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Viral myocarditis is an inflammation of the heart muscle triggered by direct virus-induced

cytolysis and immune response mechanisms with most severe consequences during

early childhood. Acute and long-term manifestation of damaged heart tissue and

disturbances of cardiac performance involve virus-triggered adverse activation of the

immune response and both immunopathology, as well as, autoimmunity account for

such immune-destructive processes. It is a matter of ongoing debate to what extent

subclinical virus infection contributes to the debilitating sequela of the acute disease. In

this review, we conceptualize the many functions of the proteasome in viral myocarditis

and discuss the adaptation of this multi-catalytic protease complex together with its

implications on the course of disease. Inhibition of proteasome function is already

highly relevant as a strategy in treating various malignancies. However, cardiotoxicity

and immune-related adverse effects have proven significant hurdles, representative of

the target’s wide-ranging functions. Thus, we further discuss the molecular details of

proteasome-mediated activity of the immune response for virus-mediated inflammatory

heart disease. We summarize how the spatiotemporal flexibility of the proteasome might

be tackled for therapeutic purposes aiming to mitigate virus-mediated adverse activation

of the immune response in the heart.
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INTRODUCTION

Myocarditis and its debilitating sequela, inflammatory cardiomyopathy, are leading causes of heart
failure and sudden cardiac death particularly in infants, children, and young adults (1) with
viral infections being the most common trigger of non-ischemic myocardial inflammation in the
Western world (2). Acute injury of the heart muscle upon viral infection stimulates infiltration of
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immune cells, aiming to support pathogen clearance and
alleviate organ damage. However, this pathogen-induced
immune response can result subsequently in overwhelming
immunopathology or the development of auto-aggressive
immunity against cardiac self-antigens. These processes
comprise fibrotic scarring and cardiac remodeling (3, 4). Both
the high mortality of acute viral myocarditis in childhood and
the putative progression of acute myocarditis to chronic disease
support the need to define precisely the underlying mechanisms.

Most of our knowledge on the pathology of viral myocarditis
comes from infection with enteroviruses, in particular
coxsackievirus B3 (CVB3) in mice. CVB belong to the
picornavirus family and have a non-enveloped, icosahedral
capsid surrounding a positive-strand RNA genome. CVB3 used
to be among the most prevalent pathogens known to cause viral
myocarditis in North America and Europe (3, 5). Infection of
laboratory mouse strains mirrors the variable manifestation of
the disease in man (6, 7) by causing susceptibility for cardiac
pathogenesis to a highly varying degree. A certain genetic
background determines both control of viral pathogens and
the activation of deleterious immune response pathways (6, 8).
Recent observational studies suggest that it is not primarily
the presence and/or replicative activity of invading viruses in
the myocardium that determines outcome. In fact, the virus-
triggered abundance of infiltrating leukocytes is an independent
risk factor for adverse outcome (9). Although it is indisputable
that primary encounter of virus in the heart triggers death of
cardiomyocytes, the pathogenic role of persisting viral genomes
was poorly defined in the past. Recently, experimental mouse
data demonstrated that persisting enteroviral RNAs do not
actively contribute to ongoing myocardial disease after viral
myocarditis (10).

Mice with high susceptibility to severe virus-induced
inflammation are pre-disposed also to a loss of self-tolerance
against cardiac proteins (11). Additionally, viral infection
of cardiomyocytes can trigger auto-destructive activity of
infiltrating cells, as well as, the formation of autoantibodies
directed against antigens of cardiac origin (12, 13) further
exaggerating heart tissue damage. Establishment of autoimmune
myocarditis in mice by priming with cardiac antigens revealed
that the same strains of inbred mice, who develop post-viral
inflammatory heart tissue injury are also prone to autoimmune-
triggered heart pathology. This indicates that the background
genetics and involved immune response pathways for both
diseases might be overlapping (13, 14). Others have reviewed
in detail how type B coxsackievirus interacts with the innate
and adaptive immune system and inflammatory responses
(7, 15). Our primary interest herein is to discuss how cellular
proteolysis by the proteasome affects the innate and adaptive
immune response during CVB3-induced inflammatory damage
of heart tissue, and our focus will broaden to the adaptation of
this multi-catalytic protease in different cells during infection
and inflammation. We will specifically discuss recent findings
regarding the functional importance of a specific proteasome
subtype expressed in hematopoietic cells and its possible
implications for cytokine-mediated pathogenesis and therapeutic
interference during viral myocarditis.

THE PROTEASOME: A DRUGGABLE
MULTI-CATALYTIC PROTEASE

Several avenues of research have implicated the ubiquitin-
proteasome system (UPS) as a major regulator of cell signaling
and transcription. It controls also antigen processing, apoptosis
and cellular proliferation. The ubiquitination machinery tags
degradation-prone proteins in a highly regulated system for
processing by the proteasome. As an integral part of cellular
proteostasis, proteasome-mediated protein degradation is the
primary route for intracellular removal of misfolded, damaged,
or short-lived proteins (16). Proteasomes are multi-subunit
enzymes with a barrel-shaped structure and internal active
sites are accessible through a gated pore (17, 18). Proteasome-
destined cargoes are recognized by regulatory particles (19S
regulator) associated with the proteasome core complex
(20S proteasome). The recognition, de-ubiquitination, and
unfolding of substrates in direct proximity to the gated entry
channel made up of the outer α ring of the 20S proteasome is
required for degradation (19). Peptide hydrolysis is restricted
to three β subunits, β1, β2, and β5, within the interior of
the 2-fold symmetric core 20S proteasome. In addition to
the aforementioned functions of the proteasome, the UPS
is also of particular importance under conditions of cellular
stress, where a rapid elimination of unfolded and potentially
toxic proteins is required to prevent formation of cytotoxic
aggregates (16, 20). Restrained function of the UPS might lead
to accumulation of harmful proteins to toxic levels, causing
disease (21). Cells have several ways to meet such increased
demand for protein turnover. In response to Interferon (IFN)-γ
(22, 23), tumor necrosis factor (TNF)-α (24), doxorubicin
(25), or H2O2 exposure (26), others and we demonstrated
an increased abundance of the immunoproteasome (i-
proteasome), a specific proteasome isoform that contains
alternative catalytic subunits (β1i/low molecular weight
protein (LMP) 2; β2i/multicatalytic endopeptidase complex
(Mecl)-1, β5i/LMP7) (27). I-proteasomes at least partially
replace their constitutively expressed standard proteasome
counterpart in different tissues upon infection (28, 29).
During viral myocarditis, the i-proteasome is upregulated
strongly in heart tissue and its induction involves IFN-γ
(30, 31), as well as, type 1 interferon (T1IFN)-mediated
signaling (8). In the heart, i-proteasome formation results
in increased peptide hydrolysis capacity (8). This adaptation
within the proteolytic core of the 20S proteasome complex
is advantageous since it contributes to maintenance of
protein homeostasis during inflammation (23, 32, 33).
I-proteasome assembly is very similar to the formation
of the standard proteasome [reviewed recently by (34)].
Additional proteasome subtypes like the thymoproteasome
with tissue-specific β5t subunit expression (35) and mixed
proteasomes that contain only one (β5i) or two (β1i and β5i) of
the three inducible catalytic subunits of the i-proteasome
(36) contribute to the variety of proteasome-mediated
proteolysis.

Both facts—the close vicinity of genes encoding β1i/LMP2,
β5i/LMP7, and the transporter associated with antigen
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presentation (TAP) within the major histocompatibility
(MHC) II region, as well as, the regulatory function of IFNγ for
these molecules—were indicative for a specialized function of
the i-proteasome during MHC class I antigen presentation (37).
The finding that β1i/LMP2 and β5i/LMP7 enhance substrate
cleavage after basic and hydrophobic amino acid residues further
strengthened the notion for a specific role of the i-proteasome in
the generation of antigenic peptides (22, 38). In fact, there are
numerous examples for viral, bacterial, and parasitic pathogens
for which in vitro peptide processing studies revealed facilitated
MHC class I epitope liberation by the i-proteasome complex
in comparison to lower epitope abundance upon processing
of model polypeptides with the standard proteasome (39).
This altered prevalence of antigenic peptide generation by the
i-proteasome is attributed to different peptide cleavage site
usage (40), and can elicit to altered CD8+ T cell-mediated
immune surveillance also (41–46). Nevertheless, these findings
appear to be restricted to a defined pool of immunodominant
epitopes with no effect of the i-proteasome on other epitopes
(28, 47, 48).

During the last three decades, the experimental landscape
investigating i-proteasome biology substantially broadened
with the availability of knockout mice lacking either single
immunosubunits (47, 49) or a combinatory deletion of the
three genes encoding β5i/LMP7, β1i/LMP2, and β2i/MECL-
1 (45). Because deletion of a single i-proteasome subunit
might be outweighed by increased formation of standard
proteasome complexes (50), research on the i-proteasome
improved further with the availability of i-proteasome subunit-
selective inhibitors. Kisselev and Groettrup provided a detailed
overview on inhibitors of the respective subunits of the
immunoproteasome (51). Structure-guided optimization of such
inhibitory compounds with subunit selectivity is actually an
ongoing objective. Initially, development of i-proteasome-
selective inhibitors was pursued with regard to the profound
benefit in patients with multiple myeloma (MM) upon the
implementation of non-selective proteasome inhibitors like
bortezomib or carfilzomib (52–55). Despite their high efficacy
for MM cells, targeting the proteasome in other organs
like the heart constitutes a risk for heart failure (56). In
comparison to heart tissue (57), MM cells are unique regarding
the preferential expression of the i-proteasome in these
cancer cells. Therefore, compounds with selective i-proteasome
subunit specificity represent an alternative strategy for more
selective tumor-directed targeting (54, 58). ONX 0914 initially
known as PR957 is a potent i-proteasome-selective inhibitor
that predominantly targets the β5i/LMP7 and to a lower
degree the β1i/LMP2 i-proteasome subunit as well (29, 59).
Beyond the tumor-suppressive potential of ONX 0914 (60,
61), pre-clinical research utilizing this compound and other
i-proteasome-selective inhibitors revealed additional putative
clinical scenarios, where such drugs might improve current
medical treatment. Pioneering work by the Groettrup group
and others highlighted the therapeutic potential of i-proteasome
inhibitors for mitigation of autoimmune-driven inflammatory
tissue damage (50, 59, 62–64). KZR-616—an ortholog of ONX
0914 with high selectivity for the human i-proteasome—passed

successfully phase I trials and is now in phase II trials for patients
with systemic lupus erythematosus. Since i-proteasome activity
controls alloantibody production by B cells and influences
processes resulting in T cell exhaustion, i-proteasome-selective
compounds could be used to prevent allograft rejection upon
organ transplantation as well (65, 66). All these recent reports
shed light onto several previously unappreciated biological
functions of the i-proteasome and support the requirement for a
detailed overview on the pathological function of the proteasome
during virus-induced inflammatory heart tissue injury.

VIRAL ENTRY, REPLICATION, AND
RELEASE: CONTROL MECHANISMS BY
THE PROTEASOME

Viruses subvert cellular processes to favor viral propagation.
Given its central role in a wide range of cellular functions
by maintaining a critical level of essential regulatory proteins,
it is expected that the proteasome is involved in viral
replication, and numerous examples have indeed been reported.
Several viral proteins direct host-cell proteins to proteolytic
degradation by the proteasome (67). Viruses have evolved
e.g., by encoding specific ubiquitin ligase activity to employ
the proteasome for degradation of host proteins that would
impede viral growth. Since this review mainly focuses on
the immunomodulatory function of the proteasome complex
itself during manifestation of virus-mediated inflammatory
damage of heart tissue, the reader is encouraged to refer
to an excellent review recently provided by Honglin Luo
on interactions between ubiquitin/ubiquitin family proteins
and viral growth (68). Here, we will summarize examples of
viruses with known cardiac tropism, where the proteasome
complex is exploited for virus progeny formation and/or
where inhibitors of proteasome activity affect viral replication
(Table 1).

Approximately 20 viruses have been implicated in human
myocarditis and some of them interfere directly with the
UPS. Among them, parvovirus B19 is detected often in
endomyocardial biopsies obtained from patients with clinically
suspectedmyocarditis (9). Parvoviruses followmultiple strategies
for nuclear transport, some of them requiring active proteasomes.
Replication of minute virus of mice—a murine parvovirus—
is disrupted in the presence of proteasome inhibitors (81). In
addition to parvoviruses, members of the herpesviridae family
like human herpesvirus 6 (HHV6) are commonly detected
pathogens in cardiac biopsies (9). HHV6 causes accumulation
of p53 in the cytoplasm (86), and among many mechanisms
regulating p53 activity, the cellular abundance of p53 is controlled
by UPS-dependent turnover (87). In herpes simplex virus (HSV)
infection, proteasome activity directly affects virus progeny
formation. Since inhibitors of the proteasome block HSV entry
at a step occurring after capsid penetration into the cytosol but
prior to capsid arrival at the nuclear periphery, it was concluded
that cellular proteasome activity facilitates virus entry at this early
stage (74). The human cytomegalovirus (HCMV) pp71 protein
stimulates quiescent cells to enter the cell cycle by targeting
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TABLE 1 | Effect of the proteasome on the propagation of viral particles.

Virus Cell type Treatment/condition Effect on viral

replication

Targeted step in life cycle

of virus

References

Adenovirus HeLa cells MG132 Reduced Late gene expression (69)

Mouse adenovirus1 C57BL/6 mice LMP7−/− No effect n.r. (31)

Coxsackie-virus B3 (CVB3) Murine myxoma cell line HL-1 MG132, lactacystin Reduced Post entry (70)

A/J mice MLN353 No effect n.r. (71)

C57BL/6 mice LMP7−/− No effect n.r. (23)

Murine embryonic cardiomyocytes ONX 0914 No effect n.r. (72)

C57BL/6 mice ONX 0914 Increased cardiac titers

A/J mice ONX 0914 No effect on cardiac titers

HeLa cells PA28α/β siRNA Increased n.r. (73)

HeLa cells PA28α/β overexpression Reduced

Murine embryonic cardiomyocytes PA28α/β−/− Increased

C57BL/6 mice PA28α/β−/− No effect on cardiac titers

Herpes simplex virus 1

(HSV-1)

Monkey kidney epithelial cells (Vero

cells)

Hamster ovary cells (CHO-cells)

MG132 epoxomicin

lactacystin

Reduced Virus entry/post penetration

step

(74)

HeLa derivative HEp-2 MG132, MG115,

epoxomicin

Reduced Immediate-early and late

viral proteins

(75)

Human cytomegalo-virus

(HCMV)

Human embryonic lung fibroblasts MG132 Reduced All stages of viral replication (76)

Human embryonic lung fibroblasts MG132 Reduced Immediate early protein

synthesis

(77)

Human immuno-deficiency

virus 1/2 (HIV1/2)

HeLa cells, human T cell line A3.01 MG132, lactacystin Reduced Gag processing and virus

particle release

(78)

Human CD4+ T cells, human

CD4+ cell line OM-10.1

Bortezomib, lactacystin,

MG132

Reduced Infectivity of the virion and

viral latency

(79)

Influenza A virus Canine kidney cells MDCK MG132, bortezomib Reduced Post fusion (80)

Minute virus of mice1 Murine B cells A9 MG132, lactacystin,

epoxomicin

Reduced Post endosomal escape (81)

Polio virus HeLa cells MG132, bortezomib Reduced Post entry (no effect on

translation)

(82)

Vaccinia virus HeLa cells MG132, epoxomicin Reduced Post entry (viral genome

replication; intermediate and

late gene expression)

(83)

HeLa cells MG132, bortezomib Reduced Genome uncoating,

replication, late viral gene

expression, virus assembly

(84)

The table summarizes viruses with known cardiac tropism and the impact of different proteasome inhibitors (bortezomib, MG132, lactacystin, MLN353, MG115, as well as, the

immunoproteasome-selective inhibitor ONX 0914 (59)), of the proteasome activator PA28 (85), as well as, of the i-proteasome (cell culture and mouse studies using LMP7−/− mice or

cell lines obtained from these mice (47) on viral replication. CHO, chinese hamster ovary; MDCK, madin-darby canine kidney; Gag, group-specific antigen; n.r., not reported; MLN353,

Millennium353 (proteasome inhibitor); ONX 0914, immunoproteasome-specific inhibitor; PA28α/β, proteasome activator α/β of 28 kDa.
1Murine pathogens.

proteins of the retinoblastoma (Rb) family for proteasome-
dependent degradation (88) and proteasome inhibitors block
viral DNA replication, as well as, assembly of HCMV (76). The
annual influenza virus (IV) season also calls upon some cases of
IV-induced myocarditis in man. Proteasome inhibitors attenuate
virus progeny formation at a post-fusion step upon influenza
A virus (IAV) infection, and UPS activity is required for RNA
synthesis of the virus (80). A similar function of the proteasome
machinery at a post-entry step during viral replication applies
to DNA replication and expression of intermediate and late
genes of the vaccinia virus (83). Work is still in progress
to unravel the role of the proteasome in the replication of
human immunodeficiency virus (HIV). Thus far, it was shown
that proteasome inhibition interferes with gag polyprotein

processing, release and maturation of HIV-1 and HIV-2
(78, 79).

Although the frequency of adenovirus and coxsackie B virus
detection in human myocarditis has gradually declined in adults
in Western Europe during the last two decades, they are
still a common cause of myocarditis in children or reported
in small regional outbreaks. The adenovirus (Ad) E4 protein
requires active proteasomes to promote late gene expression (69).
Moreover, the Ad E1A protein regulates proteasomal activity,
but is also a substrate for proteasome-mediated degradation (89).
Recently, the Weinberg group established a mouse model of
pediatric Ad-mediatedmyocarditis following intranasal infection
of neonatal C57BL/6 mice with mouse adenovirus 1 (MAV-1)
(90). MAV-1-myocarditis induces IFN-γ-mediated i-proteasome
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formation in infected heart tissue, but the catalytic activity of the
β5i/LMP7 i-proteasome subunit had no effect on viral genome
copy numbers in heart tissue (31). Therefore, it is unlikely
that MAV-1 replication is affected by i-proteasome activity.
In addition to in vivo models for the investigation of viral
heart disease, in vitro studies have substantial advantages to
provide information on the function of the proteasome regarding
virus progeny formation. Most detailed information on the
proteasome during the replicative phase of a human cardiotropic
virus is available for CVB3. The McManus/Luo group was
first to report a substantial suppression of CVB3 replication
in HL-1 cells upon treatment with pan-specific proteasome
inhibitors. This inhibitory effect was independent of the blockade
of viral entry into host cells and rather attributed to reduced
genome replication (70). The Luo group followed proteasome
inhibition also during CVB3-induced myocarditis using A/J
mice, which are known to be highly susceptible for CVB3-
induced pathogenesis. In their study, MLN353 was introduced as
a novel proteasome inhibitor for in vivo application. In contrast
to the robust suppression of viral replication upon MG132
treatment in the HL-1 myxoma cell line (70), MLN353 treatment
of mice did not influence virus titers (71). These somewhat
controversial findings indicate that other essential pathways
for CVB3 control might possibly be adversely influenced by
MLN353, and this could outweigh the suppressive effect of
proteasome inhibitors in cells targeted by virus infection. Our
group investigated the contribution of specific proteasome
subunits on the replication cycle of CVB3 in cellulo under
one-step conditions using both HeLa cells and murine primary
embryonic cardiomyocytes. PR825, as well as, ONX 0914 were
applied at non-toxic concentrations to specifically block the

catalytic activity of either β5 or β5i/LMP7, respectively. The

CVB3 replication cycle involving the adsorption, penetration,
replication of the parent virus, and release of progeny virus

was not altered by the selective inhibition of these proteasome

subunits (72). In addition to diverging peptidase activities of the
six catalytic subunits, proteasome activity can be regulated upon
binding to regulatory particles like the proteasome activator of 28
kDa (PA28). PA28-capped proteasome complexes are equipped
with increased peptide hydrolysis capacity (91), and by as yet
unknown mechanisms PA28 suppresses the CVB3 replication
machinery (73). Altogether, a broad spectrum of various viral
pathogens exploits the proteasome machinery in cells of the host
organism.

INNATE IMMUNITY: HOW THE
PROTEASOME AFFECTS THE FIRST
DEFENSE WAVE

Type I Interferons During Viral Myocarditis:
Control by Proteasome Activity
During viral infection, viral RNAs and replication intermediates
bind to their respective intracellular pattern recognition
receptors, including Toll-like receptors (TLRs) and retinoic
acid-inducible gene I (RIG-I), and, mediated by several
distinct signaling pathways, this increases the production of

T1IFNs [refer to (92) for a detailed review on T1IFNs in
infectious disease]. T1IFNs are an effective first line of defense
against viral infections and as such, a robust T1IFN response
is highly beneficial to counteract early CVB3 infection in
mice (93–95). Results from a pilot trial indicated a putative
beneficial therapeutic influence of T1IFN substitution in patients
with coxsackieviral myocarditis (96, 97). Following activation
of the IFNα/β receptor (IFNAR), a diverse repertoire of
antiviral proteins is expressed including protein kinase R
(PKR), 2,5 oligoadenylate synthetase-like protein 2 (OASL-
2), IFN-induced proteins with tetratricopeptide repeats (IFITs),
as well as, IFN-stimulated genes like ISG15. The latter is
an ubiquitin family protein, which is strongly induced by
T1IFNs and NF-κB signaling in cardiomyocytes (98, 99),
suppresses coxsackieviral replication, mitigates profoundly viral
myocarditis and blocks the progression to its debilitating
sequela (99).

Plasmacytoid dendritic cells (pDCs) are a major source for
T1IFNs during viral myocarditis (100) and unique regarding
their TLR7 or TLR9-dependent activation of IFN regulatory
factor 7 (IRF7)-mediated IFNα/β production (101). Whereas,
molecular accounts on the influence of ubiquitin modifications
on pattern recognition receptor (PRR)-mediated signaling are
available (102), less is known about the role of the different
peptidase activities of the proteasome during the process from
engagement of PRR to T1IFN production. Pan-specific inhibitors
of the proteasome like bortezomib or carfilzomib, which target
both the standard proteasome and i-proteasome, are potent
suppressors of TLR9 activation in murine bone marrow cells, as
well as, human peripheral blood mononuclear cells (PBMCs),
but other TLR-mediated pathways like Toll/interleukin-1
receptor-domain-containing adapter-inducing IFNβ (TRIF)-
mediated IRF3 activation are affected as well (63). Selective
i-proteasome inhibitors assigned specifically the control
of IFNα/β production in pDCs to i-proteasome peptidase
activity (59, 63). Correspondingly, i-proteasome inhibition
in CVB3-infected C57BL/6 (B6) mice substantially reduces
T1IFN production. Thereby, i-proteasome inhibition aggravates
disease parameters like viral load in B6 mice (72). On the
other hand, ISGs in germline LMP7−/− mouse models are
as active as in wild-type controls during viral myocarditis
(23). Indisputably, numerous studies indicate that the effects
of T1IFN on the host response to infection are not limited
to the acute, cell-intrinsic antiviral response described above.
IFNα/β are also involved at various stages in the activation
of adaptive immune cell responses e.g., by evolving antigen
presenting DCs into a mature state (92). Similar to this, in
hosts exhibiting high susceptibility for development of severe
acute and chronic heart pathology like A.BY/SnJ mice, a shifted
and overall significantly impaired T1IFN response (9, 100)
leads to reduced DC activation and lower cross-presentation
(100, 103). Genetic defects of i-proteasome subunits in mice
that lead to impaired i-proteasome formation or proteasome
inhibitor treatment decrease DC activation, thus, influencing
the immune-stimulatory capacity of DCs as reflected by
altered co-stimulatory molecule and C-C chemokine receptor 7
(CCR7) expression, as well as, cytokine production, respectively
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(104, 105). Thereby, i-proteasome-mediated proteolysis
might directly control the antigen presentation capacity
of DCs.

In contrast to the classical antiviral function of T1IFNs,
there is increasing appreciation that IFNα/β can also be
harmful, e.g., by triggering excessive inflammation and tissue
damage (106). Likewise, IFNα/β is a classical disease-trigger of
autoimmunity and auto-inflammation, and a reduced IFNα/β
production as achieved upon administration of i-proteasome-
selective inhibitors attenuates disease manifestation in models of
lupus erythematosus (63). Defects in the DNA three prime repair
exonuclease 1 (Trex1), which result in high cyclic guanosine
monophosphate–adenosine monophosphate synthase (cGAS)
induced IFNα/β production, lead to spontaneous inflammatory
myocarditis in mice and Aicardi-Goutières syndrome in man
(107, 108). Similarly, mutations in different genes encoding
protein subunits of the human proteasome restrain T1IFN
production, and this commences to a syndrome involving
chronic atypical neutrophilic dermatosis with lipodystrophy and
elevated temperature (CANDLE) (109–111).

Effect of the Proteasome for Humoral
Innate Immunity
In addition to the cellular branch of innate immunity that
comprises cell-associated pattern recognition receptors, its
humoral branch includes molecules such as the classic short
pentraxin C-reactive protein (CRP), the long pentraxin PTX3,
and complement recognition molecules (112). During viral
myocarditis, PTX3 is produced mainly by monocytes and
macrophages (113, 114). PTX3 promotes the engulfment
of cellular debris by immune cells (115), and acts as a
safeguard mechanism dampening myocardial injury induced
upon pattern-associated molecular pattern (PAMP)/damage-
associated molecular pattern (DAMP) signaling (112). Although,
the detailed molecular aspects are unresolved, the peptidase
activity of the i-proteasome controls PTX3 expression in TLR4-
activated macrophages during viral myocarditis (114) and
pneumococcal pneumonia (116), a function of the i-proteasome
which cannot be compensated by enhanced formation of
standard proteasome in LMP7−/− mice (114).

The Proteasome Balances Protein
Homeostasis
Myocarditis in CVB3 (Nancy)-infected LMP7−/− mice on a B6
background lacking intact i-proteasomes is not only mirrored
by reduced PTX3 production (114), but it also comprises high-
grade inflammation and increased cell death (23). In cells with
high rate of protein synthesis e.g., in response to cytokine
signaling, a reduction of translational fidelity often occurs,
generating defective ribosomal products (16). Cells in general
and cardiomyocytes in particular that produce higher amounts
of i-proteasomes are equipped with increased proteolytic activity
and can efficiently degrade defective proteins (32, 33, 117).
Thereby, the i-proteasome diminishes tissue damage in mouse
hearts of CVB3-infected wild-type B6 mice (23). Nevertheless,
this finding in B6 mice is in clear contrast to findings made in

A/J mice, which exhibit high susceptibility for virus-mediated
inflammation of heart tissue (118, 119) and generally present
with increased viral burden in the heart. Here, i-proteasome
activity constitutes severe cytokine-mediated inflammatory heart
tissue injury. I-proteasome inhibition blocks chemokine and
cytokine production, and consequently reduces the appearance of
misfolded proteins (72). The use of selective inhibitors targeting
i-proteasome activity does not necessarily reflect the findings
obtained in respective germ-line gene deficient mouse models
(23, 50, 72). As an example, contrary to what was reported
in LMP7−/− B6 mice, inhibition of i-proteasome activity by
ONX 0914 in CVB3-infected wild-type B6 mice disrupts the
T1IFN defense against the invading pathogen, facilitates virus-
mediated tissue damage and exacerbates PAMP/DAMP-signaling
in the heart. Thereby, the production of chemokines, infiltration
with immune cells, as well as, cytokine release increase (72).
Such discrepancies between specific inhibitors for proteasome
subunits and their knockout models might be due to a
compensatory formation of standard proteasomes in LMP7−/−

mice (50, 59), which is not observed at a similar level in ONX
0914-treated mice.

Innate Myeloid Cells: Proteasome Activity
Regulates Chemokine and Cytokine
Production
Neutrophils are the first and most abundant cell population
of the host’s innate immune response with well-known
function in the defense against bacterial and fungal pathogens.
Moreover, neutrophil recruitment in virus infection can be
part of a protective strategy leading to prevention of viral
disease (120). The i-proteasome influences the abundance
of these cells in blood and spleen, but it controls the
activation status of neutrophils as well (72, 121). Nevertheless,
neutrophils have no disease modifying impact on CVB3-induced
myocarditis (72, 122, 123). During myocarditis, particularly
monocytes/macrophages—that emigrate the bone marrow, then
sequester and differentiate in the spleen—infiltrate the infected
mouse heart (23, 99). Chemokines attract these cells to the
injured heart, where they are indispensable for waste removal
and healing (7, 124). On the other hand, many studies have
highlighted the requirement of monocytes/macrophages for
the manifestation of the detrimental consequences of viral
myocarditis—inflammatory injury and formation of fibrotic
scar (72, 125–128). Similar to monocytes, macrophages also
exacerbate inflammatory injury in infected mouse hearts (127).
Monocytes and macrophages secrete pro-inflammatory and pro-
fibrotic cytokines (7, 126). Therefore, molecules involved in
innate immune cell mobilization and differentiation or in the
control of cytokine/chemokine production by these cells present
putative drug targets for future investigation. Resembling their
effects on neutrophils, i-proteasome inhibitors stimulate also
monocyte/macrophage emigration from the bone marrow and
increase the abundance particularly of Ly6Chigh monocytes in
the spleen (72, 121), where they differentiate to macrophages
under inflammatory conditions (129). These findings might be
indicative for a pro-inflammatory function of the i-proteasome.
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In contrast, there is considerable experimental evidence from
various in vitro and in vivo approaches that argues substantially
against this notion and rather advocates i-proteasome-selective
inhibitors as anti-inflammatory drugs e.g., for autoimmunity
or to prevent transplant rejection (50, 59, 62, 65, 66). As
summarized in Figure 1, selective inhibitors of the i-proteasome
suppress the production of pro-inflammatory cytokines such as
TNF-α and IL-6 in TLR4 and TLR7 activated immune cells.
Similar results were obtained in IFNγ and TLR4 activated
mouse macrophages (137), TLR4 stimulated splenocytes (59,
138), TLR4 activated PBMCs from healthy donors and patients
with rheumatoid arthritis (59), as well as, TLR7 engaged
macrophages (72). Consistently, in CVB3 infected A/J mice, the
i-proteasome affects cytokine production also (72). Nevertheless,
it needs to be recalled that under conditions where i-proteasome
activity is needed for pathogen control like during Candida
albicans or CVB3 infection of B6 mice, this influence of i-
proteasome proteolysis on cytokine production seems to be
outweighed by a higher PAMP burden (72, 121). In this
case, the pathogen load is presumably a much stronger
effector of cytokine production than the cellular content of the
i-proteasome.

Influence of Proteasome Peptidase Activity
on TLR Signaling
In A/J mice, CVB3 replicates to about 10-fold increased titers
in the heart in comparison to B6 mice (72). One might
speculate that the overall increase in viral RNA ultimately
stimulates PRR signaling in mouse hearts, thereby facilitating
cytokine/chemokine production. In fact, the inflammatory
response in infected heart tissue is higher in A/J mice if directly
compared to B6 mice. It remains an enigma how i-proteasome
catalyzed proteolysis controls PRR signaling at a molecular
level. In addition, it is unclear why the i-proteasome affects
differently the cardiac phenotype during MAV-1 and CVB3-
induced myocarditis in B6 mice (31, 72). CVB3 as a single-
stranded RNA virus is a bona fide activator of TLR7 and
TLR8 (139) [in mice only TLR7 is active (140)]. Viral DNA
from Ad however triggers the TLR9 pathway. Alternatively,
Ad escaping the endosome reveals viral DNA complexes to
the cytosolic compartment and sensors like cGAS, which
acts by the stimulator of interferon genes (STING)-controlled
immune pathway (141). Thereby induced signaling stimulates
transcription factors like IRF7 (TLR7, TLR9) activator protein
1 (AP-1) (TLR7, TLR9), NF-κB (TLR7, TLR9, STING), and
IRF3 (STING) leading to the induction of target genes that—
in addition to IFNs and other ISGs - also encode pro-
inflammatory cytokines and chemokines (101, 142). Therefore,
we have summarized the current understanding on how the
i-proteasome influences e.g., TLR mediated cellular signaling
in Figure 1.

The NF-κB family of transcription factors, which acts
downstream of TLR7, TLR9, and STING, plays a central role in
regulation of inflammation. In the canonical pathway of NF-κB
activation, the proteasome degrades IκBα, releasing the active
NF-κB dimer (usually p65/p50) and allowing translocation to

the nucleus (Figure 2). The impact of the different proteasome
isoforms on NF-κB signaling is reported controversially
(summarized in Table 2). A defective NF-κB activation as
a response to reduced LMP2 expression in non-obese mice
was attributed to reduced processing of the NF-κB precursor
p105 (143, 145), but two different laboratories rebutted these
findings (146, 150). Other data confirmed the initial findings and
suggested an altered stimulation of canonical NF-κB activation by
the i-proteasome in comparison to the standard proteasome. 20S
i-proteasomes accelerate IκBα degradation (144), p65 nuclear
translocation is lower in IFN-γ activated murine embryonic
fibroblasts from LMP7−/− mice (149), and LPS-activated B cells
from LMP2−/− degrade IκBα less efficiently than controls do
(147). However, different groups revisited these aspects and
novel data reported on contradictory findings arguing that
the i-proteasome plays no obligatory role in the degradation
of IκBα and activation of the canonical NF-κB pathway
(59, 114, 137, 148). Different model systems and heterogeneous
read outs for the activation of canonical NF-κB activation might
attribute to these controversial findings. As illustrated in Table 2,
more recent reports utilized advanced models such as primary
cells obtained from different i-proteasome deficient mouse
strains (LMP7−/−, LMP7−/−/Mecl-1−/−, LMP2−/−), and, more
importantly, applied selective proteasome inhibitors in diverse
immune and non-immune cells. Moreover, the majority of
these reports focused on transcriptional activity of the canonical
NF-κB pathway, whereas earlier reports indicated effects on
signaling primarily at the level of p105 processing and Iκ-Bα

degradation.
Similar to TLR4-stimulated cells, cytokine/chemokine

production in TLR 7 activated cells also involves MyD88
signaling, which in addition to NF-κB activates mitogen-
activated protein kinase kinases (MAPKK) resulting in
phosphorylation of p38, c-Jun N-terminal kinases (JNKs),
and extracellular signal-regulated kinases 1/2 (ERK1/2),
culminating in activation of AP-1 (101, 151). Pan-specific
proteasome inhibition influences this MAPKK pathway in
lipopolysaccharide (LPS)-stimulated DCs (104). Since the pool
of proteasomes in DCs is mostly comprised of the i-proteasome
(136), such findings are indicative for a specific effect of the
i-proteasome. And indeed, data from more recent work showed
that the i-proteasome controls specifically the abundance and/or
activity of certain kinases, phosphatases and/or regulatory
proteins involved in the complex MAPK signaling network,
resulting in increased MAPK phosphorylation upon engagement
of TLR4 and TLR7 (72, 114). A comprehensive system
biology-based approach might be most appropriate to dissect
the involved effectors that rely on functional i-proteasome
activity. If and how i-proteasome activity influences mRNA
transcription of genes that are under the control of IRF3, IRF8,
and IRF7 is still a matter of ongoing investigation. TLR4-
activated DCs from LMP7−/−/Mecl-1−/− mice show unaltered
phosphorylation of IRF3 (105). The pan-specific inhibitor of
the proteasome bortezomib interferes with IRF-3 and IRF-8
activation in response to LPS in human DCs (104), suggesting
a selective effect of proteasome inhibition on the IRF-3
pathway as well.
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FIGURE 1 | Impact of i-proteasome subunits on innate immune signaling in myeloid cells. Among many different pattern recognition receptors, TLRs are sensors of

microbial antigens on monocytes/macrophages and dendritic cells. These membrane-bound receptors are located both on the cellular surface (TLR4—colored in red)

and in endosomes (TLR3—green, TLR7—blue, TLR9—purple) (101). Signaling pathways down-stream of TLR4, TLR7, and TLR9 involve the common adaptor

molecule MyD88 (130, 131). Upon TLR stimulation, the ubiquitin E3 ligase TRAF6 engages with the TLR/MyD88 complex and generates poly-ubiquitin scaffolds (132),

thereby recruiting the TAK1 complex (133). TAK1 then activates the IKK complex, which in turn phosphorylates IκBα. Ubiquitination of IκBα marks it for degradation by

the proteasome. Thereafter, NF-κB translocates into the nucleus. Simultaneously, TAK1 induces MAP kinase signaling (134), which results in the phosphorylation of

ERK1/2, p38, and JNK and thereby activates the transcription factor AP-1. Both NF-κB and AP-1 induce the expression of co-stimulatory molecules (CD80, CD86,

CD40) and migration signals (CCR7) on DCs, the secretion of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-23, IL-1β), chemokines (e.g., Mip2α, MCP-1, IP-10,

RANTES), and of Pentraxin3 by monocytes/macrophages (cytokines partially also by DCs). MyD88-dependent TLR7/9 signaling induces the phosphorylation of IRF7,

which is a key regulator of T1IFN (IFNα, IFNβ) expression in pDCs (135). Signals from TLR3 and TLR4 are transmitted by a MyD88-independent, TRIF-dependent

pathway involving activating kinases (131). Phosphorylation of IRF-3 induces translocation into the nucleus. Results obtained from in vitro studies, in which the impact

of the different peptidase activities of the proteasome isoforms regarding to TLR signaling or the expression of effector molecules were investigated by different

(Continued)
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FIGURE 1 | approaches, are summarized. Colors indicate the type of TLR stimulated to activate innate immune cells of different origin including human PBMCs,

murine splenocytes, bone marrow cells and peritoneal macrophages. Each box illustrates both the model used to alter a specific peptidase activity of the

proteasome—innate myeloid cells isolated from knock out mice or proteasome inhibitors with different specificity studied in innate myeloid cells, as well as, the

observed effect either on the respective signaling pathway or on the production of respective effector molecules. (↓): reduced phosphorylation of a key molecule in the

indicated signaling pathway or lower production of the effector molecule, = no alteration of signaling or production of the effector molecule. AP-1, activator protein 1;

BTZ, bortezomib—a pan-specific proteasome inhibitor included because the i-proteasome is highly abundant in DCs (136), CCR7, C-C chemokine receptor type 7;

DC, dendritic cell; ERK, extracellular signal–regulated kinases; IκBs, inhibitors of κB; IKK, IκB kinase; IP-10, interferon-gamma induced protein 10; IRF3, interferon

regulatory factor 3; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein 1; Mip2α, macrophage

inflammatory protein 2α; MKK, mitogen-activated protein kinase kinase; MyD88, myeloid differentiation primary response 88; NF-κB, nuclear factor-κB; ONX 0914,

immunoproteasome inhibitor (59); RANTES, regulated on activation; normal T cell expressed and secreted; T1IFN, type I interferon; TAK1, transforming growth

factor-β activated kinase 1; TLR, Toll-like receptor; TNF-α, tumor necrosis factor α; TRAF, TNF receptor associated factor; TRIF, TIR-domain-containing adapter

inducing IFNβ. (1) (59) (2) (63) (3) (104) (4) (105) (5) (114) (6) (72) (7) (137) (8) (138) (9) (116).

FIGURE 2 | Regulation of NF-κB signaling by the proteasome. Multiple

inflammatory signals result in the activation of the transcription factor NF-κB

through a variety of adapter proteins and kinases. The most abundant form of

the NF-κB dimer is the p50/p65 heterodimer. (A) The p105 precursor is

processed by the proteasome, thereby liberating the NF-kB p50 subunit for

dimerization with p65. IκB retains the NF-κB heterodimer in the cytoplasm.

(B) Ligand binding to cellular receptors like TLRs activates the IKK complex,

which catalyzes the phosphorylation of IκB, inducing its poly-ubiquitination

and degradation by the proteasome. (C) Activated NF-κB translocates into the

nucleus, where it (D) activates target gene expression. Table 2 summarizes all

reported effects of i-proteasome activity on the different steps in this canonical

NF-κB signaling pathway. NF-kB, nuclear factor kappa B; IκBs, inhibitors of

κB; IKK, IκB kinase.

Natural Killer Cells
Natural killer (NK) cells as lymphoid effectors of the rapidly
acting antiviral immune response are among the first cells to
sense pro-inflammatory cytokines. More than two decades
ago, the importance of NK cells for CVB3 clearance and

disease progression was highlighted in mice (152, 153). More
recently, this pathobiological significance could be extended
by providing firm evidence for a protective role of the NK
cell receptor NKG2D, which upon activation triggers effective
virus clearance in myocarditis (154). Knowledge regarding
the impact of proteasome activity on NK cell function is
incomplete and data are mainly available from tumor models.
Immune surveillance of tumor cells involves a tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL)-mediated
cytotoxic pathway used by NK cells leading to tumor cell lysis.
Proteasome inhibitors like bortezomib can sensitize tumor
cells to TRAIL-mediated lysis (155). If findings in tumor
models might be transferable to viral myocarditis, is unknown.
There is no evidence for a specific influence of the different
proteasome isoforms on NK cell abundance within the inflamed
heart of mice after CVB3 infection (23). Nevertheless, our
current comprehension of the role of proteasome activity
on NK cell function during viral myocarditis remains
incomplete.

INFLUENCE OF THE PROTEASOME ON
ESTABLISHMENT OF ADAPTIVE
IMMUNITY

The migration of NK cells and myeloid cells to the site of
injury in conjunction with a considerable increase in pro-
inflammatory cytokines is followed by a second wave of
infiltration with CD4+ and to a lesser extent B and CD8+

T lymphocytes as well. Similar to innate immunity, virtually
all knowledge about the biological function of the adaptive
immune response with regard to the manifestation of viral
myocarditis is based on the mouse model of CVB3-induced
myocarditis. Experiments with immune-deficient mice revealed
that both humoral and cellular immune responses are required to
control CVB3 infection. Accordingly, mice with severe combined
immunodeficiency, which lack mature B and T cell function,
develop extensive myocarditis with high mortality rates (156).
In this review, we expand upon established knowledge about the
function of the proteasome in adaptive immunity and attempt
to illuminate the implication of the different isoforms in virus
control. For further details on interactions of coxsackievirus and
adaptive immune system, we refer the reader to an excellent
review by (15).
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TABLE 2 | Regulation of NF-κB signaling by the i-proteasome.

Affected part of NF-κB

pathway

Implicated subunit Shown in/by Cell type/stimulus Determined by References

Processing of the NF-κB

p105 precursor

protein—(A)

LMP2 NOD and LMP2−/− mice Splenocytes WB, IVP (143)

LMP2, MECL-1 IBD patients Isolated proteasomes

from colonic mucosa

IVP (144)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells (human) WB, IVP (145)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells WB (146)

IκBα degradation by the

proteasome—(B)

LMP2 LMP2−/− mice B cells + LPS WB (147)

LMP2 NOD and LMP2−/− mice Splenocytes + TNF-α WB (143)

LMP2, MECL-1 IBD patients Isolated proteasomes

from colonic mucosa

WB (144)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells + TNF-α WB (145)

LMP7 ONX 0914 Cardiomyocytes (murine)

+ IFN-γ/TNF-α

WB (114)

LMP2, LMP7 UK-101, LSK01 Lung cells H23 (human) +

TNF-α

WB (148)

LMP7 LMP7−/− mice, ONX

0914

BM macrophages + LPS WB (114)

LMP2, LMP7, MECL-1 LMP7−/− MECL-1−/−

and LMP2−/− mice

Perit. Macrophages +

IFN-γ/TNF-α or LPS,

MEFs +IFN-γ/LPS

WB (137)

NF-κB nuclear

translocation and DNA

binding—(C)

LMP2 NOD and LMP2−/− mice Splenocytes + TNF-α EMSA (143)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells + TNF-α EMSA (145)

LMP7 LMP7−/− mice MEFs +IFN-γ/TNF-α IF (149)

LMP7 LMP7−/− mice Cardiomyocytes +

IFN-γ/TNF-α

TransAM® NFκB p50 (23)

LMP7 ONX 0914 Cardiomyocytes (murine)

+ IFN-γ/TNF-α

WB (114)

LMP7 ONX 0914 BM macrophages + LPS TransAM® NFκB p50, WB (114)

LMP2, LMP7 UK-101, LSK01 Lung cells H23 (human) +

TNF-α

WB, IF, EMSA (148)

LMP2, LMP7, MECL-1 LMP7−/− MECL-1−/−

and LMP2−/− mice

MEFs +IFN-γ/TNF-α EMSA, TransAM® NFκB

p65

(137)

NF-κB promoter

activity—(D)

LMP2, LMP7 Cells lacking LMP2 and

LMP7

T2 cells + TNF-α Luciferase assay (145)

LMP2 UK-101 Lung cells H23 + TNF-α Luciferase assay (148)

LMP7 LSK01 Lung cells H23 + TNF-α Luciferase assay (148)

LMP7 ONX 0914 Lung cells A549 +

IFN-γ/TNF-α

Luciferase assay (59)

LMP7 ONX 0914 Macrophages RAW264.7

(murine) + LPS

Luciferase assay (114)

Known effects of the i-proteasome are summarized for each step of the NF-κB signaling pathway. These steps involve: (A) processing of the NF-κB p105 precursor protein, (B) IκBα

degradation by the proteasome, (C) NF-κB nuclear translocation and DNA binding, and (D) NF-κB promoter activity, respectively (Figure 2). Results that indicate a specific role of the

i-proteasome for canonical NF-κB signaling are colored in light blue. Controversial findings arguing against the notion that the i-proteasome has a specific effect on canonical NF-κB

signaling are colored in dark blue. NF-kB: nuclear factor kappa B, IκBs, inhibitors of κB; T2 cells, human lymphoblast cell line defective in LMP2 and LMP7; UK-101, LMP2-specific

inhibitor; LSK-01, LMP7-specific inhibitor; ONX 0914, immunoprotesome-specific inhibitor. WB, Western blotting; IF, immuno-fluorescence; EMSA, electrophoretic mobility shift assay;

IVP, p105 in vitro processing assay, perit. macrophages: peritoneal macrophages; BM macrophages, bone marrow-derived macrophages; MEFs, mouse embryonic fibroblasts; LPS,

lipopolysaccharide.
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Influence of CD8+ T Cells on Viral
Myocarditis and Role of the Proteasome
In contrast to the preponderant significance of B cell and
CD4+ T cell responses for CVB3 clearance (157, 158), the
pathophysiological significance of CD8+ T cells for CVB3
clearance and inflammatory injury is less clear. The protective
function of CD8+ T cells (159) involves the production of
cytokines like IFNγ, yet is clearly separated from the direct
cytolytic effect mediated by perforin, a classic hallmark of virus-
specific CD8+ T cells (160). CD8+ T cells acting by perforin
cause extensive destruction of myocardial tissue (160, 161).
Evidence arguing in favor of a protective function of CD8+ T
cells duringmyocarditis was obtained fromCD8+ T cell-deficient
β2-microglobulin−/− mice, in which injury of cardiac tissue
exacerbates due to insufficient confinement of the initial viral
load in the heart muscle (160). One needs to keep in mind that
constitutive knockout models for perforin and β2-microglobulin
do not only mirror the function of these molecules in CD8+

T cells. Both perforin and β2-microglobulin affect also NK cell
activation and function. Nevertheless, the finding that CD8+ T
cells restrain CVB3 in mice indicates that the virus could induce
detectable CD8+ T cell responses. However, the Whitton group
provided data that coxsackieviruses do not elicit strong CD8+ T
cell responses. Investigation of mice infected with a recombinant
CVB3 encoding known lymphocytic choriomeningitis virus
(LCMV) derived CD8+ T cell epitopes failed to trigger a marked
expansion of CD8+ T effector cells (162, 163). This is mainly
due to the inhibition of antigen presentation by virus-induced
disruption of host protein trafficking in infected cells (164,
165). The virus almost completely blocks antigen presentation
via the MHC class I pathway, thereby evading CD8+ T cell
immunity (163). Our group followed a complementary approach
employing prediction tools for proteasomal cleavage sites, MHC
binding studies and in vitro peptide processing assays with
the proteasome to identify MHC class I epitopes originating
from CVB3 proteins (8, 166). Concordant with the findings by
the Whitton group, expansion of respective CD8+ T effector
cells was weak in mice (8). Similarly, adoptive transfer of
CD8+ T cells isolated from mice with CVB3 myocarditis did
not affect the manifestation of viral myocarditis in recipient
mice (23).

Based on these virus-specific aspects, the role for the i-
proteasome with regard to induction of CD8+ T cell responses
needs to be revisited for viral myocarditis. Following up on robust
i-proteasome formation in hearts of both MAV-1 and CVB3-
infected mice (30, 31), the Weinberg lab and our workgroup
investigated the role of the i-proteasome concerning virus
clearance in myocarditis. The i-proteasome facilitates the release
of peptides harboring hydrophobic or basic C-terminal amino
acids typical for MHC class I epitopes (22, 27). By facilitating
such specific peptide cleavages, the i-proteasome augments the
pool of antigenic peptides (40). Nevertheless, we found uniformly
that the i-proteasome can be adequately compensated by its
standard proteasome counterpart during viral myocarditis (23,
31). Although the i-proteasome provides an increased capacity
to liberate CVB3 epitopes for MHC class I antigen presentation
(40, 166), it cannot compensate for the disruption of MHC class I

presentation by the virus. If detectable at all, CD8+ effector T cell
responses remain weak during CVB3 infection (163).

CD4+ T Cells and Antibody Responses in
CVB3 Myocarditis: Impact of the
Proteasome
Infections with CVB3 trigger a rapid and effective antibody
response. Neutralizing antibodies appear 4 days after CVB3
infection (167) and are essential for controlling virus
dissemination and clearance in the heart (158). CD4+ T
cells activate B cells for production of protective antibodies. In
contrast to MHC class I, MHC class II epitopes are presented
efficiently upon infection with CVB3 and CD4+ T cells mature
quickly into effector and later on into memory T cells (163). The
proteasome is involved in multiple cellular processes needed
for antibody production. As outlined above, it controls the
maturation and activation of DCs (104), but the proteasome
regulates also B cell function (147). The canonical pathway
for MHC class II antigen presentation is located within the
endolysosomal compartment and thereby spatially separated
from the proteasome. However, there is also a non-canonical
cytosolic pathway of MHC class II-restricted antigen processing
involving proteasome-dependent peptide processing. In addition
to DCs exposed to exogenous influenza and vaccinia virus
(168), cancer cells present peptides on MHC class II by
such non-classical antigen-processing pathways (169). It is
unknown whether the cleavage site preference of the different
proteasome isoforms determine a specific CD4+ T cell repertoire
as reported for CD8+ T cells. To dissect the function of the
i-proteasome in CVB3 myocarditis, our group applied the
i-proteasome-specific inhibitor ONX 0914, and alternatively
utilized LMP7−/− mice. We found a strong induction of CVB3-
directed immunoglobulins and neutralizing antibodies in mice
lacking intact i-proteasome function (23). In fact, neutralizing
antibody titers were higher in mice with ONX 0914 treatment,
an observation that might be attributed to maintained survival
of CD4+ T cells during infection in response to i-proteasome
inhibition (72). The latter finding during CVB3 infection was
specific for A/J mice and did not occur in B6 mice. In B6 mice,
i-proteasome inhibition resulted in a reduction of lymphocyte
abundance in blood and spleen at the acute phase of the disease.
In fact, other groups demonstrated also a pro-survival function
of the i-proteasome in T cells during viral infection with IV and
LCMV (147, 170).

The fact that re-infection of B6 mice with CVB3 4 weeks
after primary virus inoculation completely revokes disease
manifestation emphasizes the importance of memory immune
status, as well as, antibody formation during CVB3 infection
(72). Upon encountering CVB3, memory T and B cells initiate
cell division much more rapidly than their naive counterparts
do. These data suggest that the level of MHC/peptide complex
upon initial infection is sufficient to trigger memory T cells (163).
In CVB3-infected B6 mice, displaying impaired i-proteasome
function, adequate immunememory develops unhindered as well
(23, 72). Similarly, protective immunity to MAV-1 is preserved
in LMP7−/− mice (31). Conclusively, the specific peptidase
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activities of the i-proteasome are not essential for establishment
of an adaptive immune response in mouse models of viral
myocarditis.

CVB-specific CD4+ T cells show an effector phenotype with
a Th1 cytokine profile (163). In addition, A/J mice induce
an autoreactive CD4+ T cell repertoire that contains IL-17-
producing cells (11). The availability of i-proteasome selective
inhibitors shed new light onto the role of the i-proteasome
during CD4+ T cell differentiation. Under Th17 skewing
conditions, inhibition of the LMP7 subunit downregulates
RORγt activity leading to reduced Th17 counts, whereby lower
STAT1 phosphorylation reduces IFN-γ production under Th1
skewing conditions indicative for lower Th1 counts (171).
Whether or not these in vitro findings are relevant during viral
myocarditis needs further investigation—a challenging task given
the relatively weak IL-17 signal obtained from CD4+ T cells
during acute myocarditis (11).

FUTURE PERSPECTIVES

Several mechanisms have been proposed for CVB3-mediated
myocarditis in mice, including direct virus-mediated cell damage
and destruction of heart tissue in response to the action of
immune effector cells (7). Being the major cellular mechanism
for protein degradation, the proteasomal system adapts to
augmented protein turnover by increased formation of i-
proteasomes (32, 33). Based on structural information (17, 18,
29), site-specific inhibitors targeting particular subunits of the
major proteasome isoforms have become available [reviewed in
(51)] and our understanding about the pathophysiological role of
the proteasome during CVB3-mediated myocarditis has thereby
improved. In our concluding remarks, we discuss whether
subunit-selective inhibitors might be applicable to suppress
manifestation or progression of virus-induced cardiac injury.

Inactivation of the highly abundant β5 standard proteasome
subunit in murine cardiomyocytes augments apoptosis in
myocardial ischemia/reperfusion injury (172) or due to
doxorubicin treatment. In contrast, even under conditions
with cytokine-induced i-proteasome expression, selective
i-proteasome inhibitors are advantageous in reducing
cardiomyocyte death in comparison to compounds targeting
either the standard or both the standard and the i-proteasome
with similar efficacy (25). During viral myocarditis, i-proteasome
formation and to a minor extent induction of PA28β also
enhance cellular protein turnover reducing the accumulation
of oxidant-damaged proteins (23, 73). The notion of a minor
influence of the i-proteasome regarding the control of pathogens
was supported by elimination of virus despite a reduction of
T1IFN (63, 72) upon i-proteasome inhibitor treatment and
induction of immune memory in CVB3 heart disease (72). This
is consistent with findings for other pathogens as well (48, 59)
and in addition, i-proteasome inhibitors are well tolerated in
other viral infection models (31, 173). In none of these models,
i-proteasome inhibition alters significantly the abundance of
toxic aggregates. Most strikingly, in mice susceptible for CVB3
myocarditis, i-proteasome inhibition is highly beneficial. ONX

0914 treatment improves cardiac function and mortality by
efficient suppression of cardiac and systemic chemokine and
cytokine production (72).

In addition to myocarditis, experimental infection of
susceptible mice with CVB3 results in severe systemic disease
as well, with the pancreas being the primary and most
affected organ (174). Early upon infection, mice become
hypoglycemic, most likely due to pancreatitis and digestive
dysfunction (175). With the release of cytokines, such systemic
pathology alters the vascular tone and impairs diastolic filling
as well. Systemic disease in A/J mice is reminiscent of a
distributive shock in sepsis (118). Importantly, given the high
abundance of i-proteasome in immune cells, i-proteasome
specific inhibitors affect systemic pathology as well and this
has immediate impact on the cardiac output and immune-
mediated damage of heart tissue (72). Other than in the
experimental mouse model, myocarditis in man usually follows
a benign respiratory, gastrointestinal or urogenital infection,
and pancreatitis is reported only occasionally (3). Therefore,
our current understanding of i-proteasome biology during
myocarditis needs further clarification. Additional research
ought to elucidate the contribution of the i-proteasome once
virus-mediated injury of the heart muscle has developed. In
addition, we need detailed knowledge on molecular and cellular
aspects of i-proteasome biology and the underlying mechanisms
that contribute to the protective outcome if the i-proteasome
is blocked prior to the occurrence of viral heart disease. As
the i-proteasome has wide-ranging functions, toxicity and
immune-related adverse effects may represent significant hurdles
regarding the application of i-proteasome inhibitors. A detailed
comprehension of i-proteasome function at an advanced stage
of myocarditis is particularly important, because the resolution
of acute CVB3 myocarditis is followed by the onset of chronic
inflammation, which has been attributed to autoimmunity,
as shown in genetically susceptible mice (176). Whether the
i-proteasome affects also manifestation of autoimmune heart
disease is unknown. Nonetheless, our current understanding of
i-proteasome biology encourages a continued look at this context
to define novel treatment options for viral heart disease.
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