated to adjacent
TRAF trimers in the hexagonal lattice (Figures 1, 2), thus further
bridging two neighbored activated TNFR complex. Altogether,
these results indicate that albeit the basic signaling brick in
CD137 (as well as of other TNFRs) would be a trimer, a trimer
alone will not be able to signal as it seems absolutely necessary
to establish inter-trimer bridging and multi-trimer clustering to
build a functional signalosome (Figures 1, 2).

In this regard, it is worth mentioning that since TRAF1
lacks RING finger domain and TRAF1 homotrimers cannot
recruit cIAP1/2 to the CD137 signalosome, CD137-associated

TRAF1 homotrimers would fail on bridging adjacent trimers
through the formation of RING-dimers, which might result
in the disruption of the hexagonal CD137 network and the
inhibition of the signaling. While this scenario might provide
a rationale for the TRAF1-mediated inhibitory effects on some
members of the TNFR family (43), many evidence support a
positive role for TRAF1 in CD137 signaling (37, 47–49, 69).
Therefore, other proteins interacting with TRAF1 might not only
provide new functionality to the signalosome but also might
contribute to the clustering of the activated CD137 receptors.
In this regard, it has been shown that recruitment to CD137
of leukocyte-specific protein-1, a protein involved in CD137-
mediated ERK activation, is mediated by its interaction with
TRAF1 (70) (Figure 2A). Furthermore, Watts and coworkers
(71) have shown that the TRAF-domain of TRAF1 directly
interacts with three components of the linear ubiquitination
(LUBAC) complex, SHARPIN, HOIP, and HOIL-1. In addition,
Greenfeld and coworkers (41) have shown that TRAF1 is a key
component of the Epstein-Barr virus Late Membrane Protein
(LMP)-1 signaling complex, a protein that mimics TNFRs and
uses TRAF proteins as scaffold (72). In this model, LMP1
promoted the association between TRAF1 and LUBAC and
stimulated the linear M1-linked poly-ubiquitination of TRAF1,
thus allowing TRAF1-mediated recruitment of the M1-ubiquitin
binding proteins IKKγ and deubiquitinase (DUB) A20 (41) (see
below). TRAF2 was essential for both LUBAC interaction and
M1-polyubiquitination of TRAF1 (41), strongly suggesting the
participation of TRAF1:(TRAF2)2 heterotrimers in this activity.
In addition, binding of cIAP1 (73) and CYLD (74) to HOIP
has also been reported. Although there is no evidence to date
implicating LUBAC and M1-ubiquitination in the regulation of
CD137 signalosome, research on this issue is warranted.

Soon after ligand activation, the growing CD137 signalosome
gets decorated with K63-ubiquitinated proteins, mostly
composed by K63-TRAF2 (36). Polyubiquitin chains linking
the carboxyl terminus of ubiquitin molecules to the K63
of the next ubiquitin are well known as docking sites for
downstream signaling components, and are required for
building an effective signalosome (75–77). This is opposite to the
polyubiquitination at K48, which in most cases targets proteins
for proteosome-mediated degradation (77). TRAF2, associated
to Ubc13 or UbcH5A, seems to be the main responsible of
its own K63-ubiquitination (50) although cIAP1/2 associated
to UbcH5A or Ubc13 also can catalyze K63-ubiquitination
(78, 79). The next component of the CD137 signalosome getting
recruited by K63-polyubiquitinated TRAF2 is a kinase complex
composed by the transforming growth factor beta-activated
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kinase (TAK)-1 and TAK binding proteins (TAB)-1, 2 and 3 and
(Figure 2B). Once recruited, TAK1 will get K63-ubiquitinated
by TRAF2 (80). Taking lessons from the mechanism recently
described for TRAF6-mediated TAK1 activation (81), efficient
TRAF6-mediated TAK1 activation requires the synthesis of
long K63-polyubiquitin chains by TRAF6. These long K63-
polyubiquitin chains would have to be recognized by TAB2 and 3
(82) irrespective of whether they remain conjugated to TRAF6 or
been unanchored (81). Interestingly, A20 which is a component
of the CD137 signalosome (see below), effectively removes
long K63-linked polyubiquitin chains from TRAF6 without
disassembling the chains themselves (83). Once activated, TAK1
will phosphorylate the inhibitor of nuclear factor κ-B kinase
(IKK)-β leading to the activation of canonical NF-κB (75) and
ERK1/2 (48). TAK1 will also induce the activation of mitogen
activated kinases kinases (MKK) MAP kinases, leading to
p38MAPK activation (84).

While ubiquitination is a chief mechanism controlling TRAF-
mediated CD137 signaling, the regulation of TRAF activity
by phosphorylation has also been described. In this regard,
it has been shown that TRAF2 phosphorylation at T117
by PKC promotes both K63-ubiquitination of TRAF2 and
the recruitment of the IKK complex to activated TNFRs
(85). Moreover, TRAF1 phosphorylation at S139 by TANK-
binding kinase inhibits NF-κB activation in response to CD137
engagement (86).

Besides the induction of the canonical NF-κB pathway
by CD137, the activation of the alternative NF-κB pathway
by this TNFR has also been reported (38). The molecular
mechanism controlling NF-κB2 is different to that controlling
the canonical NF-κB1 pathway. In non-activated cells, NF-
κB2 activation is prevented by continuous NF-κB-inducing
kinase (NIK) degradation by a complex formed by TRAF2/cIAP
and TRAF3/NIK. In non-activated cells, this complex works
promoting cIAP1/2 mediated K48-ubiquitination of NIK and its
subsequent proteasome-mediated degradation. However, upon
TNFR activation, binding of this complex to the receptor
results in cIAP-dependent degradation of TRAF3 (and often
also of TRAF2), releasing NIK and allowing p100 processing
to the active p52 NF-κB subunit [reviewed in (87)]. Thus, the
induction of NF-κB2 by CD137 (38) implies that TRAF3 and
NIK would have to be recruited to the CD137 signalosome
(Figure 2C). In support of this event, it has been shown that
TRAF3 is degraded upon CD137 engagement (38). However,
it is still unclear whether TRAF2 and TRAF3 would be
recruited as homotrimers to adjacent CD137 trimers or as
TRAF2/TRAF3 heterotrimers to one ligand-activated CD137
trimer. In this regard, there is evidence suggesting the existence of
TRAF2/TRAF3 heterotrimers (88). In addition, it is noteworthy
that TRAF1 has been shown to directly interact with NIK,
suggesting that TRAF1:(TRAF2)2-cIAP1/2 complexes can also
be a component of the E3 ubiquitin ligase complex for NIK
(33, 89). However, there are conflictive results on whether
TRAF1 is an activator or an inhibitor of the NF-κB2 pathway.
It has been proposed that the binding of TRAF1 to NIK
causes the disruption of TRAF2:cIAP1/2 binding, resulting in
NIK stabilization and NF-κB2 activation (89). However, studies

on the role of TRAF1 in CD137-mediated NF-κB activation
show that in the absence of TRAF1, NF-κB1 induction is
restricted while NF-κB2 induction proceeds more efficiently
(38). These results might indicate that the tighter association
of cIAP1/2 to the TRAF1:(TRAF2)2 heterotrimers compared
to that of the TRAF2 homotrimers might restrict the ability
of cIAP1/2 to shift their targets from NIK to TRAF3. Besides,
it is also conceivable that an overabundance of TRAF1 might
interact with all available TRAF2 molecules, thus precluding the
formation of the TRAF2:TRAF3 heterotrimers. Interestingly, and
as described above, TRAF1 protects TRAF2 from degradation
(45, 46). Whether this protection could be caused by the inability
of cIAP1/2 in the TRAF1:(TRAF2)2 heterotrimers to K48-
ubiquitinate TRAF2 while it could do it as part of the TRAF2
homotrimers deserves further investigation.

Adding just another level of complexity to an already crowded
CD137 signalosome, we have recently observed the functional
association of K63-DUBs A20 and CYLD to the CD137
signalosome. This interaction results in the downregulation of
CD137-elicited K63-ubiquitination and signaling toward NF-κB
activation in both primary T cells and transfected cell lines (90).
A20 was first described as an ubiquitin-editing enzyme (91). It
is composed of an N-terminal ovarian tumor (OTU) domain,
which would catalyze the removal of K63-ubiquitin chains from
target proteins, and a C-terminal zinc-finger domain region,
which endows this protein with E3 ubiquitin ligase activity able
to transfer K48-polyubiquitin chains to those target proteins,
thereby promoting its proteasome-mediated degradation (92).
However, recent evidence shows that A20 can efficiently remove
K48-linkages but is almost inactive toward K63-linkages, raising
questions on what is the actual mechanism by which A20
inhibits the NF-κB pathway [reviewed in (93)]. Interestingly, A20
is also able to inhibit K63-ubiquitination by promoting K48-
ubiquitination and degradation of E2 ligases, such as Ubc13
and UbcH5C, thus effectively inhibiting the E3 ligase activity
of TRAF2, cIAP1/2, and TRAF6 (94) (Figure 2B). In addition
A20 can also inhibit NF-κB by interacting with and sequestering
Nemo (IKKγ), thus impeding IKKβ activation without requiring
the DUB and E3-ubiquitin ligase activities of A20 (95–97).

CYLD is another member of the DUB family. It contains three
cytoskeletal-associated protein (CAP)-glycine conserved repeats
at the N-terminus and a DUB domain at its C-terminus. CYLD
has a TRAF-interacting motif and has been shown to interact
with TRAF2 and to catalyze the removal of TRAF2-linked K63-
ubiquitin chains, precluding IKK from being activated (98).
Interestingly, phosphorylation of CYLD by IKK inhibits its
DUB activity (99). This result opens the possibility that CYLD
might works as a gate keeper preventing ligand-independent
activation, and that once receptor signaling unlocks, CYLD
would be kept inactive by the active IKK complex. Since CYLD
has also been found associated to the CD137-signalosome (90),
this suggests that CYLDmight also participate in the termination
of CD137 signaling by outcompeting CD137 from binding to
TRAF2 (Figure 2D). Altogether, these results underscore the
relevance of the ubiquitination and deubiquitination processes in
the regulation of CD137 signaling, evidencing that the balance
between K63- and K48-ubiquitination of key target proteins will
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determine the outcome of the response. A summary of the role of
TRAF1-3 in controlling CD137 signal transduction and function
is provided in Table 1.

Finally, we have observed that upon ligation with anti-
CD137 antibodies, CD137 signalosome becomes internalized
and is transferred to an endosomal compartment in a K63-
polyubiquitin-dependent manner (36). Nam and coworkers
(34) showed that CD137 engagement caused its redistribution
into lipid rafts, in a process that seems to be dependent on
TRAF2 binding to Caveolin (100) and Filamin A (101), which
are intrinsic components of the lipid rafts. Thus, the CD137
signalosome-containing endocyted vesicles might be caveolae
that later fuse with early endosomes (102), but this awaits
confirmation. Interestingly, So and Croft (103) have proposed
that TRAF2-dependent recruitment of activated CD137 into
lipid rafts might be behind the observed activation of PI3K-
AKT signaling pathway by CD137. Lipid rafts are membrane
microdomains that facilitate AKT recruitment and activation
upon phosphatidylinositol-3,4,5-triphosphate accumulation in
the plasmamembrane (104). Themechanism involved in CD137-
mediated PI3K/AKT activation is still unknown, although its
relevance in promoting CD137-mediated T cell proliferation and
apoptosis protection seems well sustained (105–107). As there
is no evidence of a direct association of PI3K and/or AKT
to the CD137 signalosome, PI3K-AKT ought to be activated
by other signaling complexes, such as TCR/CD28, working
together with CD137 (105, 107). Since activated TCR/CD28
reside in the lipid rafts, these lipid structures might work as
multi-signaling hot-spots (103). Indeed, it would be plausible
that the ligand-activated CD137 hexagonal lattice keeps trapped
inside (in the center of the hexagons) TCR and CD28 complexes
that would move together with the activated CD137 trimers to
lipid-rafts, thus facilitating the response to antigen. However,
since CD137-mediated AKT activation is delayed compared
to that of ERK and NF-κB, taking hours instead of minutes
(107), efficient CD137-mediated triggering of PI3K/AKT activity
may require additional players (whose expression might even
be induced by CD137 engagement) and/or further signaling-
complexes compartmentalization to proceed.

Interestingly, we have observed that endocyted CD137
signalosome-containing vesicles remain decorated with K63-
polyubiquitin chains, strongly suggesting that CD137 signaling
is still active during this process (36). However, it is expected
that the endosomes will later fuse with lysosomes to recycle
its content. Interestingly, it has been shown that A20 can
target TRAF2 to the lysosome for its degradation, which is
dependent on the membrane tethering activity of A20, but not of
its ubiquitin-modifying function (108). These CD137-mediated
endocytosis experiments (36) were performed with agonist
anti-CD137 mAbs and, therefore, it is yet to be determined
whether CD137 engagement with CD137L would also cause
the internalization of the complex, but it is likely that this will
actually occurs for various reasons. First, CD137 internalization
has been already observed in dendritic cells upon binding to
CD137L fusion proteins used to target antigens for vaccination
(109). Second, an accumulation of CD137 on the surface of
CD137L-deficient T cells has been observed, probably as a

result of the impossibility of CD137 to be internalized in the
absence of CD137L (110). Third, because many key molecules
in CD137 signaling, such as CD137, TRAF1, TRAF2 and
cIAP1/2 are readily transcriptionally activated by NF-κB and
AP1 transcription factors upon CD137 activation (111–114),
restocking these molecules and ensuring CTL responsiveness to
new CD137 costimulatory rounds. Finally, because it has been
recently described that tonic chimeric antigen receptor (CAR)-
derived CD137 signaling causes T cell toxicity by the continuous
TRAF2-mediated NF-κB activation and increased Fas-dependent
cell death (115). This result emphasizes the deleterious effects
that unrestricted CD137-signaling would have in the cells
and underscores the key role of the multiple mechanisms
controlling CD137 signaling described above, including CD137
internalization.

UNDERSTANDING CD137 SIGNALING TO
IMPROVE CD137-MEDIATED
IMMUNOTHERAPY

CD137 has become one of the most relevant molecular targets
in cancer immunotherapy for its ability to drive CTL and NK
cells anti-tumor responses. Humanized anti-CD137 mAbs
have entered the clinic (21). One of those (urelumab) showed
promising anti-tumor effects as a monotherapy treatment
in a phase I trial. Unfortunately, a follow-up Phase II trial
revealed severe liver toxicity in a significant number of patients
(10%) that resulted in two fatalities (116). Consequently, trials
with urelumab as a monotherapy were terminated (117). A
comprehensive safety analysis of patients treated with urelumab
confirmed a strong association between hepatitis and the
urelumab dose and resulted in dose reductions in subsequent
clinical trials (118). In this regard, ongoing clinical trials
with urelumab and other anti-human CD137 mAbs used in
combinatory therapies are underway. Alternative approaches
are needed to circumvent the off-target toxicity associated to
these treatments while preserving their efficacy, for instance,
by targeting these agonist antibodies or the natural ligand
to surface molecules expressed on cells present in the tumor
microenvironment (21). Another important strategy to improve
anti-CD137 mAb anti-tumor activity, while limiting its side
effects, would be boosting CD137-mediated signal transduction.
Many aspects of CD137 signaling might be of interest for drug
development, including interfering with negative regulators
of CD137 signaling, promoting optimal complex/scaffold
formation, and keeping signaling-CD137 endosomes from
lysosome degradation, among others. These approaches have
been neglected so far due to our limited understanding of the
different mechanisms controlling CD137 signal transduction, a
limitation that could also be extended to other members of the
TNFR family.

These limitations would also apply to the usage of CD137
signaling for enhancing chimeric antigen receptor (CAR) T cell
effectiveness. In this regard, transducing T cells with a CAR-
construct containing the CD137 cytosolic tail together with the
CAR-CD3ζ proved to be effective in increasing CTL cell survival,
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TABLE 1 | Role of TRAF1,2 and 3 in CD137-mediated signaling.

TRAF1 TRAF2 TRAF3

TRAF heterotrimers TRAF2 (33) TRAF1 (33)

TRAF3 (suspected)

TRAF2 (suspected)

Ubiquitin ligase activity no K63 (49–52)

K48 (53, 54)*

unknown

Substrates no TRAF2 (50)

TAK1 (80)

unknown

Binding partners cIAP1/2 (33)

LSP-1 (70)

NIK (33, 89)

LUBAC (undetermined)

cIAP1/2 (33)

ubcl3 (50)

CYLD (98)

NIK (87)

Functional data • CD137-mediated survival of memory T

cells (49).

• CD137-mediated antivirus responses

(37, 49)

• Required for activity of CD137-based

chimeric antigen receptors (CARs) (39)

• CD137-mediated costimulatory

signaling in T cells (32)

• CD137-mediated tumor rejection in

xenograft mice (36).

• Required for activity of CD137-based

chimeric antigen receptors (CARs) (39).

• Required for activity of CD137-based

chimeric antigen receptors (CARs) (39)

The table summarizes the known function and binding partners of these TRAF proteins in the regulation of CD137 activity,as well as the available in vivo or ex vivo T cells functional data.
*not demonstrated in CD137 signaling.

targeting of CTLs to the tumor and boosting anti-tumor activities
(119). Remarkably, it has been recently demonstrated the clinical
effectiveness of this therapy in the treatment of relapsed or
refractory B-cell acute lymphoblastic leukemia (120, 121).

In the case of CD137 containing CARs, recent evidence shows
that the activity of CD19-targeted CAR T cells with a CD137
endodomain is dependent on TRAF1, 2 and 3 and also on NF-
κB activation (39). However, little is known on whether the
molecular mechanisms controlling the extent of the response
are similar to those of native CD137. In this regard, and as
stated above, tonic chimeric antigen receptor (CAR)-derived
CD137 signaling has been shown to cause T cell toxicity by
the continuous TRAF2-mediated NF-κB activation and increased
Fas-dependent cell death (115), thus highlighting the need of a
better understanding of the molecular mechanisms controlling
CD137 signaling. Moreover, the development of CAR T cells with
CD137 intracellular tail acting in tandem with the cytoplasmic
domain of CD3 ζ may promote a signaling crosstalk between
these 2 pathways. Interestingly, and as discussed above, this
crosstalking between CD137 and the TCR might be happening
at certain extent in normal CD137-signaling (103). In any event,
the CD137 component in the CAR T therapy is key to ensure
the functional persistence and survival of the transduced T cells
(119, 120) a feature ultimately needed for clinical efficacy, but also
keeping in mind that unrestrained CD137 activity might also be

deleterious for the cell (115). Translational research in the signal
transduction pathways controling CD137-mediated responses
should focus in the identification of druggable targets that would
allow toning up or toning down CD137 activity as needed.
In addition, developing tools for early and reliable detection
of CD137-signaling events and/or their outcome would be
paramount to define pharmacodynamic biomarkers and useful
parameters to optimize new generations of CD137 agonists.
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