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Children with Down Syndrome (DS) suffer from immune deficiency with a severe reduction

in switched memory B cells (MBCs) and poor response to vaccination. Chromosome 21

(HSA21) encodes two microRNAs (miRs), miR-125b, and miR-155, that regulate B-cell

responses. We studied B- and T- cell subpopulations in tonsils of DS and age-matched

healthy donors (HD) and found that the germinal center (GC) reaction was impaired in

DS. GC size, numbers of GC B cells and Follicular Helper T cells (TFH) expressing BCL6

cells were severely reduced. The expression of miR-155 and miR-125b was increased

in tonsillar memory B cells and miR-125b was also higher than expected in plasma

cells (PCs). Activation-induced cytidine deaminase (AID) protein, a miR-155 target, was

significantly reduced in MBCs of DS patients. Increased expression of miR-155 was

also observed in vitro. MiR-155 was significantly overexpressed in PBMCs activated with

CpG, whereas miR-125b was constitutively higher than normal. The increase of miR-155

and its functional consequences were blocked by antagomiRs in vitro. Our data show

that the expression of HSA21-encoded miR-155 and miR-125b is altered in B cells of

DS individuals both in vivo and in vitro. Because of HSA21-encoded miRs may play a

role also in DS-associated dementia and leukemia, our study suggests that antagomiRs

may represent pharmacological tools useful for the treatment of DS.

Keywords: Down Syndrome, B cell, miR-155, miR-125b, antagomiR, germinal center, plasma cells,

immunodeficiency

INTRODUCTION

Down Syndrome (DS) [OMIM #190685] is the most frequent chromosomal disorder in humans,
ranging from 1/300 to 1/1000 live births, and it is caused by an inherited extra copy of human
chromosome 21 (HSA21) (1). Clinical features of DS include variable intellectual disability, a
characteristic facial dysmorphism, cardiac, airway, and gastrointestinal anatomic anomalies, high
risk of developing type I diabetes mellitus, celiac disease, acute leukemias as well as early onset
Alzheimer’s disease (1–4). Life expectancy has increased significantly in the past years, mainly
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because of effective surgical correction of cardiac malformations,
increasing from 10 years in 1960 to 60–65 years nowadays (5).
Immune deficiency is an integral feature of DS and infection-
related mortality is still high. We and others have described
alterations in the immune response that may play a substantial
role in the development of recurrent infections, autoimmunity,
and malignancy in DS (6–8). The T-cell compartment has been
reported to be normal in DS, with the exception of the low
frequency of naïve CD4+ T cells (6, 9, 10). On the other hand, all
B-cell subpopulations are reduced in DS children. In the memory
B cell (MBC) compartment, switched MBCs are 10-fold less
than controls (6, 8). Furthermore, we showed that DS children
respond poorly to primary immunization producing significantly
less MBCs and antibodies (Abs) than their siblings (7). It is
still not clear how the extra-copy of HSA21 causes the complex
phenotype of DS. Bioinformatic studies have detected more than
500 genes, a high number of long non-coding RNA (lncRNA)
and 14 microRNAs (miRs) encoded on HSA21 (11–15). It has
been demonstrated that the presence of a third copy of HSA21
does not necessarily result in overexpression of HSA21-encoded
genes (16), but rather in a complex dysregulation of chromatin
function. This is demonstrated by the altered expression of genes
that map on other chromosomes (11). miRs are small non-coding
RNAs that modulate gene expression by binding to their target
mRNAs, thus affecting their stability or preventing translation
(17–19). Even though miRs constitute only 3% of the whole
genome, each miR has hundreds of targets, thus modulating
the expression of about 90% of all known genes (20). During
cell development the expression of miRs is tightly regulated
both at the transcriptional and the post-transcriptional level.
Transcriptional regulation is lost when miR is translocated or
ectopically expressed (21).

It has been demonstrated that among HSA21-encoded miRs,
five are overexpressed in cells and tissues of DS patients (12, 22).
Several studies have shown that miRs regulate immune functions.
In particular, HSA21-derivedmiRs, miR-125b, andmiR-155, play
a role in the GC reaction and plasma cell (PC) differentiation
(23, 24). In DS, the overexpression of miRs seems to be a direct
consequence of the extra copy of HSA21 that contains the miRs
in their normal chromosomal location. Thus, transcriptional
regulation is maintained in DS.

Here, we investigated the role of HSA21-encoded miRs, miR-
125b and miR-155, in the peripheral development and function
of B cells of children with trisomy 21. We show that HSA21-
derived miRs are overexpressed in B cells isolated from lymphoid
tissues and peripheral blood of DS patients. The upregulation of
miR-125b and miR-155 is mostly evident in MBCs, activated B
cells, and plasma blasts (PBs)/PCs of DS patients, highlighting the

Abbreviations: Ab, antibody; AICDA/AID, Activation Induced Cytidine

Deaminase; BCL6, B cell CLL/lymphoma 6; CSR, Class Switch Recombination;

DS, Down Syndrome; GC, Germinal Center; HD, Healthy Donor; HSA21, Human

Chromosome 21; MBC, Memory B Cell; miR, microRNA; PAX5, Paired box 5; PB,

Plasma Blast; PBMC, Peripheral Blood Mononuclear Cell; PC, Plasma Cell; TFH,

Follicular Helper T cells; PRDM1/BLIMP-1, PR domain containing 1 with zinc

finger domain/ B Lymphocyte-Induced Maturation Protein 1; scr, scramble; SHM,

Somatic Hypermutation; Spi1/PU.1, Spi-1 proto-oncogene.

crucial role of HSA21-derived miRs in the regulation of antigen-
experienced B cells. Finally, we show that by blocking miR-155
in vitro we could partially reverse the abnormalities observed in
MBCs and PBs of DS children. Thus, miR-125b and miR-155 are
dysregulated in DS patients and are both crucial in coordinating
human MBCs and PB biology.

MATERIALS AND METHODS

Study Population
HD and DS patients were enrolled at Down Syndrome and
Pediatric outpatient Clinic of Bambino Gesù Children’s Hospital
in Rome. The diagnosis of trisomy 21 was confirmed by
karyotyping; patients carrying a Robertsonian translocation or
chromosome 21 mosaicism were excluded. The study was
approved by the Ethical Committee of Bambino Gesù Children
Hospital, Rome.

PBMCs and Tonsils
Human peripheral blood mononuclear cells (PBMCs) from
HD and children with DS were isolated on density gradient
centrifugation (Lympholyte, CEDARLANE). Samples were
frozen in heat inactivated fetal bovine serum (FBS, Hyclone
Laboratories Logan UT) with 10% DMSO and stored in liquid
nitrogen until further use. Tonsils obtained from HD and DS
children undergoing routine tonsillectomy were processed into
single cell suspension. Briefly, tonsillar mononuclear cells were
extracted by mechanical disruption. The specimens were cut
into fragments and mashed through a cell strainer. Next, ficoll
density gradient centrifugation was performed (as above). The
mononuclear cell layer was then collected and cells were frozen in
FBS with 10% DMSO and stored in liquid nitrogen, as previously
described. At the same time, part of fresh tonsil tissue was also
sliced and snap frozen in liquid nitrogen for immunohistology.

Stimulations and Reagents
Cells were cultured at a concentration of 2.5 × 106 cells/mL
in 96-multiwell plates (Becton Dickinson, San Jose, CA, USA)
and cultured for different time points as described in figure
legends. CpG-B ODN2006 (Hycult Biotech) was used at 0.35µM
concentration. Complete medium was prepared as follows:
RPMI-1640 (Gibco BRL, Life Technologies), 10% FBS, 1% L-
Glutammine (Gibco BRL); 1% Antibiotics/Antimicotics (Gibco
BRL), 1% sodium pyruvate (Gibco BRL).

AntagomiR Treatment
Lyophilized antagomiRs were custom synthesized
according to Krutzfeldt et al. (25) (ThermoFisher)
(Supplementary Figure S1B). Cells were washed twice in
PBS, resuspended in serum-free medium, pre-incubated for 2 h
at 37◦C and supplemented with antagomiRs at a concentration
of 2µM (26). Cells were subsequently stimulated with CpG,
as previously described, for seven days. The proportions of B
cells and PCs were evaluated by flow cytometry. In parallel, after
in vitro stimulation with CpG, cells were harvested and total
RNA was extracted. By qPCR the expression level of silenced
miRs was evaluated in comparison with scr-treated cells. Briefly,
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we calculated the relative level of miR expression in cells treated
with antagomiRs. Then, miR levels were expressed as percentage
of the scr-treated cells. In all experiments, the normalized level
of miR in antagomiR-treated cells was roughly 10% of the level
of the same miR in scr-treated cells. We calculated the percent of
silencing by the following formula: scr-antagomiR treated cells.
In our experiments, therefore the efficiency of silencing achieved
was 100–10%= 90%.

Flow Cytometry
PBMCs and tonsil cells were stained with fluorochrome-
conjugated Abs according to the standard operating procedure
(see Supplementary Figure S1A for a complete list of Abs). B
cell subsets were identified according to previous reports (27–
29). The Cytofix/Cytoperm kit (BD Biosciences) was used for
intracellular staining of BLIMP-1, AID, and BCL6 according to
the manufacturer’s recommendations. Dead cells were excluded
from analysis by side/forward scatter gating. At least 100,000
gated events on living cells were analyzed, whenever possible, for
each sample. Samples were acquired on a BD Fortessa X-20 (BD
Biosciences).

Cell Sorting
Tonsil cells were washed and stained with fluorochrome-
conjugated Abs. Tonsillar B-cell and T-cell subpopulations
were sorted (Figures S2A,B). Sorting was performed using the
FACSAria TM III cell sorter (BD Biosciences). Post-sort purity was
controlled for each sample and was higher than 98%.

RNA Extraction and Real-Time PCR
Analysis
Activated PBMCs from cultures and mononuclear cells from
tonsils were lysed with Trizol (Trizol R© Reagent, Applied
Biosystem) and RNA was extracted according to manufacturer’s
instructions. Total RNA was retro-transcribed to cDNA
using SuperScript R© III Reverse Transcriptase (Invitrogen).
For miRs, RNA was retro-transcribed to cDNA using Taq-
Man MicroRNA Reverse Transcription Kit according to
manufacturer’s instructions. Quantitative PCR (qPCR) was
performed using the 7900 HT Fast Real Time PCR System and
commercial Taq-Man probesTM (Supplementary Figure S1B).
Gene expression was normalized to ACTINβ or GAPDH and
miRs expression was normalized to U6. Data are expressed as
arbitrary units (AU) determined by using the 2−1ct method,
according to literature (30).

Immunohistochemistry and
Immunofluorescence
Five micrometers tonsil sections were stained with Hematoxylin
and Eosin. Images were acquired with a Leica DMi8 microscope.
The whole section was reconstructed and a representative area
(13.97 mm2) was used for analysis. For each patient and HD
the number of GCs was counted and their area was calculated.
The analysis was performed with the NIS-elements BR Imaging
Software version 4.50. For immunofluorescence studies, sections
from HD and DS were stained with fluorochrome-conjugated
Abs against CD4, IgM, and IgD. CD4+ T cells were counted

within the follicles and the cellular density (number of CD4+

T cells/GC area) was calculated for each section. Images were
acquired with a Leica SP8X microscope.

Statistical Analysis
Data are presented as mean±SEM or median as described
in figure legends. Statistical analysis was performed using the
Prism software (GraphPad Prism 5, La Jolla, CA) and unpaired
Student’s t-test or One-way ANOVAKruskal-Wallis test followed
by Dunn’s Multiple comparison test were used as described in
figure legends. Data were considered statistically significant when
p < 0.05.

RESULTS

GCs and MBCs Were Decreased in Tonsils
of DS Patients
We collected tonsils from DS children and age-matched HD
and analyzed the distribution of B-cell subpopulations in the
two groups. B cells were gated as CD19+ and then divided
into subpopulations according to the surface expression of
CD38 and IgD following the Bm classification (27) (Figure 1A).
The frequency of total B cells was similar between HD
and DS children. Naïve B cells (Bm1-2, CD38−IgD+) were
significantly increased in DS patients as compared to controls.
MBCs (Bm5, CD38−IgD−CD27+) were instead significantly
reduced in DS. When we separately analyzed IgM and switched
MBCs, we found that switched MBCs were significantly less
in DS tonsils (Supplementary Figure S3A), thus confirming
previous observations in the peripheral blood (6, 8). GC B
cells (Bm3-4, CD38+IgD−) were significantly reduced in DS
children to about half of the normal numbers. The relative
proportions of centroblasts (CXCR4+ CD86−) and centrocytes
(CXCR4− CD86+) (31, 32) were maintained. PCs identified
either as CD38++IgD− (Figures 1A,B) or CD38++CD27++

(Supplementary Figure S3B) were comparable between the two
groups. In order to further characterize the reduction in GC B
cells observed in DS children, we stained tonsil B cells for BCL6,
a transcription factor that acts as master regulator of the GC
response (33–35). BCL6 expression is tightly regulated during
B-cell differentiation and is restricted to the GC where SHM
and CSR occurs (36, 37). We found that GC B cells, expressing
BCL6 (identified as CD38+IgD−BCL6+) were significantly
reduced in DS patients compared to controls (Figure 1C).
Thus, GC B cells, as well as MBCs, were reduced in DS
tonsils, whereas the frequency of PCs was similar in patients
and HD. The low frequency of GC B cells detected by flow
cytometry could be explained either by a reduction in the
number or size of GCs in DS patients. In order to clarify
this important point, we identified B cell follicles and GCs
by staining tonsil sections for IgM and IgD and analyzing
them by confocal microscopy (Figure 1D) and H&E staining
(Supplementary Figure S4). Both in HD and in DS, we counted
the number and calculated the area of GCs. Although the
number of GCs was the same in HD and DS patients, their
size was significantly smaller in DS patients than in controls
(Figure 1E). Thus, in the tonsils of DS children, GCs were small,
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containing fewer BCL6+ B cells, MBCs were reduced in number,
whereas frequency of PCs was comparable between the two
groups.

TFH Cells Are Reduced in Both Tonsils and
Peripheral Blood of DS Patients
Inside the GC, TFH cells are responsible for the selection
of B cell clones bearing high affinity receptors, favoring
isotype switching and differentiation into MBCs and PCs. In
human tissues, bona fide TFH cells were identified as CD3+

CD4+CD45RO+CD45RA−CXCR5++BCL6+ (38, 39). Memory
T cells expressing modest amounts of CXCR5 and lacking
BCL6 (CD3+CD4+CD45RO+CD45RA−CXCR5+BCL6−) were
considered TFH precursors, locating mainly outside the GC (40).
In tonsils, the frequency of TFH precursors was comparable
between DS and HD (Figure 2A), whereas the frequency of TFH

cells was significantly reduced in DS tonsils (Figure 2B,C). TFH-
like cells have been also described in peripheral blood (40, 41).
We found that in peripheral blood of DS patients, TFH-like
cells were also reduced (Figure 2A,C). Next, we studied the
localization of T cells within lymphoid tissues of DS patients
and HD. Sections of tonsils were stained with Abs against CD4
and IgM in order to visualize T and B cells and their reciprocal
localization (Figure 2D). The number of CD4+ T cells within
the GCs (expressed as number of cells divided by the area of
GCs to correct for the differences in the areas of GCs) were
reduced in tonsils of DS children in comparison to those of
HD (Figure 2E). In conclusion, we found that in the tonsils of
DS children TFH cells are reduced as shown by the decrease
of both CXCR5++BCL6+ T cells and CD4+ T cells within the
GCs. Our results suggest that the number of TFH cells, with a
crucial role in sustaining a correct GC response, is reduced in DS
patients.

Expression of Chromosome 21-Derived
miRs Was Increased in Tonsillar B-Cell
Subpopulations of DS Patients and Affects
the Expression of AID and BLIMP-1
HSA21 encodes miR-125b and miR-155, both important for B-
cell biology. The miR-125b locus is in the subcentromeric region
of the long arm of HSA21. Two additional miRs, let7c and
99a are included in the same cluster with 125b. Instead, miR-
155 is located on a separate locus ∼8,9Mb downstream, toward
the telomeric region ([+] strand, 5′-3′ direction) (Figure 3A).
Both miR-155 and miR-125b play an important role in the
control of the GC reaction. In order to investigate whether
the expression of miRs was altered in the GC, we sorted B-
cell populations from tonsils of HD and DS children (naïve
B cells, GC B cells, MBCs, and PCs, according to the gating
strategy shown in Supplementary Figure S2A). By qPCR, we
evaluated the expression levels of the two miRs of interest and
their target genes PRDM1 and AICDA, as well as BCL6 and
PAX5. We found that in DS patients the expression of miR-
155 was significantly higher in MBCs. The expression of miR-
125b was increased in both MBCs and PCs (Figure 3B). AICDA
mRNA was expressed in GC B cells, but no differences between

HD and DS patients were noted. PRDM1 was highly expressed
in PCs of both HD and DS patients. The mRNA for BCL6 was
upregulated in GC B cells in HD and DS children (Figure 3C).
As expected, PAX5 was mostly expressed in naïve and MBCs,
with no significant differences between HD and DS patients.
miRs regulate protein expression by two different mechanisms:
inducing the degradation of mRNA and mainly inhibiting the
translation process (18, 19). By flow cytometry we showed
that the expression of AID, the protein encoded by AICDA,
was comparable in the GC of both HD and DS children, but
was significantly lower in MBCs of DS patients, mirroring the
higher expression ofmiR-155 observed in these cells (Figure 3D).
BLIMP-1 was equally expressed in tonsil-resident PCs of HD
and DS (Figure 3E). Finally, we also analyzed the expression of
miRs in sorted T-cell subpopulations. In tonsils of HD, miR-
155 was downregulated in CD45RO+ T cells, whereas it was
equally high in naïve and memory T cells of DS children. In
tonsils, CD45RO+ T cells included all TFH cells (Figure 3F).
Our results show that the expression of miR-155 and miR-
125b is altered in tonsillar B cells of DS patients: miR-155 was
slightly increased in GC B cells and significantly over-expressed
in MBCs, whereas expression of miR-125b was increased in
PCs of DS children. Furthermore, miR-155 is downregulated in
memory T cells, but remained high in memory T cells of DS
children.

HSA21-Derived miRs Were Dysregulated in
in vitro PBMCs of DS Patients
To further investigate whether miRs encoded by HSA21
were differently expressed in DS and HD, we studied
the basal expression levels of mature miR-155 and miR-
125b in PBMCs from HD and DS patients. We found
that the expression of miR-155 was significantly higher
in DS PBMCs whereas the expression of mature miR-
125b was not significantly different between the two
groups (Figure 4A). The expression levels of miR-let7c
and miR-99a were also comparable between DS and HD
(Supplementary Figure S5A).

The function of B cells can be studied in vitro by activation
with CpG, a synthetic oligonucleotide that binds to TLR9.
Whereas naïve B cells show increased survival in response to
CpG, MBCs proliferate, and differentiate into PBs (42, 43). We
have previously shown that the number of MBCs is severely
reduced in the peripheral blood of DS children. In response
to CpG, however, MBCs of DS individuals proliferate at a
higher rate than the cells from HD and generate a number
of PCs that is higher than expected (6). In order to evaluate
the expression of miR-155 and miR-125b and their main
target genes at both the mRNA and protein level, we studied
the B cell response after in vitro activation with CpG. miR-
155 has been shown to increase in isolated CD19+ human
B cells stimulated with CpG in patients with rheumatoid
arthritis (44). We were unable to purify sufficient numbers of
B cells from DS children and for this reason we stimulated
total PBMCs with CpG. The kinetics of miR-155 and AICDA
expression are shown in Figure 4B. We show that miR-155
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FIGURE 1 | B cell populations and GCs in tonsils. (A-C) Flow cytometry analysis of B-cell subsets in tonsils stained with appropriate Abs. (A) Plots show the

distribution and frequency of B-cell subsets in tonsils of a representative HD and DS. (B) Frequency of total B cells (expressed as percentage of lymphocytes), naïve,

memory, plasma cells, GC (all expressed as percentage of CD19+), DZ, and LZ (all expressed as percentage of GCs) of HDs (n = 17, except DZ and LZ n = 8) and

DS patients (n = 5, except DZ and LZ n = 3) is shown. (C) Representative plots and graph shows frequency of BCL6+ GC B cells in tonsils (HD n = 3; DS n = 4).

Each dot represents a different HD or DS and black lines represent mean (D) Analysis of GC B cells in tonsils stained with IgM and IgD by immunofluorescence (IF).

Images are 20X, scale bar 100µm. (E) Bars show mean±SEM number (left) and area (mm2) (right) of GCs that were calculated on sections stained with H&E in HD

(n = 3) and DS patients (n = 3). Data are representative of three independent experiments. Differences between groups determined by unpaired Student’s t-test

(*p = 0.05, **p = 0.01, ***p = 0.001).
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FIGURE 2 | TFH cells in tonsils and peripheral blood. (A) Plots show percentage of CD3+CD8−CD45RA−CD45RO+CXCR5+ and CXCR5++ in PBMCs and tonsils

of a representative HD and DS patients. (B) Plots show percentage of CD3+CD4+CD45RA−CXCR5++BCL6+ cells in tonsils of a representative HD and DS

patients. (C) Graphs show percentage of total CD3+ T cells in PBMCs and tonsils, CXCR5+ TFH-like cells in PBMCs and CXCR5++BCL6+ TFH cells in tonsils of a

representative HD and DS patients. Each dot represents a different HD or DS, black lines represent mean (peripheral blood: HD n = 11, DS n = 12; tonsils: HD n = 4,

DS n = 4). (D) IF analysis of tonsils from HD and DS using anti-CD4 and anti-IgM Abs to identify T cells within the GC. Dashed line mark the GC area. Images are

20X, scale bar 75µm. (E) Bars show mean±SEM cellular density of CD4+ within each GC (HD n = 3, DS n = 3). Differences between groups determined by unpaired

Student’s t-test (*p = 0.05).
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FIGURE 3 | The expression of miRs in sorted tonsillar B cells. (A) Schematic Figure showing HSA21 and loci of miRs on the long arm of HSA21. (B) Bars show

mean±SEM expression of miR-155 and miR-125b in sorted tonsillar B-cell populations (HD n = 4; DS n = 4). (C) Bars show mean mRNA expression±SEM of

AICDA, PRDM1, PAX5, BCL6 in sorted tonsillar B-cell populations (HD n = 4; DS n = 4). (D) Graphs and histograms show flow cytometry analysis of AID expression

in GCs and MBCs (HD n = 8; DS n = 3). (E) Graph and histogram show flow cytometry analysis of BLIMP-1 expression in PCs (HD n = 10; DS n = 3). Each dot

represents a different HD or DS and black lines represent mean (F) Bars show mean±SEM expression of miR-125b and miR-155 expression in sorted CD4+ naive

and memory T cells (HD n = 3; DS n = 3). Differences between groups determined by unpaired Student’s t-test (*p = 0.05, **p = 0.01). In (F) one-way ANOVA

Kruskal-Wallis test followed by Dunn’s Multiple comparison test was performed (*p < 0.05).

was induced by CpG in both HD and DS individuals starting
from day 1 and was downregulated at day 3. In PBMCs of
DS children miR-155 was significantly more expressed than
in the controls at all-time points and remained significantly
higher after 5 days of stimulation, when it had returned to
baseline in HD. miR-125b was significantly higher in DS, both
in unstimulated and stimulated cells (Figure 4C). We also
studied the expression of miR-let7c and miR-99a as they are
in cluster with miR-125b. Their expression followed the same

pattern of miR-125 although let7c is present in very small
amounts (Supplementary Figure S5B). Stimulation with CpG
significantly upregulated the mRNA expression levels of AICDA
and PRDM1 in HD, whereas in DS children both AICDA and
PRDM1 were expressed to a lesser extent compared to controls,
even though this difference was not statistically significant
(Figure 4C). Despite the fact thatMBCs of DS children effectively
differentiate in vitro (6), the frequency of PBs (identified as
CD27++ CD38+++) (43) was significantly lower in DS patients.
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FIGURE 4 | miRs expression in untreated cells and in in vitro activated PBMCs. (A) Bars show mean expression±SEM of miR-125b and miR-155 in untreated PBMCs

from HD (n = 11) and DS children (n = 10). (B) Graphs show the mean expression±SEM of mRNA of miR-155 and AICDA in DS and HD at different time points (HD

n = 6, DS n = 5). (C) Bars show mean expression±SEM of miR-125b and miR-155 in PBMCs stimulated with CpG for 5 days (HD n = 8; DS n = 4 pools, each pool

is composed of 5 children) and mean expression±SEM of mRNA of AICDA and PRDM1 in PBMCs stimulated with CpG for 5 days (HD n = 8; DS n = 4 pools, each

pool is composed of 5 children). (D) PBMCs were stimulated for 5 days with CpG and frequency of CD27++CD38++ plasma blasts was evaluated. Left panel shows

representative flow cytometry plots of plasma blasts of a HD and a DS patient. Right panel shows frequency of plasma blasts and plasma blasts BLIMP-1 expression

after 5 days of culture with CpG (HD n = 9, DS n = 10). Differences between groups determined by unpaired Student’s t-test (*p < 0.05; **p < 0.01; ***p < 0.001).

In in vitro derived PBs, the expression level of BLIMP-1, detected
by flow cytometry, was significantly reduced in DS children
(Figure 4D). Thus, after in vitro activation, B cells of DS
expressed higher amounts of miR-155 and miR-125b that could
explain a dysregulated expression of their target proteins AID and
BLIMP-1.

In vitro Silencing of miR-155 and miR-125b
Affected PC Formation Both in HD and DS
Both miR-155 and miR-125b are involved in the GC reaction
and PC formation: upregulation of miR-155 can cause premature
PC formation by repressing PU.1 and PAX5 (24, 44, 45). miR-
155 directly regulates AID (46, 47). miR-125b regulates IRF4
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FIGURE 5 | Silencing of mature miRs in activated peripheral blood B cells with CpG. (A) PBMCs were treated with antagomiR and activated with CpG for seven days.

Graphs show the efficiency of miR-125b and miR-155 silencing in HD (n = 4) and DS (n = 4) evaluated by qPCR, and expressed as percentage of silencing compared

to the scr control. (B) After seven days, plasma blasts differentiation was assessed by flow cytometry through the surface upregulation of CD27 and CD38. Plots of a

representative HD and DS patient is shown. Bars indicate mean frequency±SEM of plasma blasts for HD (n = 14) and DS (n = 15). (C) Bars show mean±SEM mRNA

levels of AICDA in in vitro stimulated cells after silencing of miR-155 (right); graph shows MFI levels of AID protein expression evaluated by flow cytometry after in vitro

silencing of miR-155, each dot represents a different HD or DS, black lines represent mean. (D) Bars show mean±SEM mRNA levels of PRDM1 in in vitro stimulated

cells after silencing of miR-155 (right); graph shows MFI levels of BLIMP-1 protein expression evaluated by flow cytometry after in vitro silencing of miR-155, each dot

represents a different HD or DS, black lines represent mean. Culture conditions are indicated in figure legend. Differences between groups determined by unpaired

Student’s t-test in A (**p < 0.01; ***p < 0.001). One-way ANOVA Kruskal-Wallis test followed by Dunn’s Multiple comparison test was performed in (B) (*p < 0.05;

***p < 0.001).
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and BLIMP-1 expression (48, 49). In order to verify the function
of miR-155 and miR-125b in PC formation, we silenced the
mature miRs with antagomiRs in PBMCs of DS and HD, and
stimulated them with CpG. After seven days, cells were harvested
and stained with appropriate combination of Abs to analyse
the differentiation of PBs by flow cytometry. The efficiency of
silencing was evaluated by qPCR: we observed around 90%
downregulation in the expression of each miR compared to
their scramble (scr) antagomiR in both HD and DS (Figure 5A,
see section Materials and Methods for details). After treatment
with antagomiR-155, differentiation into PBs was significantly
reduced both in HD and DS (Figure 5B). Inhibition of miR-125b
did not seem to affect PB differentiation (Figure 5B). We also
studied the effect of silencing on AICDA and AID. Although
at the mRNA level there were no differences between scr
and antagomiR-155-treated cells, AID protein was significantly
upregulated in DS patients after treatment with antagomiR-
155 (Figure 5C). BLIMP-1 was, instead, not influenced by the
treatment neither in DS nor in HD (Figure 5D). Thus, inhibition
of miR-155 reduces B cell terminal differentiation in vitro as
demonstrated by the reduced numbers of PCs obtained in
cultures containing the miR-155 antagomiR. The inhibition of
miR-125b did not impair the generation of PCs in vitro.

DISCUSSION

DS is caused by an extra-copy of HSA21 resulting in a complex
dysregulation of genes not only encoded on HSA21 but also on
other chromosomes (11). DS individuals suffer from recurrent
infections of the respiratory tract and gut and respond poorly
to vaccinations (7). Furthermore, they are at high risk of
developing autoimmune disorders as well as malignancy (50–
52). In normal individuals, MBCs, generated by the immune
response to pathogens or vaccines, prevent re-infections. We
have shown previously that DS children have a reduced number
of MBCs, especially of switched MBCs. In vitro, MBCs of DS
children show an increased ability to differentiate into PBs
(6). The recent discovery of miRs has added a new level of
complexity to the study of gene regulation. EachmiR can regulate
the expression of hundreds of target genes, thus influencing
several different pathways and biological processes (53). HSA21
encodes 14 miRs, two of which, miR-155 and miR-125b, play an
important role in the immune response (17, 24, 54) and their
expression has been found increased in cells of DS individuals.
We studied the expression of miR-155 and miR-125b in B
cells of DS patients and HD in order to evaluate whether the
immunodeficiency associated with DS may be a disorder caused
by miRs.

First, we analyzed the GCs where switched MBCs are
generated. We show that switched MBCs are significantly
reduced in tonsils of DS children. GCs were present in normal
numbers, but GCs of DS children were significantly smaller
than those of HD. GC B cells and TFH cells, were also
significantly diminished in DS compared to HD and the GCs
contained less B cells and less TFH cells (Figures 1,2). We then
evaluated the expression of miR-155 and miR-125b in sorted

cells. The expression of miR-155 was slightly increased in GC
B cells of DS children and was significantly higher in tonsil
MBCs (Figure 3); miR-125b was significantly increased in both
MBCs and PCs. In MBCs of DS children, AID protein was
reduced. In T cells miR-155 was overexpressed at the memory
T cell stage. The small increase in miR-155 and miR-125b in
the GC B cells may be sufficient to impair the fine balance
indispensable for the complex events occurring during the
immune response.

GC B cells are a very fragile population prone to apoptosis
and difficult to manipulate. Thus, we studied miR expression
and functions during B-cell activation in a more stable system,
using peripheral blood B cells stimulated with CpG in vitro.
Both miR-155 and miR-125b were increased in B cells of DS
children. MBCs proliferated and differentiated in culture. The
frequency of PB generated in vitro was lower in DS than
in the controls probably because of the reduced number of
MBCs in the PBMCs (Figure 4 and Supplementary Figure S5C).
Interestingly, PB generated in vitro expressed reduced levels
of BLIMP-1, a phenomenon that could reflect the function of
miR-125b.

In order to confirm the functions of miR-155 and miR-125b
in B cells, we inhibited their activity in culture with antagomiRs
(25, 26). We observed that the inhibition of miR-155 reduced
the number of PCs generated in vitro in both HD and DS,
whereas miR-125b inhibition had no measurable effects on PC
differentiation.

miR-155 controls PB formation through the PU.1-PAX5 axis
(24, 44, 55). PU.1 maintains the levels of PAX5, which in turn
controls B-cell identity and prevents terminal differentiation
into PCs. If PU.1 is downregulated by miR-155, PAX5 levels
decrease and the PC program is then implemented by the
upregulation of BLIMP-1 (44, 54). Thismechanismmight explain
why the few MBCs of DS children show an increased propensity
to become PB in vitro (6). Accordingly, miR-155 antagomiR
reduces the frequency of PBs generated in vitro (Figure 5).
AntagomiR to miR-125b did not change the number of PBs
generated by CpG. It has been recently shown that BLIMP-
1 plays a role in the establishment of the PC transcriptome
(56), but “once established plasma cell identity is maintained
independently of BLIMP-1”. BLIMP-1 is, however, involved in
the unfolded protein response allowing secretion and survival
of long-lived PCs. The reduced capacity of DS children to
maintain the level of specific antibodies after immunization (6)
may indicate a reduced number or function of long-lived PCs,
but further experiments are necessary to determine whether
the increase of miR-125b affects BLIMP-1 and PC longevity
in vivo.

A similar mechanism may explain the reduction of TFH cells
in DS. Recently it has been shown that miR-155 reduces the
number of BCL6 positive macrophages in atherosclerotic plaques
(57). One interesting possibility is that in TFH cells, similar to
B cells, the reduction of BCL6 leads to a premature increase
of BLIMP-1 thus inhibiting TFH cells differentiation or survival
(58). Our hypothesis is that the increased levels of miR-155
and miR-125b alter B- and probably T-cell functions at multiple
levels in DS.
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Our data show that the administration of antagomiRs
for miR-155 in vitro changes the fate of B cells, partially
correcting the B cell defects observed in DS, as demonstrated
by the increase of AID protein and the reduction of PCs.
HSA21-encoded miR have also been shown to control heart
development (59), to play a role in leukemia (60), and
to act as tumor suppressors (61); furthermore, miR-155 is
correlated to dementia in DS (62). As miR activity can be
modulated by the administration of antagomiRs, our study
opens the way to possible pharmacological therapy not only for
immunodeficiency, but also for other clinical aspects of DS, such
as leukemia and dementia, whereHSA21-encodedmiRsmay play
an important role as well.
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