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The quest for a licensed effective vaccine against malaria remains a global priority. Even

though classical vaccine design strategies have been successful for some viral and

bacterial pathogens, little success has been achieved for Plasmodium falciparum, which

causes the deadliest form of malaria due to its diversity and ability to evade host immune

responses. Nevertheless, recent advances in vaccinology through high throughput

discovery of immune correlates of protection, lymphocyte repertoire sequencing and

structural design of immunogens, provide a comprehensive approach to identifying and

designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine

approaches that can be employed in malaria vaccine design.
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sequencing

THE GLOBAL MALARIA SITUATION

Malaria caused by Plasmodium parasites remains a major infectious disease of public health
importance. The disease is caused by five protozoan species, namely Plasmodium falciparum, P.
vivax, P. malariae, P. ovale, and P. knowlesi. The deadliest of these is P. falciparum which is
predominant in sub-Saharan Africa (SSA). In 2016, approximately $2.7 billion was invested globally
in control and elimination programs (1). Meanwhile, it was estimated in 2016 that nearly half of the
world’s population was at risk of infection, with 91% of the estimated deaths being in Africa and 70%
of the mortality occurring in children under 5 years (1). Notwithstanding, preventive control and
intervention measures have helped decrease the burden between 2000 and 2015. For instance, the
incidence of newmalaria cases was down by 37%world wide and 42% for theWHOAfrican region.
In addition, the incidence of mortality over the same period decreased by about 60% globally and
66% for the African region (2). Yet, malaria imposes huge economic losses for people in the African
Region and there is a need to upscale the available interventions and introduce new ones such as a
licensed cost-effective vaccine (3).

CHALLENGES TO THE ERADICATION OF MALARIA

Malaria eradication faces many challenges including insecticide resistance, emerging anti-malarial
drug resistance and the presence of asymptomatic and submicroscopic infections.

Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), have been among
the most effective tools for malaria control and elimination (4). So far, pyrethroids are the only
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recommended class of insecticides for LLINs. However, more
than 30 countries have reported resistance to pyrethroids, which
has the potential to spread to new areas (5–9).

The rapid development of pyrethroid resistance suggests
that alternative classes of insecticides need to be identified. As
a result, WHO has cautioned against the use of pyrethroids
(8), raising the need for alternative measures of control. The
development of resistance to malaria drugs by P. falciparum
remains a major threat to malaria elimination. The WHO-
recommended first line treatment for uncomplicated malaria
caused by Plasmodium falciparum is the artemisinin-based
combination therapies (ACTs). Historically, P. falciparum has
been able to develop resistance to almost all previous first-line
antimalarial drugs (10, 11). The development of resistance to
these drugs almost always begins from South-East Asia, where
mutant parasites resistant to antimalarial drugs are more likely to
survive due to lower levels of acquired immunity, poor adherence
to administered drugs and higher parasite burdens (11–14).
P. falciparum resistance to artemisinin-based drugs seems to
have emerged sporadically (15), with mutations for resistance
found within the kelch 13 propeller gene (15, 16). An inevitable
fact is that artemisinin resistance may be imminent and other
intervention avenues such as the development of highly effective
vaccines need to be rapidly explored.

Also, the presence of asymptomatic and submicroscopic
infections poses a major threat to malaria eradication and
control. Continuous exposure to infectious mosquito bites leads
to the development of anti-disease and anti-parasite immunity.
The level of this immunity is determined by the transmission
intensity and epidemiology of the disease (17, 18). It has been
shown that the microscopic prevalence of malaria is almost
half of that detected by nucleic acid amplification techniques
and lower in low transmission areas (19, 20). The prevalence
of submicroscopic infections has been found to be high in
low transmission areas and common in children, probably as a
result of a less robust immune response, leading to insufficient
time for the development of protective immunity. In addition,
asymptomatic infections may persist for several months and
serve as a major threat to malaria eradication (21) as they sustain
disease transmission (22–25).

CURRENT APPROACHES TO
DEVELOPING A MALARIA VACCINE

Malaria Vaccines
The acquisition of partial immunity and the successful treatment
of clinical symptoms of malaria in children with purified
immunoglobulins from semi-immune adults (26) are positive

Abbreviations: ACTs, artemisinin-based combination therapies; PfEMP1, P.

falciparum Erythrocyte Membrane Protein-1; MSP1, Merozoite Surface Protein;

AMA1, Apical Membrane Antigen 1; Rh, Reticulocyte homolog (Rh); MHC,

Major histocompatibility complex; HLA, Human leukocyte antigen; PfSPZ, Pf

sporozoite; PfCVac, Pf chemoprophylaxis vaccination; PfGAP, Pf genetically

attenuated parasite; TBV, transmission-blocking vaccines; BCR, B cell receptor;

bnMAb, broadly neutralizing monoclonal antibody; TCR, T cell receptor; VIMT,

Vaccine that interrupt malaria transmission; SSM-VIMT, Sexual, sporogenic or

mosquito stage VIMT; PE-VIMT, pre-erythrocytic VIMT.

indications of the feasibility of a vaccine against malaria. This
is also supported by the induction of sterile immunity in both
animal models and controlled human malaria infection (CHMI)
through immunization with either live or attenuated sporozoites
andmerozoite-infected red cells (27–29). Attenuated sporozoites,
even though they still maintain their natural hepatocyte invasion
ability, do not fully mature in the liver and hence do not form
merozoites that are responsible for the clinical symptoms of
malaria (30).

Vaccine Targets
There are three stages to target for a potential malaria vaccine
candidate. The first target of vaccine development is the pre-
erythrocytic stage. This is the period where sporozoites travel
through blood and infect hepatocytes to undergo schizogony,
the vigorous multiplication stage that precedes the invasion
of red blood cells (RBCs). The main purpose of developing
a vaccine against this stage is to inhibit hepatocyte infections
and hepatic parasite development, thus limiting RBC invasion
(27, 30). The mechanisms of protection for this stage may involve
antibody responses that prevent sporozoites from invading
hepatocytes or cytotoxic T cells that destroy infected liver cells.
So far, the licensed RTS,S, subunit vaccine remains the most
advanced malaria vaccine to be developed. Other candidate
vaccines include the whole-parasite vaccine candidates such as Pf
sporozoite (PfSPZ), PfSPZ vaccination with chemoprophylaxis
(PfSPZ-CVac) and the genetically attenuated parasite (PfSPZ-
GAP).

The second target for malaria vaccine candidate design is
the blood-stage of the parasite. The motivation for developing
such vaccine candidates comes from evidence that people with
repeated malaria infections in endemic areas develop some level
of protective immunity, a state in which there is immune-
controlled RBC invasion, resulting in fewer disease symptoms
or asymptomatic infections (26, 31). Accordingly, vaccine
candidates have been designed to elicit immune responses that
will block/limit merozoite invasion of RBCs and stop the rapid
replication of merozoites by targeting parasite surface proteins
such merozoite surface proteins, apical membrane antigen 1
(AMA1), and the reticulocyte homolog (Rh) proteins (32–35).
Other blood-stage vaccines target parasite antigens embedded
in infected RBC membranes, such as P. falciparum Erythrocyte
Membrane Protein-1 (PfEMP1) (36).

Despite being highly immunogenic and showing good
promise as vaccine candidates, most of these antigens are also
highly polymorphic and hence elicit antigen and parasite strain-
specific responses (32, 33). Conversely, antigens such as the Rh
proteins that show a high level of conservation (34, 35) tend to be
less immunogenic (37).

The third malaria vaccine candidate target is the sexual
parasite forms or gametocytes. Malaria transmission-blocking
vaccines (TBVs) are designed to interrupt parasite transmission
between humans and the mosquito vector through host
immunological response to parasite targeted proteins such as
Pfs230, Pfs45, Pfs48 (pre-fertilization antigens) and Pfs25, Pfs28
(post-fertilization antigens). Successful malaria transmission
depends on the availability of infectious gametocytes in human
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peripheral blood that can be taken up by mosquitoes during a
blood meal. Studies have reported that the degree of infectivity of
gametocytes to mosquitoes is based on the gametocyte density,
drug stress, clonality of infection and immune defenses of the
mosquito (38–42). However, according to Churcher et al. (38),
even at very low densities, gametocytes remain infectious to
mosquitoes. Also, it has been reported that in the human host,
transmission can be stable at very low densities and is not directly
proportional to the gametocyte density in peripheral blood (43,
44). Basically, a TBV exploits the fact that there is a functional
immunological activity against the sexual stage parasite proteins
which is able to reduce the infectivity of the parasite, thereby
decreasing malaria transmission (45, 46). Vaccine candidates that
seek to interrupt malaria transmission (VIMT) are of two main
types: (1) sexual, sporogenic or mosquito stage VIMT (SSM-
VIMT) candidates which are expected to interrupt human-to-
mosquito transmission; and (2) the pre-erythrocytic VIMT (PE-
VIMT) candidates, which are expected to interrupt mosquito-
to-human transmission (47). Among the TBV candidates, only
Pfs25 and Pfs230 have undergone clinical trials in human (48–
51). Unfortunately, a major challenge with these candidate
vaccines is the inability to elicit higher antibody titers. In regards,
there are considerations to conjugate these candidate vaccines
(50, 52).

Current Status of Malaria Vaccine
Development
After decades of extensive research, the pre-erythrocytic stage
vaccine, RTS,S has been licensed and is expected to undergo
further testing in malaria endemic areas before possible approval
for immunization. Currently, together with RTS,S, only 20
candidate vaccines are undergoing clinical trials (Table 1). For
RTS,S, a recent evaluation on the safety and immunogenicity of
the vaccine co-administered with the recommended expanded
programme on immunization showed the vaccine to be safe
and immunogenic with no related adverse events (58). The
RTS,S/AS01 consists of a recombinant protein of the P.
falciparum circumsporozoite protein (CSP) conjugated to a
hepatitis B virus surface antigen. During clinical trials, the
efficacy of the vaccine after 4 doses was observed to be 43.9% in
children aged 5–17months and 27.8% in children 6–12 weeks old
(59). However, vaccine efficacy wanes with time and fails to meet
the target set by the Malaria Vaccine Technology Roadmap (60).
Consequently, other vaccination regimens such as the number
of doses, time of immunization, and alternative approaches for
vaccination are being evaluated (61).

Also, the R21, a virus-like particle vaccine which is a biosimilar
of RTS,S consists of the CSP conjugated to a single hepatitis
B surface antigen. The RTS,S-like vaccine has been shown to
provide sterile protection inmice at very low doses. In addition, it
was observed that most of the immune responses elicited against
the candidate vaccine targeted the CSP in contrast to the hepatitis
B surface antigen which is often targeted in the RTS,S vaccinated
individuals (53). Importantly, this candidate vaccine is designed
such that more epitopes of the CSP may be exposed to host
immune system to enhance the efficacy of R21.

Furthermore, the whole sporozoite vaccine has been reported
to provide significant protection against falciparum malaria. The
whole organism candidate vaccine design approaches include
the radiation-attenuated sporozoites (PfSPZ), whole PfSPZ
with chemoprophylaxis (PfCVac) and the genetically modified
sporozoites (PfGAP). Even though PfCVac showed complete
protection to homologous P. falciparum strain, moderate
protection has been observed with heterologous strains in non-
exposed vaccines (62). Clinical trials with PfSPZ in endemic areas
have been shown to be safe and well tolerated, however, inducing
low level of immune responses compared to naïve individuals
(63, 64). Thesemay suggest that the breadth of immune responses
to PfSPZ vaccines need to be increased by considering other
vaccination regimens.

PROMISING APPROACHES TO MALARIA
VACCINE DEVELOPMENT

Recent technological advances have greatly improved the
prospects for designing an effective malaria vaccine through
advances in high-throughput biology and computation. These
alternative approaches may be focused on the parasite- or host
immune system.

The Parasite-Focused Approach
The technologies involved in this approach center on the
identification of immunogenic antigens from the pathogen by
interrogating the parasite’s genome, transcriptome or proteome.
It may modify the structure of the antigenic component(s)
identified with the aim of targeting various strains of the
pathogen. The parasite-focused approach further tests the
immunogenicity and safety of the candidate antigens to design
novel and improved vaccines. This approach may involve the
application of reverse vaccinology, structural vaccinology, and
immunoinformatics.

Reverse Vaccinology
Reverse vaccinology, developed by Rappouli et al. is a technology
first used in Meningococcus serogroup B bacteria to identify
novel vaccine antigens (Figure 1). Here, the pathogen’s genome is
sequenced and analyzed to have access to the entire repertoire of
proteins and enable comparison of conserved sequences shared
among pathogens of the same species (65). Genomic data is
analyzed using bioinformatics tools, taking into consideration
all open reading frames. Also, with the use of computational
tools, genomic sequences that are homologous to those of
humans are eliminated from the vaccine candidates identified.
The remaining genes are isolated and inserted into a suitable
vector to obtain proteins for testing in animal models. Responses
to the vaccine antigens are analyzed in immunized mice to
validate their immunogenicity and efficacy levels. Importantly,
molecular epidemiology studies are undertaken using various
strains of the pathogen to ascertain whether the selected antigens
are conserved or highly variable in a given population (66). This
approach has been used to develop vaccines against serogroup B
Neisseria meningitidis (67); and identify vaccine candidates for, S.
agalactia and S. pyogenes (68, 69). This vaccine design approach
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TABLE 1 | Current malaria vaccines in clinical trials.

Vaccine candidate Clinical trial registration number Clinical trial stage

PRE-ERYTHROCYTIC

RTS,S/AS01 NCT01345240 Phase 3

R21/AS01B NCT02600975 Phase 1

R21/ME-TRAP NCT02905019 (53) Phase 2

ChAd63/MVA ME-TRAP NCT01635647 (54–56) Phase 2

R21/Matrix-M1 NCT02572388/NCT02925403 Phase 1/2

PfSPZ Vaccine NCT03510481 Phase 1

PfSPZ-CVac (PfSPZ Challenge + chloroquine or + chloroquine/pyrimethamine NCT03083847 Phase 1

GAP 3KO (52-/36-/sap1-) NCT02313376 Phase 1

BLOOD-STAGE

pfAMA1-DiCo NCT02014727 (57) Phase 1

P27A NCT01949909 Phase 2

PAMVAC NCT02647489 Phase 1

PRIMVAC NCT02658253 Phase 1

SEXUAL-STAGE

ChAd63 Pfs25-IMX313/MVA Pfs25-IMX313 NCT02532049 Phase 1

Pfs25-EPA/Alhydrogel NCT01867463, 51 Phase 1

Pfs230D1M-EPA/Alhydrogel and/or Pfs25-EPA/Alhydrogel NCT02334462 Phase 1

Pfs25M-EPA/AS01 and/or Pfs230D1M-EPA/ASOI NCT02942277 Phase 1

Pfs25 VLP-FhCMB NCT02013687 Phase 1

Pfs25-Pfs25 NCT00977899 Phase 1

Pfs25 & Pvs/Monatide ISA 51 NCT00295581 Phase 1

Adapted from WHO. 9/28/2018. Malaria Vaccine Rainbow Tables. http://www.who.int/vaccine_research/links/Rainbow/en/index.html.

has greatly enhanced the discovery and characterization of
several pathogen antigens.

Reverse vaccinology has been applied in malaria to identify
parasite proteins either secreted or involved in signaling for
consideration as possible vaccine candidates. The genomic
sequence of P. falciparum has been available since 2002
(70). In addition, the sequence of other diverse Plasmodium
spp including primate (71, 72) and rodent (73) parasites
have been published. Comparative analysis of these sequences
has shown similar homologs between species with possibly
similar functions. For instance, the conserved Pf48/45 and
PfHAP2 genes, both of which are transmission blocking vaccine
candidates, functions were determined based on the role of their
homologs in other Plasmodium spp. The functional analysis
of the P48/45 and PHAP2 genes in P. berghei established
their significant role in reducing the fertility of male gametes
during fertilization, promoting these genes as vaccine candidates
(74, 75), which are currently in the preclinical stage (76–
78).

Despite the success of reverse vaccinology, it cannot be used
to identify non-peptide antigens but can identify operons that
code for synthesis of such molecules (79). For pathogens with
complex genomes such as malaria parasites, no successful vaccine
has as yet been developed via this approach. Further progress
requires, among other things, improved predictive algorithms to
identify the T and B cell epitopes as well as accurate quantitative
assessments before inclusion in vaccines.

Structural Vaccinology
An improved understanding of the native structures of biological
macromolecules such as proteins and how changes in their
structure affect their functions can assist the identification
of suitable epitopes (80, 81). Such epitopes can be designed
into accessible forms for easy uptake by immune cells. These
structural considerations make it possible to improve vaccine
immunogenicity and safety and mitigate the effects of sequence
variability within different strains of a pathogen (82). For
instance, the bacteriumMeningococcus is able to evade the host’s
immune system with the aid of a factor H binding protein (Hbp),
which inactivates the host complement pathway by blocking
factor H. Structural considerations allowed immunodominant
epitopes of Hbp from various meningococcal strains to be
identified and grafted into a single variant molecule to form
a single antigen. This antigen was used in the MenB vaccine,
responses against which are able to neutralize all the targeted
strains (83).

Also, in an earlier study, short conserved α-helical coiled coil
structural domains were identified from the asexual blood stage
of the P. falciparum by examining the Plasmodium genome (84).
Upon further screening, an unstructured peptide (P27A) that
unfolds in native confirmation was selected. The peptide was the
target of human antibodies which were able to restrict parasite
replication (85). The vaccine candidate P27A has been considered
immunogenic and safe with mild adverse events after Phase1
clinical trials (86).
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FIGURE 1 | The process of developing a vaccine using reverse vaccinology. Reverse vaccinology starts with obtaining the genomic sequence of the pathogen and

using bioinformatics tools to identify all open reading frames to predict protein antigens. The predicted antigens are subsequently expressed in suitable vectors to

produce the recombinant proteins which are tested to evaluate the immunogenicity in animal models. Expressed antigens that yield high immunogenicity are selected

as vaccine candidates, further tested in population studies to determine and identify conserved antigens for further vaccine development.

For pathogens like P. falciparum, structural vaccinology
may also help overcome antigenic variation. For instance,
the application of structural vaccinology enabled the
characterization of the less polymorphic DBL4ε domain of
VAR2CSA to identify novel properties in the motif that affects
the functional features of the antigen (87); identification and
confirmation of the three-dimensional structure of the invasion
ligand Cysteine-Rich Protective Antigen (CyRPA) (88). For
example, the CyRPA was identified as a protective epitope
providing an additive effect with the Reticulocyte binding-

like Homologous protein 5 (PfRH5) such that antibodies
against PfRH5 and CyRPA can inhibit parasite replication
in host RBCs (88). Hopefully malaria vaccines incorporating

these epitopes may elicit strong protective immune responses.
Combining these protective antigens to create hybrid protein

vaccines with enhanced efficacy may be a viable option for
malaria.

A key challenge with this approach is the identification of
suitable B and T cell epitopes for incorporation into vaccine
candidates.

Immunoinformatics Based Approach to
Vaccine Design
Immunoinformatics integrates both computational approaches
and experimental immunology to develop machine learning
algorithms that attempt to predict the immunogenicity of
antigens. These approaches can be either pattern- or theory-
based and may operate at either the amino acid sequence or the
protein structure level. The pattern-based approaches conceive
the prediction problem as one of finding sequence/structural
patterns associated with immunogenicity. In contrast, the
theory-based approaches attempt to model the basis for
immunogenicity, for example, by using physical principles.
Examples of algorithmic tools employed by pattern-based
approaches include quantitative structure-activity relationship
analysis, support vector machines, and artificial neural networks
(89, 90). Theory-based approaches often employ Markovian
and/or Bayesian models as well as models based on statistical
mechanics (91).

Immunoinformatic approaches have already been applied to
P. falciparum to predict possible cytotoxic T cell epitopes coupled
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with HLA A/Bmolecules for malaria peptide vaccine design (92).
For example, the PfEMP1 gene, a member of the var gene family
has been associated with parasite evasion from host immune
mechanisms due to its multiple variation and ability to bind to
different host receptors (36). In a recent study, both in-silico and
experimental approaches were used to identify antigenic epitopes
from CIDR-1 and DBL-3γ conserved domains of PfEMP1. These
epitopes were predicted to have good binding affinity to HLA
molecules as well as the capability to induce IFN-γ, IL-4 secretion
and T cell proliferation in exposed individuals (93).

Classically, HLA class I molecules optimally require peptides
that are 8-10 amino acids long for presentation to CD8T cells
while HLA Class II molecules optimally require 12-25 amino
acids long peptides for presentation to CD4T cells. Of note
high predictive accuracies have been achieved for bioinformatics
methods for predicting peptide binding to HLA I molecules;
whereas those for predicting binding to HLA II molecules require
further improvement. An even greater challenge is prediction
of peptide binding to B cell receptors for effective antibody
responses. On-going work by us and other groups is aimed
at addressing some of these challenges (91, 94). However,
not all HLA binders are good epitopes for T cells and this
poses a major challenge for approaches that predict HLA
binders without considering the global picture of HLA-peptide-
TCR interactions. Nonetheless, these computational approaches,
which are quite cost-effective and are important down-selection
tools in instances where there are too many peptides to evaluate
experimentally, have the potential to aid in the development of
effective vaccines against malaria.

Immune-Focused Approach
Due to the sophisticated immune-evasion mechanisms of P.
falciparum that allow it to coexist with the host, vaccinologists
require new paradigms in vaccine development. One such new
paradigm that has been developed to target these pathogens is the
immune-focused approach (Figure 2). In contrast to the parasite-
focused approach, which centers on the pathogen of interest,
this new approach seeks to harness the host immune system to
more rapidly design effective vaccines. It focuses on studying the
host immune system to discover protective immune signatures.
It is expected that these protective signatures can be induced
de novo in susceptible hosts to protect them against infection
and/or disease. Compared to the pathogen-focused approach, the
immune-focused approach has, in principle, a greater potential
for success against pathogens like malaria parasites, which have
highly variable genomes. In particular, it may be able to identify
and design immune cells with broadly neutralizing antibodies
(95) and enhanced cellular immune responses, which has proved
difficult to accomplish by using conventional approaches. To
provide context for the discussion of opportunities for vaccine
development, we begin with a brief overview of human immunity
to malaria.

Immunity to Malaria
In contrast to many pathogens against which highly potent,
long-lived immunity is achieved, human immunity to malarial
parasites is less potent and relatively short-lived (17). In malaria,

acquired immunity to infection is rare; rather, what develops
naturally, generally over a long period, is acquired immunity
to disease (96). Such clinical immunity generally targets the
disease-causing asexual blood stage of malarial parasites. It tends
to be acquired faster in moderate-to-high transmission settings
compared to low transmission areas, and with a higher number
of clinical episodes (97–99). As with other infectious diseases, the
development of clinical immunity to malaria is dependent on the
adaptive arm of the immune system, and the principal mediators
consist of specific subsets of B and T cells. Some progress has been
made to elucidate the underlying mechanisms, although the key
immune determinants remain unclear.

In addition, the ability to predict the beginning and end
of transmission seasons have made it possible to study host
responses to infection and some immune dynamics that occur
before, during and after infection as well as, drug interventions
(100) and how they may affect the immunity acquired (101, 102).

In natural infections, acquisition of immunity to sporozoite
stage infections is limited, probably due to the low number of
sporozoites that are inoculated as well as the limited time that
sporozoites have extracellular, prior to hepatocyte invasion. In
addition, it has been reported that Plasmodium sporozoites are
able to modulate the cytokine environment by downregulating
Th1 responses and antigen presentation to T cells (103). Recently,
it was reported that continuous exposure to P. falciparum leads
to the induction and expression of immunoregulatory cytokines
such as IL-10 and affects the function of dendritic cells (104).
These, coupled with frequent infection and immune activation,
may profoundly impact on the tolerogenic environment leading
to the escape of sporozoites from immune cells. Nevertheless,
functional properties of antibodies to sporozoite-stage infections
have been associated with natural protection from clinical
disease. It has been reported that these antibodies kill sporozoites
through complement fixation and inhibit hepatocyte invasion.
However, the response to sporozoite antigens was age-dependent
and acquired slowly compared to blood-stage antigens (105).

The blood-stage parasite is associated with the clinical
symptoms of the disease as it causes an upregulation of
pro-inflammatory cytokines, regulatory T cells and parasite
sequestration in small blood vessels in host organs. Antibodies
have been reported to play functional roles in preventing
parasite invasion of red blood cells (106, 107). Antibodies
to parasite antigens are associated with clinical immunity in
endemic areas (108–110). The mechanisms of antibody activity
may include blocking invasion of erythrocytes (111); opsonizing
parasites to facilitate their clearance (110, 112) enhancing the
killing of infected cells by monocytes (113); complement-
mediated lysis of infected cells (114); and inhibiting adherence
of infected erythrocytes to vascular endothelium (115). However,
the generation of atypical memory B cells which have reduced
effector functions has been observed under chronic conditions
(116, 117).

T cells have also been shown to play protective roles during
blood-stage infection. For instance, protection from the disease
has been associated with FOXP3− Th1 cells which are self-
regulatory and produce IFNγ, TNF and IL-10 (101, 118, 119).
These cells are believed to prevent the production of pyrogenic
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FIGURE 2 | An illustration of the immune-focused approach to vaccine development. Briefly, from top left, samples are obtained from an infected but protected or a

vaccinated host. Immune cells are phenotyped and sorted using single cell sorting technologies such as the flow cytometry. The sorted cells may be sequenced

directly or proliferated for functional studies before sequencing to study the immune repertoires (B/T cell receptor repertoire). With the use of computational

approaches, the immunogen is designed and taken through further stages of development to yield a vaccine. After vaccination, mechanisms underlying vaccine

efficacy and safety can be studied to further enhance the developed vaccine to achieve maximum protection against the targeted pathogen.

factors that may lead to the manifestation of clinical disease.
However, these immune responses are not long-lasting and easily
decay after infection has waned. T cell responses are hampered by
the upregulation of negative immune regulatory receptors which
may blunt or cause anergic responses (116, 120, 121). Our recent
study found higher levels of T regulatory cells to be associated
with higher blood levels of P. falciparum in children (118),
suggesting less effective control of the parasite. Indeed, trying to
understand these various aspects of the immune responses is a
quite complex task (122).

Compared to natural infections, inducing sterile immunity in
naïve individuals has been achieved through whole sporozoite
immunization (29, 123) although similar outcomes have not
been seen in individuals from malaria endemic areas (63, 64).
Vaccination of volunteers with radiation-attenuated sporozoites
has shown that both T cells and antibody responses play a
significant role in protecting vaccinated cohorts against clinical
challenge. It was observed that T cells from the periphery of these
individuals, when stimulated with P. falciparum sporozoites in
vitro, produced effector cytokines in a dose-dependent manner
whereas antibody levels increased and prevented hepatocyte
invasion (124–127).

The challenges of inducing immunity to malaria by natural or
artificial means are compounded by the sophisticated immune-
evasion strategies of the parasite. The parasite has a large genome
consisting of about 5,300–5,500 possible antigenic targets (70).
This extensive gene repertoire coupled with the parasite’s high
mutation rate allows for extensive variation of antigens that

can be potential vaccine targets. Moreover, the epitopes targeted
by the immune system exhibit a hierarchy of immunogenicity,
with immunodominant epitopes that induce large amounts of
antibodies, not all of which are neutralizing and may mask
sub-dominant epitopes bound by neutralizing antibodies (73).
In addition, the parasite switches off antigenic phenotypes,
associated with the variant antigens resulting in functional
diversity. Consequently, infections are mostly characterized
by successive parasitemia waves caused by different parasite
variants, making the development of long-lived immunity to the
parasite very challenging (36, 128). Furthermore, key antigens
such as CSP contain tandem repeats that have been implicated
in immune evasion by suppressing antibody responses against
adjacent antigens (129).

High Throughput Identification of Immune
Correlates of Protection
The age and genetics of a person may modulate the immune
responses elicited during infections and vaccinations (130, 131).
Nonetheless, these responses that modulate infection may help
to systematically define factors associated with protection from
disease. Conventional approaches to understanding immune
correlates of protection against P. falciparum includes, but is
not limited to, ELISA, Elispot and Western blots. However,
recent advances in high throughput assays have allowed in-
depth analysis of immune correlates of protection to multiple
falciparum antigens. Individuals in malaria-endemic areas
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generate antibodies to different P. falciparum proteins whichmay
be protective or serve as a serological marker for exposure.

High throughput assays that probe the genomic, proteomic
and transcriptomic data of immune responses are useful means
of determining correlates of protection in exposed and vaccine
trial cohorts. Independent studies using library expression and
protein microarray has characterized host immune reactivity
to different P. falciparum antigens. Using these approaches,
Doolan et al. (132) were able to identify stage-specific P.
falciparum antigens associated with protection in naturally
exposed individuals, vaccine protected and non-protected
individuals using a protein microarray chip with 250 proteins.
They observed distinctive antibody profiles in the various groups
to these antigens. Also, in an independent study, involving a
large cohort of children naturally exposed to malaria (≤10 years
old) in Kenya, it was observed that responses to fewer proteins
from the 39 P. falciparum antigens analyzed were significantly
associated with protection, and these included AMA1 andMSP2.
Also, antibodies to the top 10 proteins provided an additive effect
whereas most antibody responses to the other antigens were
markers of malaria exposure (133).

A similar study conducted in Mali probed sera from malaria-
exposed children and adults against 1204 proteins. Among these
proteins, 91 were associated with sexual stage-specific immunity
with specific-IgG responses culminating during the transmission
season. It was further observed that immunity to these sexual
stage vaccine candidates (Pfs48/45 and Pfs230 but not Pfs25)
can be boosted in natural infections (134). These studies showed
evidence that the breadth and magnitude of the antibody
response is a better correlate of immune protection. Furthermore,
in analyzing PBMCs for non-humoral immune responses
associated with protection using DNA microarrays, qRT-PCR
and flow cytometry, it was observed that repeated exposure to
malaria in children was associated with the upregulation of genes
involved in immune regulation (such as IL-10 secretion from
CD4+Foxp3-), phagocytosis and activation of adaptive immune
system. In contrast, gene expression levels of chemokines and
cytokines associated with fever and inflammation (such as IL-1β,
TNF, CXCL2 and IL-8) were downregulated (101).

Interestingly, the application of next-generation sequencing
techniques such as lymphocyte immune repertoire sequencing,
including T cell receptor (TCR), membrane-bound B cell
receptor (BCR) or secreted BCR can allow an in-depth analysis of
host factors associated with pathogen recognition, identification
and protection from disease. The TCR structure is heterodimeric
with two protein subunits; an alpha and beta chain or gamma
and delta chain with both a constant and variable region.
Similarly, the BCR consists of two heavy and light chains which
are joined together by disulphide bonds to form a Y shaped
immunoglobulin together with a variable and a constant region.
The lymphocyte receptors (TCR/BCR) have similar structures
including a variable, diversity and joining regions that enable
diversification in identifying different host pathogens. In the
generation of receptor diversity, there is a recombination of a V,
D, and J segment of a beta or heavy chain, and a V and J segment
for the alpha or light chain. For the BCR, this process helps
expose very potent neutralizing antibodies that may be public in
protecting against clinical disease. The generation of the variable

regions may help guarantee higher levels of somatic mutation at
the antigen binding site which may be shared or unique to an
individual(s).

Despite the documented importance of lymphocyte receptors
for antigen recognition and, hence, for the initiation of adaptive
immune responses, the specific TCRs/BCRs that determine
immunity to particular pathogens remain poorly understood. To
our knowledge, no previous study has comprehensively mapped
these receptors and analyzed how their expression profiles
may correlate with individual variations in immune protection
against malaria. In addition, the application of machine learning
algorithms such as random forests, support vector machines may
allow the identification of patterns on immune correlates that
may predict protection against disease (118, 135).

Moreover, these approaches generate huge amounts of
data that can be computationally analyzed to generate new,
experimentally testable hypotheses. These may yield novel
insights into the mechanisms underlying vaccine safety and
efficacy. Importantly, data from such studies will inform
pathways to which vaccine strategies should focus.

The B Cell Response and Vaccine Design
Effective vaccines are supposed to elicit and provide long-term
protection as well as require both B and T cells to produce
effective antibodies to neutralize surface-expressed antigens. B
cell lineage vaccine design is an immune-focused approach
that combines human immunology, structural biology, and
computational protein design to develop a vaccine. The aim
is to identify in both naïve and memory B cell receptors,
paratopes (antigen binding sites) that interact with immunogens
of interest. For a vaccine to be designed through this approach,
memory B cell clones from the same lineage (or clone) are
first identified and isolated from patients that produce broadly
neutralizing antibodies or protective antibodies. These clones
are then sequenced to obtain the V(D)J and VJ gene pairs that
make up the B cell receptors in order to identify the paratope.
Computational approaches are used to design an immunogen
that interacts with the identified paratope (95). For P. falciparum,
neutralizing antibodies produced by activated B cells are required
to prevent the infection of new RBCs. By isolating such
protective B cells from malaria patients and sequencing and
analyzing their antigen receptors, it might be possible to identify
immunogens able to induce protective immunity in susceptible
individuals.

In malaria, the identification of broadly neutralizing
antibodies remained elusive partly due to the high polymorphic
nature of P. falciparum antigens. In addition, malaria vaccine
candidates tend to induce antibodies with weak neutralizing
ability, low breadth and strain-specific. However, Tan et al.
(136) have recently identified monoclonal antibodies that can
recognize P. falciparum-infected RBCs (iRBCs) from different
strains of parasites. These antibodies recognize and bind to
iRBCs through the RIFIN proteins, a group of variant antigens
that are extracellularly expressed on the surface of iRBCs and
have been associated with immune evasion (128) to initialize
opsonization.

Another remarkable example is the identification of the novel
antigenic target NPDP (part of the sequence in the N-terminal
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junction peptide) that is found between genes for the CSP
and NANP and NVDP tandem repeats (137, 138). Independent
studies in 2018 by Tan et al. (137) and Kisalu et al. (138) identified
and isolated neutralizing antibodies from memory B cells and
plasmablasts that could inhibit hepatocyte infection by PfSPZ.
Through structural information, they were able to identify that
these antibodies bind to conserved epitopes in the N-terminus of
the CSP that is not found within the RTS,S vaccine.

Furthermore, mAbs that can inhibit parasite replication to
about 97% have been isolated from CHMI donors immunized
with RTS,S. Deciphering the structure and functionality of these
antibodies have provided an informed overview on the structure
of the CSP in vivo. Thus provides positive implications in the
design of CSP immunogens against P. falciparum (139). However,
there are still unsolved questions on the antibody responses to
the PfCSP which have been described to be protective (139)
and non-protective (129) as well as more structural information
is needed to induce such potent neutralizing antibodies during
vaccination Nonetheless, it is very interesting since they have
implications in designing immunogens that can target specific
immune responses and probably improve the efficacy of the
RTS,S vaccine.

T Cell Response and Vaccine Design
Protective immunity to malaria liver-stage infection has been
attributed to T cells in both human and rodent models.
In studying immune responses to malaria such as cerebral
malaria, murine models have provided significant understanding
of various immunological properties that have impacted our
understanding of the immune activity in humans.

For instance, Lau et al. (140) characterize MHC-restricted
TCR that have potential in enhancing antigen presentation to
T cells to enhance T cell immunity. They developed a novel
CD8+ T cell receptor to P. berghei termed PbT-I from transgenic
mouse with immune specificity for liver-stage and blood-stage
infections. Isolated TCR genes from Vα8.3 and Vβ10 were
isolated from a restricted hybridoma T cell line generated from
Plasmodium berghei ANKA (PbA) blood-stage infection. Despite
been developed for PbA, this transgenic MHC-I restricted T
cell line was cross-reactive to P. chabaudi and P. yoelli. This
implies that they may recognize conserved regions in rodent
Plasmodium spp. Functional analysis revealed that the PbT-I cells
produced effector cytokines (IFNγ, TNFα) and was positive for
the degranulation marker (CD107a) showing their involvement
in immune activity during the PbA infection. Using PbT-I
CD8+ T cells, the peptides responsible for their activation were
elucidated.

In a subsequent research, they identified and developed PbT-
II CD4+ T cells from mouse transgenic line using the TCRα

(Vα2.7, Jα12, Cα) and TCRβ gene (Vβ12, Dβ2, Jβ2.4) segments
to blood-stage PbA infection (141). These cells were cross-
reactive to rodent parasites (P. berghei, yoelli and chabaudi) and
to P. falciparum. These MHC-II restricted PbT CD4+ T cells
enhanced both humoral activity of B cells and cytotoxic activity
of CD8+ T cells. In addition, the study confirmed that immunity
to antigens in both blood stage and liver-stage development can
restrict parasite replication in the hepatic stage and characterize

the impact of blood stage antigen presentation to T cells
that can enhance such T-cell immunity during infection. The
uses of these target antigens may delineate protective immune
responses and possibly circumvent pathologic outcomes. More
importantly, further work should be focused on identifying and
understanding such broadly reactive Plasmodium-specific T cells
in host infections.

Structure-Based Immunogen Vaccine
Design
The structure-based vaccine approach can be employed in
both the parasite and immune-focused approach. However,
in the immune-focused approach, the principle is based on
understanding the structural properties of the immune cell
providing the desired response. Here, the properties of the
antigenic binding site on the immune cell is studied at the atomic
level (80, 81). By understanding these properties, the approach
seeks to design and develop immunogens to target the protective
response or develop these immune cells for use as interventions.

Structural-based vaccine design has aided in unmasking
immunodominant epitopes in the haemagglutinin-stem of the
influenza virus (142), the fusion protein in the respiratory
syncytial virus (143) and CD4 binding site in HIV-1 virus. For
example, identifying conserved immunogenic epitopes in HIV
has been quite challenging. However, elucidating the structure
of broadly neutralizing antibodies (bNAbs) has been very useful.
Using NAb, subdominant epitopes in the CD4 binding site by
the gp120 viral protein were identified. Probing the structure
of the antigenic binding site on CD4, the structural properties
helped in the development of a recombinant protein (RSC3)
with specificity to the NAb. The RSC3 was further used to
identify and isolate B cells that expressed broadly neutralizing
antibodies with increased breadth. VRC01 and 3BNC117, highly
potent monoclonal bnMAb with reactivity to about 91% to HIV-
1 isolates were developed (144). Phase I clinical trials of the
VRC01 were reported as safe with no allergenicity (145, 146). It
is currently being evaluated in a Phase IIB trials with a projected
overall efficacy of 53 and 82% (147). These observations indicate
that using structural properties, subdominant epitopes can be
uncovered to design immunogens to target a specific immune
response.

Currently, there are few examples of the successful use of
these approaches in malaria vaccine design. For instance, using
invasion-inhibitory monoclonal antibodies, the novel structure
of PfRh5 in complex with basigin was characterized, together
with novel protective epitopes found in the complex (148).
Similarly, for P. vivax infections, bNAbs that confer strain-
specific immune responses (149) were isolated. These bNAbs,
enabled the characterization of protective epitopes in the duffy
binding protein that can be included in the design of a potent P.
vivax vaccine (150).

CONCLUSION

The development of a highly efficacious malaria vaccine faces
many challenges, both technical and biological. Partly because
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the parasite is equipped with a variety of evasion mechanisms
allow it to co-exist with the host. With the recent advent
of high throughput approaches such as lymphocyte repertoire
sequencing and structural design of immunogens, the breadth
of protection of previous and current vaccine candidates may
be enhanced as well as the identification of new candidate
vaccines. In addition, vaccinologist may be able to design
vaccines that drive the immune system through unusual yet
protective pathways. Likewise, the application of mathematical
modeling and computational approaches to the data thus
obtained will open new pathways toward designing highly
effective vaccines against malaria and aid in achieving the
targets set by the malaria vaccine technology roadmap for
2030.
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