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In response to pathological challenge, the host generates rapid, protective adaptive

immune responses while simultaneously maintaining tolerance to self and limiting

immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first

site of pathogen-encounter and also the location of effector function, and mounting

evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and

resolution of local responses. Just as both effector and memory T cells must adapt

to their new interstitial environment upon infiltration, tissues are also remodeled in the

context of acute inflammation and disease. In this review, we present the biochemical

and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular

matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we

discuss how tissue remodeling in the context of tumor microenvironments impairs T cell

accumulation and function contributing to immune escape and tumor progression.

Keywords: non-hematopoietic cells, T cell, immunotherapy, extravasation, interstitial migration, fluid flow,

trafficking

INTRODUCTION

Immune surveillance and protective immunity is dependent upon sequential, rapid activation,
and mobilization of hematopoietic cells that undergo multiple intercellular interactions to mediate
immune control. Rather than being stochastic, these interactions are guided by non-hematopoietic
cells that generate andmaintain tissue scaffolds. Themicroenvironments through which leukocytes
traffic (e.g., blood, lymphoid organs, peripheral tissues) differ significantly with respect to cellular
and protein composition and remodel in the context of disease and with age. Thus, in order to
perform their protective function, both effector and memory T cells must adapt to continuously
changing physical, biochemical, and metabolic tissue environments.

De novo T cell priming is initiated in lymph nodes (LN) that drain peripheral sites of
infection, inflammation, and tumors. Within lymphoid organs, non-hematopoietic cells direct
cellular interactions and increase the probability of immune activation. Lymph-borne antigen
is transported to LNs through afferent lymphatic vessels that connect to the subcapsular sinus
allowing delivery of large particulate antigens (>70 kDa) to interfollicular dendritic cells (DC)
and subcapsular macrophages (1, 2). Small antigens (<70 kDa) enter fibroblast reticular cell-lined
(FRC) conduits and are sampled by resident DCs (3). Both the packing of collagen fibers within
FRC-conduits and direct filtration by lymphatic endothelial cells (LEC)-lining the lymphatic sinus
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floor determine LN size exclusion properties and thus dictate
antigen delivery (3, 4). While lymph flow is constitutive at steady
state, lymphatic fluid transport is rapidly reduced following
cutaneous infection, indicating that peripheral tissue context and
lymphatic vessel function dictate antigen delivery (5).

Within LNs, non-hematopoietic stromal cells generate and
maintain chemokine gradients to direct leukocyte recruitment
and positioning. Afferent lymphatic vessels direct DC homing
and express adhesion molecules that permit transendothelial
migration, while specialized blood vessels, high endothelial
venules, facilitate naïve lymphocyte entry. FRCs provide a
physical scaffold within the paracortex, express homeostatic
chemokines that bring mature, antigen-loaded DCs in close
proximity with naive T cells (6), and modulate their contractile
phenotype to permit LN enlargement and lymphocyte expansion
(7). Following activation, T cells egress LNs along shingosine-1-
phosphate (S1P) gradients actively maintained by efferent LECs
and ultimately recirculate into blood (8). These newly T cell
receptor (TCR)-stimulated effector T cells are now proficient
to recognize inflamed blood endothelium in peripheral, non-
lymphoid tissues and are restricted from re-entry into LNs
(9). Importantly, while naïve T cells require TCR stimulation
in lymphoid organs for activation, pre-existing memory T
cells acquire tissue-homing capability independent of TCR-
stimulation and are rapidly mobilized to sites of inflammation
where they exert their protective function (5, 10, 11). Thus,
though effector and memory cells are subject to the same
peripheral tissue microenvironments and barriers upon arrival,
the signals required to activate mechanisms of homing and tissue
adaptation may be distinct (9).

Just as in secondary lymphoid organs, non-hematopoietic cells
in peripheral, non-lymphoid tissue provide a functional scaffold
that determines T cell infiltration, motility, effector function,
and retention. Tissue remodeling in chronic diseases, such as
cancer, significantly alters requirements for T cell behavior
and function. Here we discuss the current state of knowledge
regarding interaction between T cells and non-hematopoietic
stromal components in peripheral, non-lymphoid tissue. How
effector and memory T cells adapt within and navigate through
these non-hematopoietic barriers is poorly understood, and yet
the heterogeneity of tissue structure and function within which T
cells impart immune controlmust necessitate an array of adaptive
mechanisms. A more detailed understanding of mechanisms
used by effector and memory T cells to adapt to their peripheral
tissue environment will provide crucial insight into the ways in
which solid tumors inhibit T cell function and mediate immune
escape.

GETTING IN: T CELL EXTRAVASATION
ACROSS THE VASCULAR ENDOTHELIUM

Inflamed Endothelial Cells Provide Signal
Two for Tissue Infiltration
Though activated effector and memory T cells acquire the
machinery necessary for homing to inflamed tissue in response
to TCR and inflammatory stimuli in circulation and lymphoid

organs (9), activated vascular endothelial cells (EC) that line post
capillary venules in tissue provide the critical signal 2 necessary
for infiltration. Lymphocytes home to sites of inflammation
following a cascade of adhesive and signaling events mediated
by sequential ligation and activation of selectins, integrins,
and chemokines on ECs. EC activation and expression of
these necessary adhesive molecules occurs only at sites of
inflammation, thus ensuring specific infiltration of inflamed
tissue (12) and sparing normal, uninflamed tissues from
unnecessary lymphocyte infiltration, such that ECs act as key
determinants for the anatomic tissue distribution of stimulated
lymphocytes (Figure 1).

At steady-state, low levels of lymphocyte adhesion molecule
expression (13, 14) is maintained by tonic nitric oxide signaling
(15) and lack of inflammatory stimuli. In response to challenge,
tissue-resident macrophages, mast cells, and damaged fibroblasts
(16) produce tumor necrosis factor α (TNFα) and interleukin-
1 (IL-1) (17, 18), which are sufficient to activate local but not
systemic ECs (19). Activation of nuclear factor-κB (NF-κB)
in ECs by these inflammatory stimuli upregulates P- and E-
selectins, intracellular adhesion molecule 1 (ICAM-1), vascular
cell adhesion protein 1 (VCAM-1), and chemokines, and EC-
specific loss of NF-κB is sufficient to prevent lymphocyte
infiltration into tissue (17). Selectins bind to carbohydrate
moieties on glycoproteins expressed by effector and memory
T cells (9). Selectin binding initiates T cell rolling along the
inflamed endothelium (20), allowing for subsequent chemokine
detection. Chemokines produced by ECs then direct actin-
dependent spreading, polarization, and lateral migration of
arrested lymphocytes across the endothelial surface, presumably
to identify sites permissive to transmigration, marked by
clustered cell adhesion molecule (CAM) expression. High-
affinity adhesive interactions between ICAM-1 and VCAM-1
and their respective integrins (LFA-1/αLβ2, and VLA-4/α4β1)
ultimately lead to lymphocyte arrest (18).

While the endothelium rapidly responds to inflammatory cues
to recruit circulating lymphocytes, it may also inhibit T cell
adhesion and migration under certain conditions. T cells have
decreased adhesion to inflamed ECs co-cultured with dermal
fibroblasts, but not fibroblasts isolated from synovial joints of
rheumatoid arthritis patients (21), indicating that fibroblasts help
to maintain the endothelial barrier to lymphocyte infiltration
in healthy tissue while their dysfunction may promote disease.
PEPITEM, a small peptide released from adiponectin-stimulated
B cells, binds to cadherin-15 on ECs and triggers production
and release of sphingosine 1 phosphate (S1P), which reduces
T cell trafficking across endothelium (22), and low expression
of adiponectin receptor on B cells is associated with chronic
lymphocyte infiltration in diseases such as type 1 diabetes,
rheumatoid arthritis, and aging (22).

Upon adhesion to inflamed endothelium, lymphocytes next
traverse the endothelial barrier. Endothelial cells actively support
and guide lymphocytes to sites permissive to transmigration
while still maintaining barrier integrity via integrin-dependent
mechanisms of actin remodeling (23). At sites of transmigration,
ICAM-1/LFA-1 and VCAM-1/VLA-4 clustering forms an
immunological synapse-like interaction between ECs and T cells
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FIGURE 1 | Blood endothelial cells control T cell entry into inflamed tissue. (A) The vascular endothelium limits T cell infiltration at steady-state by low expression of

selectins and cell adhesion molecules (CAMs), and stabilized endothelial cell-cell junctions, due in part to tonic nitric oxide (NO) signaling and laminin α5-mediated

VE-cadherin stabilization. (B) In response to pathological challenge and inflammatory stimulus (e.g., TNFα, IL-1β, LPS), blood endothelial cells (BECs) become

activated and increase expression of selectins, CAMs and chemokines, which promote lymphocyte adhesion and migration to sites permissible for transmigration. In

some cases, BECs form a transmigratory cup that provides a perpendicular scaffold to direct T cell transmigration. Inflammatory remodeling of the basement

membrane contributes to lymphocyte access through destabilization of VE-cadherin at endothelial junctions and by generating low-density sites permissive to

lymphocyte migration.

(24), concentrating adhesion molecules into a ring structure
(25). ECs often extend microvilli symmetrically around T
cells to form a “transmigratory cup” (26) which further
strengthens adhesion and provides a perpendicular scaffold to
promote transmigration (24). Ultimately, T cells pass through
the endothelium in one of two ways, either between ECs at
intercellular junctions (paracellular route), or directly through
individual ECs (transcellular route). Transcellular migration
seems to be initiated by invadosome-like protrusions on
lymphocytes (27). Paracellular migration, on the other hand,
requires EC-mediated destabilization of vascular endothelial
cadherin (VE-cadherin) at endothelial cell-cell junctions (28)
and is further mediated by integrins, CAMs, and other adhesion
molecules such as PECAM-1, JAM-1, and CD99 (18).

Destabilization of VE-cadherin at EC cell-cell junctions
seems to be necessary for lymphocyte transmigration (29). ECs
expressing a mutant form of VE-cadherin that is not endocytosed
and therefore retained at cell-cell junctions, prevents lymphocyte
recruitment to inflamed skin (28). Blockade of VE-cadherin
stabilizing integrins, β1 and β3 (29) or dephosphorylation of
tyrosine 731 by SHP-2 targets VE-cadherin for endocytosis
and subsequently increases neutrophil transmigration in vitro
(30). Interestingly, lymphocyte binding to ECs induces SHP-
2-mediated VE-cadherin destabilization (30), indicating that
lymphocyte adhesion may prime ECs to be permissive of
transmigration. VE-cadherin is also cleaved by a disintegrin
and metalloproteinase 10 (ADAM10) and tetrospanin 5 and 17,
expressed by inflamed ECs, and EC-specific loss of ADAM-
10 delays T cell, but not neutrophil or B cell, transmigration
in vitro (31). Interestingly, proteolytically active leukocytes, such

as neutrophils, may mediate cleavage necessary for lymphocyte
transmigration in the absence of EC proteolysis (31). Thus, even
if not intrinsically proteolytic, leukocyte protease activity may
positively promote lymphocyte transmigration across inflamed
endothelium in vivo.

Antigen-Dependence of T Cell Recruitment
and Extravasation
Peripheral effector (12) and memory T cells (11) are recruited
to inflamed tissue in an antigen-independent manner, indicating
that local presentation of cognate antigen is not necessary
for tissue infiltration. The antigen-independence of T cell
recruitment is exemplified by recent studies that demonstrate
abundant bystander, pathogen-specific T cells, in solid tumors
(32). Interestingly, however, homing of insulin-specific CD8+

T cells to pancreatic islets, but not other tissues, is reduced
with loss of major histocompatibility complex class I (MHC-I)
in vivo (33) and antigen-loaded MHC-I presented on luminal
surfaces of the blood-brain barrier was functionally required
for antigen-specific T cell trafficking to the brain (34). These
observations have led to the hypothesis that antigen presentation
by ECs may amplify antigen-specific T cell recruitment in
certain tissues and disease states. ECs dynamically express MHC-
I and MHC-II during inflammatory processes and possess
antigen-processing machinery necessary for cross-presentation
of exogenous antigens (35). Human ECs scavenge and cross-
present the type I diabetes islet autoantigen GAD65 on MHC-II
and this enhances the transmigration of antigen-specific T cells
in vitro (36). Further in vitro evidence supports both inhibitory
(37) and promotional (38, 39) roles for EC antigen presentation
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in lymphocyte trafficking, indicating that antigen-presented by
ECs may provide context-dependent “go” or “stop” signals that
tune T cell infiltration.

Interestingly, ECs express a variety of T cell costimulatory and
coinhibitory molecules (24), and as such, may represent semi-
professional APCs strategically placed to interact with activated
effector and memory T cell populations. In addition to tuning
transmigration, data from various tissues indicate that ECs may
employ their repertoire of immune checkpoints and APC-like
function to mediate peripheral tolerance and modify T cell
behavior as they transmigrate or arrest at the vascular interface.
For example, liver sinusoidal endothelial cells scavenge and cross-
present food-borne antigens and induce tolerance through T cell
adhesion and sequestration in the liver (40, 41), and tumor-
associated LECs cross-present exogenous antigens (42, 43) and
maintain peripheral tolerance to self-antigens in LNs (44, 45)
dependent on constitutive expression of programmed death-
ligand 1 (PD-L1) (45). The relative significance of EC antigen
presentation in vivo, however, is likely both tissue and disease
specific. Further testing is needed and specifically, EC-specific
knockdown strategies, to determine the functional relevance of
EC antigen-processing and presentation in vivo.

Overcoming the Basement Membrane
The final and rate-limiting step in lymphocyte extravasation is
crossing the basement membrane (46). The basement membrane
is a 20–200 nm thick dense proteinaceous substrate composed
of laminins, collagen type IV, and sulfated proteoglycans (47),
that separates the vascular endothelium from extracellular matrix
(ECM) in the tissue parenchyma. Laminins and collagen IV
produced by ECs self-assemble into a dense sheet that is
crosslinked by perlecans and nidogen and contains 2–5 µm-in-
diameter pore-like regions of low protein density (48), presumed
sites of lymphocyte passage. Basement membrane composition
differs between developmental stage, vessel type, and activation
state of the endothelium (47), with particular variability of
laminin isoforms. Laminins are composed of alpha, beta, and
gamma chains (e.g., laminin α4, β1, γ1 is denoted as laminin 411),
and presence in basement membrane is context and location
dependent. In the central nervous system (CNS), laminin α4
is ubiquitous (49), while laminin α5 expression is patchy and
irregular (50), but both are increased upon inflammation (47,
51). In murine experimental autoimmune encephalomyelitis
extravasation occurs predominantly at sites of low laminin
α5 density (29, 51) and laminin α5 is sufficient to inhibit T
cell transmigration in a dose-dependent manner in vitro (50).
Additionally, laminin α4-deficient mice increase expression of
laminin α5 in the CNS leading to decreased T cell migration
across the blood brain barrier in EAE (50), suggesting that
the composition of laminins in the basement membrane may
selectively regulate T cell transmigration.

The mechanisms by which different laminin isoforms regulate
T cell transmigration are unclear. Laminin α5 binds to integrin β1
and β3 on ECs and stabilizes VE-cadherin at EC junctions (29).
Activated lymphocytes also express integrin β1 (18), however,
and it is possible that laminin α5may signal directly to infiltrating
lymphocytes and instruct transmigration, although this has not

been investigated. Regardless of how T cells get across the EC
layer, the basement membrane is a dense, proteinaceous barrier
that they must penetrate to complete diapedesis. Neutrophils
express elastase to remodel regions of low basement membrane
density allowing for their tissue infiltration (52), however,
the specific mechanisms of lymphocyte migration through the
basement membrane is unclear. The small size and pliability of
lymphocytes and their nuclei may permit movement through the
2–5µm pore-like regions of the basement membrane. However,
T cell intrinsic loss of granzyme B (GrzB), which degrades
both collagenous and non-collagenous ECMs (53, 54), reduces
extravasation in vivo (54), indicating proteolysis may be required
for basement membrane penetration. Further studies are needed
to evaluate the contribution of the basement membrane to
selective lymphocyte extravasation in acute and chronically
inflamed tissue.

MOVING AROUND: T CELL INTERSTITIAL
MIGRATION IN HOMEOSTATIC AND
INFLAMED PERIPHERAL TISSUES

Following extravasation from the vasculature, effector and
memory T cells encounter the complex heterogenous interstitial
matrix through which they must traverse and locate target cells
(Figure 2). The ECM defines the 3D structure of tissues and
exhibits heterogeneity across tissue types and disease states.
The topography of the interstitial matrix is determined by
the combination of structural and non-structural glycoproteins
such as fibrillar collagen, elastin, fibronectin, laminin, and
tenascin, decorated by associating proteoglycans (e.g., decorin
and versican), which contain glycosaminoglycans (GAGs; e.g.,
heparan sulfate and chondroitin sulfate). The physical spacing
and orientation of fibrillar proteins, as well as net charge of
decorating GAGs, determines matrix porosity, rigidity, and
bioactive molecule presentation. Both the physical andmolecular
properties of the ECM determine necessary modes of leukocyte
migration and thus the efficiency with which leukocytes survey
tissue. Compared to innate immune cells (e.g., neutrophil and
DC), the mechanisms that govern the interstitial motility and
homing behavior of T cells are poorly defined, yet adaptation to
and utilization of chemical and physical signals in heterogenous
tissues is necessary to rapidly identify rare APCs and mediate
their local effector function. Tissue biophysics, matrix rigidity
and interstitial fluid flux, may be an important control point
for tissue T cell dysfunction. Whether T cell motility is simply
a function of the existing microenvironment, or if rather T
cells may exert force within interstitial tissues to direct their
movement is critical to understanding diseases where T cell
infiltration is impaired, such as cancer.

Distinct Mechanisms of T Cell Interstitial
Migration in Naïve and Inflamed Tissue
Molecular mechanisms of T cell interstitial migration (55,
56) have largely been determined in the context of 2D and
3D in vitro experimental systems that allow for control of
physical and chemical cues to determine specific effects on
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FIGURE 2 | Interstitial matrices control T cell migration through inflamed tissue. (A) At steady-state T cells exhibit integrin-independent amoeboid-like Lévy walk

behavior (dotted line) that facilitates their surveillance of peripheral tissue. (B) During inflammation fibroblast activation alters tissue tension through increased

deposition, bundling, and cross-linking of extracellular matrix (ECM) components thereby altering the scaffold across which T cells must migrate. Increased interstitial

fluid flows that result from vascular permeability further activate fibroblasts and promote directional fiber alignment. These inflammation-induced ECM changes

activate integrin-dependent lymphocyte migration along collagen bundles. Whether T cell migration is dependent upon ECM organization or if rather lymphocytes may

activate proteolytic activity to promote tissue invasion remains largely unclear. Facilitating T cell position at the site of challenge are chemokine gradients (e.g.,

CXCL9/10) that increase lymphocyte velocity (v) thereby improving their Lévy walk search efficiency and permitting accumulation at and around target cells.

T cell motility. These studies indicate that in naïve matrices
lymphocytes primarily utilize amoeboid modes of movement
independent of focalized adhesions and pericellular proteolysis
(57, 58). Nuclear squeezing and deformation permits lymphocyte
movement along preformed structures at velocities 10–40 fold
higher than adhesion-dependent, mesenchymal migration (59).
These studies have importantly established guiding principles
for understanding T cell behavior in 3D, however, fail to
capture the full complexity of inflamed interstitial matrices,
which exhibit altered collagen fiber density, orientation, and
composition relative to naïve in a tissue-specific and challenge-
specific manner. Highlighting the discrepancies found between
naïve matrices in vitro and inflamed tissue in vivo, intravital
imaging in inflamed skin indicate that Th1T cell motility is
integrin-dependent, where specifically αv integrins (paired either
with β1 or β3) facilitate T cell motility along matrix fibers
(60). Matrix remodeling, therefore, necessitates T cell adaptation
and activation of adhesion-dependent modes of migration.
Importantly, effector and memory T cells do express an array
of matrix-binding integrins that increase in expression upon
activation and provide ligand specificity for various matrix
components (61). Furthermore, T cells extracted from gut are
more adhesive to ECM in vitro than circulating lymphocytes (62)
and CD4+ effector T cells display distinct integrin repertoires
when extracted from skin or lung, consistent with the differences
of ECM composition in each tissue (60). Whether T cells tune
their integrin repertoire in the context of their resident ECM, are
imprinted at priming to prefer certain matrices, or a combination
of both, remains an open question.

Interestingly, intravital imaging largely demonstrates that
T cells preferentially follow pre-formed networks of fibrillar

structures (55, 60, 63). 3D confinement studies in vitro indicate
that limiting the space through which T cells can migrate
significantly alters migratory speeds (64) and thus within a
heterogenous interstitial matrix, it has been proposed that T
cells may simply follow the path of least resistance (65). While
in healthy tissue, pre-formed ECM tracks may facilitate the
directional migration of T cells toward their target, under
pathological conditions such as fibrosis and cancer, increased
ECM density and rigidity (66) may act as a barrier to T
cell infiltration and motility (discussed in more detail later).
Consistent with this hypothesis, dynamic imaging reveals that
matrix fiber density and orientation at tumor borders directs
peripheral but not intratumoral T cell motility (63), and liver
fibrosis inhibits T cell-mediated killing of infected hepatocytes
(67), suggesting that T cells are incapable of proteolytically
invading dense matrix structures.

Peripheral T cells, however, do express a limited array of
proteases upon antigen stimulation and cytokine exposure.
Matrix metalloproteinase 2 (MMP-2) is upregulated following
VCAM-dependent adhesion to ECs (68), likely facilitating
T lymphocyte invasion across the basement membrane.
Inflammatory mediators [e.g., CCL5, prostaglandin E2,
leukotriene B4 (LTB4), TNFα, transforming growth factor β

(TGFβ), and IL-2] induce MMP-9 expression while type I and
II interferons (IFN) are suppressive (68). Granzyme B, secreted
by activated T cells, has protease activity (53, 54) and urokinase
degrades laminins and fibronectin and activates some latent form
of MMPs (69). Importantly, evidence for protease-dependent
tissue invasion of T cells was identified in rheumatoid arthritis
patients. T cells isolated from peripheral blood of rheumatoid
arthritis patients display increased invasive capacity in vitro
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and in vivo dependent upon elevated expression Tks5, a
scaffold protein required for the formation of matrix-degrading
invadopodia (70). Thus, at least in some diseased states, T cells
may activate intrinsic proteolysis that supports their pathologic
activity.

While the ECM provides an instructional scaffold upon
which leukocytes migrate through the interstitium, diffuse
matrix-bound chemokine gradients are proposed to determine
positioning and directionality. Intravital imaging, however, fails
to identify persistent and directional T cell homing in vivo and
T cells rather exhibit a Lévy walk motility pattern characterized
by straight runs at fixed velocity interspersed with pauses (71).
Interestingly, blockade of the CXCR3 ligand, CXCL10, in a
model of Toxoplasma infection of CNS resulted in reduced
CD8+ T cell velocity but did not alter Lévy walk patterns,
indicating that CXCL10 may function to improve protective
immunity by increasing T cell speed rather than through
directional migration (71). Thus, reduced velocity impairs
searching efficiency and reduces lymphocyte recruitment to and
positioning at infectious foci. Consistently, CXCR3 expression on
T cells was dispensable for vascular extravasation but required
for localization to infected foci in cutaneous vaccinia infection
(72). Continued understanding of the ways in which chemokines
affect T lymphocyte behavior in tissues requires further intravital
imaging studies to directly assay the dynamic behavior of T
cells in the presence or absence of specific chemoattractant and
chemorepellant molecules.

Organization of the Interstitial Matrix by
Fluid Flows
Constitutive, interstitial fluid flows are kept in constant motion
by hydrostatic and osmotic pressure differences between blood
vessels, the interstitium, and lymphatic vessels (73). Interstitial
fluid flow is slow, ranging from 0.1–2 µm/s at steady state and
increased during inflammation and in tumors (73). Lymphatic
vessels dynamically regulate fluid transport and consequently
influence levels of interstitial fluid flow, which may in turn
affect interstitial immunity. Cutaneous lymphatic vessels rapidly
shut down fluid transport in a type I IFN-dependent manner
preventing passive viral dissemination to LNs (5). Furthermore,
mosquito saliva is sufficient to induce local edema and an
inflammatory influx of neutrophils that when delivered in
combination with virus, promotes viral retention at the bite site
and enhances infection (74). Thus, modulation of fluid transport
phenomena (either through enhanced vascular leakiness or
altered lymphatic transport) may be a critical feature of tissue
infection, which remains to be explored more carefully.

Dynamic regulation of fluid flux through tissue impacts
ECM density, stiffness, and alignment and thus the scaffold
within which cell motility is directed. Increased interstitial fluid
pressure activates fibroblasts through integrin signaling and
TGF-β upregulation of α-smooth muscle actin (αSMA) thereby
increasing fibroblast contractility and subsequent alignment and
bundling of collagen fibers (75). Flow additionally influences the
expression and distribution of soluble and matrix bound factors
along this scaffold to inform interstitial cell motility. Pericellular

gradients can be established via multiple mechanisms including
proteolytic release from ECM, degradation, metabolism, or
removal by decoy receptors of a local source of attractants (76).
Additionally, interstitial fluid flow introduces directional bias
in chemokine distribution when expressed by migrating cells
setting up functional gradients in the direction of flow. Termed
autologous chemotaxis, this mechanism may support directional
migration of tumor cells (77) and DCs to draining peripheral
lymphatic vessels. How interstitial fluid flows influence T cell
motility either directly, or indirectly remains to be experimentally
tested.

GETTING OUT: T CELL EGRESS VIA
LYMPHATIC VESSELS

Lymphocytes Exit Peripheral,
Non-Lymphoid Tissues
Following entry into and surveillance of tissue at least a subset
of T cells continue on and egress out through lymphatic
vessels (Figure 3). Parabiosis experiments demonstrate that
most endogenous memory T cells in peripheral tissue reach
equilibrium with migratory blood-borne donor T cells indicating
rapid turnover in peripheral tissue (78) [with the notable
exception of resident memory lymphocytes (79)]. In sheep, where
lymph can be readily sampled, afferent lymph contains 106

cells/ml (80). Furthermore, the number of leukocytes in lymph
are increased by sometimes as much as 100 fold during acute
and chronic inflammatory signals (80), indicating tissue egress
is influenced by context. Whether the cellular component of
afferent lymph is simply a reflection of the tissue it drains (e.g.,
passive, random transport) or rather represents a subset of tissue
lymphocytes (e.g., active, selective transport) remains largely
unknown.

At least two candidate molecules have been proposed as
necessary signals for lymphatic directed egress, CCL21/CCR7
and S1P/S1PR1. In models of acute lung and skin infection,
T cells egress from inflamed peripheral tissue in a CCR7-
dependentmanner (81, 82), such that CD4+ T cells accumulate in
epithelial tissue of CCR7−/− mice in an age-dependent manner
(83). Additionally, forced overexpression of the spingosine-1-
phosphate receptor (S1PR1) prevents the establishment of tissue
resident memory CD8+ T cells, suggesting that the inability
to respond to S1P gradients maintained by lymphatic vessels
is necessary for local retention (84). Treatment with FTY720
(S1PR1 agonist) only partially inhibits egress (85), but does
improve CD69-deficient CD8+ T cell persistence in skin after
HSV infection (86). Thus, this together with low levels of
CCR7 and expression of the E-cadherin binding CD103 and
β1 integrin may promote retention (12, 87, 88). Conversely,
egress from chronically inflamed tissue is pertussis toxin sensitive
but CCR7-independent (85), indicating a role for alternative G-
protein coupled receptors. CXCR4might represent an alternative
mechanism of lymphatic vessel directed egress. DC trafficking is
reduced but not completely eliminated in CCR7−/− mice, and
inhibition of CXCR4 further reduced DC trafficking to draining
LNs in a model of contact hypersensitivity (89), but evidence
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FIGURE 3 | Inflamed lymphatic vessels promote lymphocyte exit from tissue. (A) Steady state lymphatic endothelial cells (LEC) form loose button-like junctions in

lymphatic capillaries, and constitutively transport interstitial fluid from peripheral non-lymphoid tissue to draining lymph nodes. Production of homoestatic chemokines,

such as CCL21, supports immune surveillance by directing leukocyte homing toward lymphatic vessels and tissue egress. (B) During inflammation, lymphatic vessels

respond to both biochemical and biophysical stimuli to adapt their function within the tissue. Lymphatic vessels are activated by inflammatory cytokines and elevated

interstitial fluid flow resulting in increased expression of selectins, cell adhesion molecules (CAMs) and context-dependent chemokine secretion that together

promotes lymphocyte egress from inflamed tissues. LECs remodel their junctions, going from loose, button-like junctions to tight, zipper-like junctions, which is

associated with decreased fluid transport from inflamed tissues and subsequent increased interstitial fluid pressures.

for CXCR4-dependent T cell egress is lacking (90). Studies
using quantitative models that track endogenous populations of
tissue-resident lymphocytes, either through intravital imaging
or photoconvertible mice, remain necessary to provide clarity
regarding the molecular mechanisms that determine the context-
dependence and specificity of leukocyte egress from inflamed
tissues.

Lymphatic Vessels Regulate Tissue Exit
To facilitate tissue exit, lymphatic vessels express an array of
chemokines in a context-dependent manner. LECs constitutively
express CCL21 (91, 92) and further increase expression during
chronic lung inflammation (90) and acute inflammation in skin,
but not treatment with complete Freund’s adjuvent (CFA) (93).
TNFα stimulation of LECs causes release of CCL21 stores (94)
and de novo production of CCL21 (94) as well as a host of other
chemokines including CCL20, CXCL5, CCL5, CXCL2, CX3CL1,
and CCL2 (95). Additionally, in vitro analysis indicates that
lipoteichoic acid, a component of gram-positive bacterial cell
walls, induces TLR2-dependent expression of CXCL1, CXCL3,
CXCL6, and CXCL8 (96). In vivo analysis of mRNA from LECs in
inflamed skin confirms these in vitro results, and also identified
several other chemokines expressed by LECs, including the
CD8+ T cell-homing chemokines CXCL9 and CXCL10 (93), all
together indicating that the chemokine repertoire produced by
LECs in peripheral tissue is context dependent. Consequently,
how this diverse repertoire of chemokines produced by inflamed
LECs functionally regulates lymphocyte egress from tissue
remains a largely open question.

LECs, like BECs, increase expression of the T cell adhesion
molecules in response to local inflammation and interstitial fluid
flows. ICAM, VCAM, and E-selectin are expressed on the LEC

surface rapidly following peripheral challenge in vivo (5, 93, 95)
and following stimulation in vitro (97). LFA-1 is necessary for
naïve T cell egress from inflamed skin (98) and inhibition of
vascular endothelial receptor-1 (CLEVER-1) and macrophage
mannose receptor prevented T cell migration through afferent
lymphatic vessels to draining LNs (99, 100). The requirement
for integrins in LEC transendothelial migration in inflamed
tissue may mirror the differential integrin requirement for DCs.
While DCs in skin squeeze through overlapping, button-like
junctions in naïve lymphatic capillaries (101), transmigration
across inflamed vessels requires integrin-mediated adhesion (97).
Interestingly, cutaneous viral infection (5) and tracheal bacterial
infection (102) induces lymphatic capillary remodeling of naïve
button-like junctions to tight, zipper-junctions, typically found in
deeper collecting vessels. These reversible changes may generate
a less permeable endothelium and thus determine the integrin
dependence of cellular transport. The functional relevance of
lymphocyte egress at both steady-state and during inflammation
remains to be determined, and in particular whether lymphocytes
exit tissue to mediate immune resolution or rather enter LNs
for re-stimulation by professional APCs remains an open and
interesting question.

ADAPTATION IN TUMOR
MICROENVIRONMENTS

Though tumors were previously thought to be poorly
immunogenic and not capable of activating an immune
response, we now know that somatic mutations (generated
by DNA instability and environmental challenge) generate
neo-antigens that are sufficiently distinct from self, such that
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T cells are capable of expanding and directing tumor-specific
killing. Thus, the accumulation of neo-antigens in tumors is
likely a prerequisite to anti-tumor immunity across tumor
types, and consistently, those tumors that exhibit highest
somatic mutational burden, e.g., melanoma, exhibit good overall
response to immune checkpoint blockade (103). Even in the
presence of potent neo-antigens, however, some tumors still
fail to respond to therapy and somatic mutational burden is
not sufficient to predict T cell infiltration within and across
tumor types (104). Thus, multiple overlapping mechanisms of
immune suppression create a more complex immune landscape,
such that, as discussed above, processes of T cell recruitment,
retention, survival, and exit may underscore intratumoral T cell
presence and thus influence response to therapy. Current efforts
to define biomarkers that are predictive of response to immune
checkpoint blockade reveal an array of factors frommyeloid cells
to the microbiome, that affect patient response. Here we will
focus on the localization of T cells within and around the tumor
parenchyma as one indicator of responsiveness and discuss how
tumor-induced stromal remodeling may contribute to T cell
distribution (Figure 4).

Multiple studies across tumor types now indicate that the
presence of T cells within tumor nests is predictive of response
to therapy (105). As a consequence, non-responding tumors
typically exhibit T cell infiltrates that are described by three
main patterns: (1) non-functional immune responses, possessing
an intratumoral but seemingly ineffective infiltrate; (2) tissue
excluded T cell infiltrates, possessing a T cell infiltrate that is
restricted to the tumor periphery; and (3) immunological deserts,
completely lacking T cell infiltrate both in the tumor nests and
in adjacent stromal (106). The underlying biology that regulates
these patterns of T cell infiltration is clearly multifactorial—
some of the contributing factors from the perspective of the
non-hematopoietic tumor stroma are discussed below.

Non-functional T Cell Infiltrates
Non-functional immune infiltrates (106), refers to tumors
containing intratumoral lymphocytes in both pre- and post-
therapy biopsies that do not contribute to significant clinical
response. Importantly, methods to evaluate intratumoral T cell
populations largely quantify changes in bulk T cell populations
(CD4 or CD8), and even when enriched for markers of
previous antigen exposure (CD45RO) or effector function (GrzB)
likely still quantify a heterogenous pool of effector, effector
memory, and central memory T cells that represent a range
of antigen specificities both relevant and irrelevant to the
tumor. Rapid recruitment of effector and memory T cells is
antigen-independent (11, 12), and bystander, viral-specific T
cells (e.g., HCMV or EBV-specific) are abundant in human
tumor tissue (32). Thus, efforts to specifically quantify tumor-
reactive T cell clones may be more predictive than bulk T
cell populations. Consistent with this hypothesis, CD39 was
recently identified as a marker to distinguish tumor antigen-
specific CD8+ T cells from bystander T cells across multiple
tumor types (32, 107) and stratification of patients based on
frequency of CD39+CD103+ double positive CD8+ T cells
associated with increased overall survival in head and neck
cancer patients (107). Thus, because of the promiscuity of T

cell infiltration across the vascular endothelium, the presence of
bulk T cells in tumor microenvironments may be insufficient
to indicate response. Even when tumors are well infiltrated
with antigen-specific T cells, however, multiple additional
mechanisms suppress their local effector function mediated by
tumor, hematopoietic (108), and non-hematopoietic stromal
cells.

Aberrant tumor angiogenesis and disrupted fluid flows
in tumor microenvironments generate hypoxia and increased
interstitial fluid pressures in solid tumors (73, 109) that influence
T cell function. Hypoxia induces Warburg effect by cancer
cells, leading to increased acidification and lactate production,
both of which inhibit cytotoxic activity of lymphocytes in vivo
(110, 111). Furthermore, increased interstitial fluid flow in
the tumor microenvironment activates fibroblasts leading to
TGFβ production (73) and ECM contraction. ECM contraction
together with shear stress activates stromal stores of latent
TGFβ (112), which attenuates CD8+ T cell cytotoxicity
(113) making them non-responsive to TCR signaling (114).
Thus, the disrupted fluid mechanics within tumor tissue
may itself participate in the regulation of local T cell
function.

Furthermore, non-hematopoietic cells likely exert direct
effects on T cells within tumor microenvironments. In the LN,
LECs, and FRCs display specific immunological properties that
function to maintain peripheral tolerance at steady state, and
while we have drawn parallels between the structural role of LN
stromal cells and non-hematopoietic cells in peripheral, non-
lymphoid tissues, it remains less clear whether peripheral non-
hematopoietic cells also acquire immunomodulatory properties
characteristic of LN stroma. LN LECs express peripheral tissue
antigens in an Aire-independent manner (44, 115); can scavenge
and cross present exogenous antigens leading to dysfunctional
CD8+ T cell activation (42, 43); and can receive peptide-MHC-
II expressing exosomes from DCs and induce CD4+ T cell
hyporesponsiveness (116). In tumors LECs are also capable of
scavenging tumor-associated antigens and cross-presenting them
on MHC-I (42), however, whether LEC antigen presentation
functionally contributes to peripheral T cell responses remains
unknown. LECs further are capable of inhibiting DC maturation
and function (117) and T cell proliferation through the
production of nitric oxide (118), demonstrating that LN-resident
LECs inhibit T cell activation and proliferation both directly and
indirectly. LN LECs also constitutively express PD-L1 and delete
naïve, self-reactive CD8+ T cells (45) and peripheral BECs and
LECs express PD-L1 in tumors (119–121) and infected tissue
(121, 122). Loss of non-hematopoietic PD-L1 and inhibition
of IFNγ signaling on peripheral LECs, thus preventing PD-L1
upregulation, improved the persistence of anti-tumor CD8+ T
cell-mediated tumor killing and overall survival in melanoma-
bearing mice (121). Importantly, loss of IFNγ signaling in LECs
also promoted the accumulation of anti-viral T cells in infected
skin and exacerbated tissue pathology (121). Thus, tumors may
coopt normal non-hematopoietic-based mechanisms of tissue
protection for immune escape.

Similarly, FRCs exhibit immunomodulatory function in LNs.
FRCs express and present peripheral tissue antigens to T cells in
LNs (115), receive peptide-MHC-II loaded exosomes from DCs
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FIGURE 4 | Non-hematopoietic cell contribution to tumor immune landscapes. The geographic distribution of T cells within intratumoral and peritumoral regions is

both predictive of overall survival and response to immunotherapy. Patients that fail to respond to immunotherapy often exhibit three patterns of T cell infiltrate that are

governed by an array of mechanisms including contributions from tumor cells and infiltrating hematopoietic cells. Non-hematopoetic cells, however, additionally

contribute to the infiltration, retention, and function of T lymphocytes in tumor microenvironments. (1) Non-functional infiltrate: possessing an intratumoral but

seemingly ineffective infiltrate. Antigen-independent recruitment of both effector and memory T cells subsets by vascular endothelium generates a diverse repertoire of

T cells both relevant and irrelevant for tumor killing. Upon tissue entry, non-hematopoietic cells further exert multiple mechanisms of immune suppression, including

expression of immune checkpoints such as PD-L1 and FasL that limit local T cell function. (2) Excluded infiltrate: possessing a T cell infiltrate that is restricted to the

tumor periphery. Establishment of matrix barriers, collapsed intratumoral vessels, poor expression of adhesion molecules, and collaborating chemoattractant and

chemorepellant gradients likely all contribute to the exclusion of T cells at the periphery of tumor nests such that inhibition of these features may improve infiltration. (3)

Immunological desert: Completely lacking a T cell infiltrate in both tumor nests and stroma. Impaired lymphatic transport may result in poor antigen delivery to lymph

nodes and thus poor priming. However, even in the presence of an activated systemic T cell pool, non-functional vessels driven by the angiogenic and desmoplastic

tumor microenvironment may prevent local infiltration leading to lesion-specific differences in immune infiltrates.

and induce CD4+ T cell hyporesponsiveness (116), and dampen
T cell proliferation through the production of nitric oxide
(118, 123, 124). Interestingly, some cancer-associated fibroblasts
acquire markers consistent with FRCs, namely expression
of podoplanin and ER-TR7 (125). Whether these fibroblasts
represent a unique subset that exhibits immune suppressive
function remains unclear, though a recent study demonstrates
that tumor-associated fibroblasts in melanoma models cross-
present tumor antigens and inhibit T cells in a FasL and PD-
L2 dependent manner (126). In LNs, migrating DCs inhibit
FRC contraction through CLEC-2/PDPN interactions leading to
scaffold relaxation and more space for accumulating T cells (7).
Whether leukocytes directly modulate fibroblast contraction in
peripheral tissue remains to be tested but might have important
implications for T cell invasion into dense, desmoplastic stroma.
Further work is necessary to determine the functional relevance
of stromal relative to hematopoietic or tumor-mediated immune
suppression.

Excluded Infiltrates
T cell exclusion, in which T cells are absent from tumor nests
and rather retained in adjacent, surrounding stroma (106, 127)

is a significant barrier to response to therapy. One leading
hypothesis is that tissue desmoplasia, the aberrant synthesis,
alignment, and crosslinking of ECM proteins by fibroblasts in
tumor microenvironments (128, 129), creates a physical barrier
that prevents T cell invasion. Pancreatic ductal adenocarcinoma
(PDAC) is particularly fibrotic and breast carcinomas exhibit stiff
collagen fibers in parallel alignment tangential to tumor borders
that correlate with poor prognosis (66, 130). Furthermore,
dynamic intravital imaging reveals T cell migration along
collagen fibers and vessels in tumors (63, 131), consistent with
their preferred amoeboid-like mode of migration described in
non-malignant matrices. Thus it has been proposed that the
orientation and density ofmatrix fibers prevents T cell infiltration
into tumor parenchyma (63).

However, strategies to reduce fibrosis in mouse PDACmodels
have had mixed results. Though cancer-associated fibroblasts
are attributed an array of tumor-promoting activities, including
immune suppression, their bulk depletion in the context of
PDAC did not improve tumor control but instead drove
more aggressive tumor invasion and metastasis (132, 133). In
contrast, strategies that rather target the composition of the
ECM using enzymes that degrade specific components (e.g.,
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hyaluronan) thus reducing interstitial fluid pressures (134), or
reduce ECM deposition and alignment (135) improved immune
infiltration and therapeutic response. Interestingly, CAR T
cells have had limited utility in solid tumors at least in part
due to physical tissue barriers that prevent their infiltration.
Consistent with this hypothesis, CAR T cells expressing
heparanase exhibit enhanced tumor infiltration and antitumor
function (136). Finally, a TGF-β signature was specifically
identified in a subset of PD-L1 inhibitor resistant patients
exhibiting an excluded infiltrate (not dysfunctional or desert)
where T cells were restricted to the fibroblast- and collagen-
rich peritumoral region characteristic of metastatic urothelial
carcinoma (137). Therapeutic co-administration of antibodies
targeting TGF-β and PD-L1 facilitated T cell penetration into
the tumor center and provoked a vigorous adaptive immune
response leading to tumor regression in a large Phase II
clinical trial testing atezolizumab in patients with metastatic
urothelial carcinoma (137). Thus, while the ECM facilitates T cell
migration in naïve or acutely inflamed tissue, tumor-associated
matrix remodeling may suppress T cell motility or place new
requirements for interstitial proteolysis to mediate intratumoral
penetration.

Contradicting the hypothesis that a fibrotic ECM is a
sufficient physical barrier to prevent T cell infiltration are
desmoplastic melanomas. Desmoplastic melanomas are densely
fibrotic but also exceptional responders to immunotherapy,
with 70% objective response rates and 32% complete responses
(138). While these tumors demonstrate a significantly higher
mutational burden than PDAC, and pre-existing adaptive
immune responses that correlate with PD-L1 expression, this
data clearly indicates that T cells are capable of infiltrating
a dense, desmoplastic fibrous stroma and that its presence is
not sufficient for T cell exclusion. Furthermore, even without
engineered protease expression, adoptively transferred T cells
can surmount physical barriers to treat experimental PDAC
models (139). While ECM composition and rigidity differs
between tissue and tumor types, the specific rate-limiting
factors for T cell infiltration into fibrotic tissue remain to be
determined.

In addition to the effects of desmoplasia on T cell exclusion,
angiogenic growth factors such as vascular endothelial growth
factor A (VEGF-A), angiopoietin, basic fibroblast growth factor
(bFGF), and endothelin-1 (140, 141) attenuate inflammatory-
mediated endothelial activation and thus intratumoral vessels
exhibit reduced expression of adhesion molecules that would
mediate lymphocyte extravasation, such as ICAM, VCAM, and
E-selectin (142, 143). For example, bFGF inhibits TNFα/IL-1α-
mediated expression of ICAM, VCAM, and E-selectin in vitro
(144), andVEGF-A disrupts their clustering, therefore decreasing
T cell adhesion to ECs (13). Endothelin signaling on ECs
increases NO production and subsequent downregulation of
adhesion molecules, thus blockade of the receptor increases T
cell adhesion and infiltration into tumors (142). Angiogenic
signaling from tumor cells also induces FasL expression on
tumor associated ECs that limits tumor infiltrating CD8+ T
cells, presumably through direct killing as demonstrated in vitro
(145, 146). Consequently, factors that drive the angiogenic switch

in tumors simultaneously establishes immunological barriers to
limit immune surveillance and facilitates immune escape.

While anti-angiogenic therapy focused on destruction of
tumor-associated vessels largely failed in most solid tumor
types, adaptation of these strategies utilizing lower, normalizing
doses to restore perfusion and adhesion molecule expression
has proved more productive (147). Dual angiopoietin and
VEGF-A blockade leads to increased T cell accumulation and
function in several tumor models and synergizes with anti-PD-
1 therapy (120). Furthermore, combination of anti-VEGFR2
and anti-PD-L1 antibodies induced lymphotoxin-dependent
emergence of high endothelial venule-like vessels (148), which
were necessary for response and are associated with better overall
outcome in patients (149, 150). Interestingly, in mouse models,
responders to immune checkpoint blockade exhibited rapid
reperfusion of intratumoral vessels indicating that intratumoral
vascular function may be required for T cell effector function
and additionally that checkpoint blockade may directly affect
endothelial cells (151). Thus, normalizing the angiogenic tumor
vasculature may improve local T cell recruitment generating
microenvironments primed to be responsive to immunotherapy.
Interestingly, poorly adhesive, angiogenic vessels appear to be
largely restricted to intratumoral regions, where they exhibit
reduced adhesive properties and elevated expression of immune
checkpoints (142). While this geographic vessel heterogeneity
may limit infiltration directly into the tumor proper, it still allows
infiltration into adjacent stroma perhaps contributing to the
dense rings of CD8+ T cells observed around tumor nests.

Additionally, antitumor effector andmemory T cells restricted
to peritumoral stroma may be unable to locate target tumor
cells due disrupted chemokine signals. High expression of
the T cell attracting chemokines CXCL9, CXCL10, CXCL12,
and CCL5 correlates positively with CD8+ T cell infiltration
across several tumor types (152–154), indicating that if the
tumors express the proper chemokines, T cells can get there.
Chemokines, however, can be post-translationally modified by
proteolytic cleavage, glycosylation, nitration, or deamination
which results in dramatically altered activity (127). When
CCL2 is nitrated, by reactive nitrogen species in the TME, for
example, T cell infiltration into tumors is hindered and rather
remain excluded from the tumor mass (155). In addition to
the absence of chemoattractants, secretion of chemokines that
serve as chemorepellants may protect tumor nests from T cell
infiltration. In a mouse model of PDAC, fibroblast activating
protein-expressing CAFs produce CXCL12 that coats tumor
cells and prevents CXCR4+ CD8+ T cells from infiltrating
tumor nests and controlling the tumor (156). Administration of
AMD3100 (CXCR4 inhibitor) increased T cell infiltration into
tumor nests, and synergized with anti-PD-L1 therapy to reduce
tumor growth (156). Thus, competing chemokine gradients,
initiated and maintained by multiple cell types within the
tumor microenvironment, determine lymphocyte positioning
and subsequent function.

Immunological Deserts
Finally, immunological deserts are defined as those tumor
microenvironments completely lacking T cell infiltrates within
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tumor nests and in adjacent stroma. Low somatic mutational
burden and tumor immunogenicity is likely a significant
driver of failed T cell responses in these tumors. However,
even in the presence of immunogenic epitopes lymphatic
transport and poor DC migration may limit anti-tumor T
cell priming in lymphoid organs and thus prevent systemic
T cell expansion. In fact, tumors induced or implanted
in mice lacking dermal lymphatic vessels fail to activate
and accumulate anti-tumor T cell responses (157, 158) and
lymphatic vessel density correlates with T cell infiltration
in colorectal cancer and melanoma patients (159, 160).
Conversely, overexpression of lymphangiogenic growth factors
enhances intratumoral inflammation and response to various
immunotherapies (42, 161), indicating that lymphatic transport
plays an important role in both adaptive immune priming and
setting up an inflammatory tumor microenvironment. Thus, the
non-hematopoietic stroma may dictate the systemic expansion
of anti-tumor immunity and thereby restrict the pool of T
cells available for tumor recruitment. Still, downstream of T
cell priming, analysis of T cells in synchronous metastases
reveals heterogeneous distribution of the existing systemic
repertoire (162) indicating additional mechanisms of control.
Furthermore, even in the absence of de novo, tumor-specific T
cell priming, recruitment of pre-existing memory populations
should lead to intratumoral accumulation of T cells. Thus,
additional factors must limit extravasation and tumor residence
of bulk T cell populations. Tissue-specific vascular heterogeneity
or dysfunction (stromal and intratumoral) may limit T cell
infiltration in a lesion-specific manner and thus contribute to
immunological deserts in some and not all metastatic lesions.

FUTURE DIRECTIONS

Non-hematopoietic cells provide context to in situ peripheral
tissue immune responses and thus may be critical local signals
that determine the switch between protective immunity and
immune suppression. Dynamic imaging in animal models
continues to reveal the spatiotemporal control tissues exert
over infiltrating T cell responses in naïve and inflamed tissues
(55). Extension of mechanisms elucidated during normal tissue
responses to tumors will provide critical insight into the
heterogeneity of T cell recruitment and retention in synchronous

metastases in patients (162); may provide novel strategies to

improve the efficacy of CAR T cell therapy in solid tumors (163);
and provide insight into the multiple immune barriers across
solid tumor types. Importantly, careful analysis of tissue-specific
differences in immune infiltrate (164, 165), if coupled with tissue-
specific vasculature andmatrix components throughmultiplexed
imaging technologies, may reveal important environmental
context to inform dynamics of intratumoral inflammation and
thus response to therapy. Similarly, single cell sequencing, while
a powerful tool for extracting novel transcriptional states in
tumor, hematopoietic, and stromal cells (143, 166, 167) loses
structural information that informs interpretation and thus
should be coupled with validation and further discovery in
matching tissue sections. The added context may not only
improve the prognostic value of extracted biomarker signatures,
but will also generate hypotheses for rigorous mechanistic testing
in experimental models leading to new strategies for immune
modulation and tumor control. Importantly, non-hematopoietic
stromal interactions provide inherently local mechanisms of
immune control that if targeted, may serve to unleash effector
T cell responses and thus revive tumor control.
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