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Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and

affects over 8 million people worldwide. In spite of a powerful innate and adaptive

immune response in acute infection, the parasite evades eradication, leading to a

chronic persistent infection with low parasitism. Chronically infected subjects display

differential patterns of disease progression. While 30% develop chronic Chagas disease

cardiomyopathy (CCC)—a severe inflammatory dilated cardiomyopathy—decades after

infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate

(ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient

mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the

identification of multiple genes linked to survival to infection. These include pathogen

resistance genes (PRG) needed for intracellular parasite destruction, and genes involved

in disease tolerance (protection against tissue damage and acute phase death—DTG).

All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1

differentiation. We hypothesize that the absolute need for DTG to control potentially

lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic

infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly

expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10,

and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are

associated with differential disease progression. We thus hypothesize that ASY patients

are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the

inflammatory heart damage of CCC.
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INTRODUCTION

Chagas disease is caused by infection with Trypanosoma cruzi,
an obligatory intracellular parasite in the mammalian host.
It is endemic in Latin America and affects over 8 million
people worldwide, causing thousands of deaths each year.
The pathogen naturally infects animals from central Argentina
to the southern United States. Acute infection may lead to
death in a small proportion of hosts, and survivors live with
persistent infection with low parasitism. Chronically infected
patients display differential progression. Nearly 30% of infected
patients may develop life-threatening chronic heart disease due
to an excessive inflammatory response, most others remaining
in the asymptomatic/indeterminate (ASY) form with no heart
disease, associated with a more immunomodulatory profile.
Genes encoding resistance strategies that are shared against
intracellular pathogens (1) have evolved for hundreds of millions
of years, including the pathogen resistance receptors, TNF-α, and
the IFN-γ-dependent immune response, among others (2). Most
pathogen resistance genes (PRG) inhibit infection by directly
reducing pathogen burden, and are related to immune-driven
mechanisms—which, when in excess, can lead to death. Disease
tolerance is an alternative strategy to avoid death after infection,
whereby the pathogen’s damaging effect on the host is mitigated.
Disease tolerance is defined as the situation where an organism
can bear a pathogen load without tissue damage and in the
absence of a disease state. Disease tolerance genes (DTG)—which
do not limit infection, but reduce its fitness costs—operate to
minimize tissue damaging effects of the pathogen, leading to
stress and damage reduction responses; DTG can also operate by
counteracting excessive, tissue-damaging PRG activity (1, 3, 4).
One such stress response pathways involved in disease tolerance
is the oxidative stress response, whose master regulator is nuclear
respiratory factor 2 (Nrf2) (3). By not limiting infection, the
host remains a pathogen reservoir enabling transmission, in
the absence of health consequences for itself, providing an
evolutionary advantage for both host and pathogen. Disease
tolerance is frequent in pathogens and hosts who have coevolved;
while African monkeys which coevolved with the African virus
Simian Immunodeficiency Virus (SIV) develop chronic infection
with no disease, the same virus causes deadly disease in Asian
macaques (5, 6). Evolutionary selection of DTG can be even
more effective than that of PRG (4). A possible example of
evolutionary selection of DTG against T. cruzi are the South
American didelphid marsupials which coevolved with T. cruzi
for over 40 million years and maintain high and long-lasting
T. cruzi parasitemias in the absence of disease (7). We here
hypothesize that the absolute need for DTG to control potentially
lethal PRG activity against T. cruzi leads to parasite persistence
and establishment of chronic infection. Our second hypothesis is
that PRG and DTG also determine the differential progression of
chronic Chagas disease toward tissue damage (CCC). According
to this hypothesis, ASY patients are disease tolerant, while
tissue damage in CCC is a consequence of insufficient DTG
and/or excessive PRG activity. Along the review, we will provide
evidence supporting both hypotheses.

PATHOGEN RESISTANCE GENES IN
T. cruzi INFECTION

Most known pathogen resistance mechanisms against T. cruzi
are immune-driven, directed at the intracellular forms of the
parasite, and can be harmful if excessive. T. cruzi evades the
powerful immune response and establishes a persistent infection
with low parasitism. In order to obtain a list of known PRG
and DTG, we surveyed the literature on T. cruzi infection of
genetically deficient knockout mice. PRG were defined as genes
essential for control of T. cruzi parasitism and needed for survival
of infection; operationally, we identified as PRG those genes
whose knockout led to increased pathogen load and mortality.
DTG were defined as genes whose presence reduced mortality
without any effect onT. cruzi control.We identified as DTG those
genes whose knockout led to reduced parasitism and increased
mortality. Table 1 lists the PRG and DTG identified in our
literature review. Most PRG belong to the TLR-MYD88-IL12-
IFNG pathway, IL17 pathway, cell migration, inflammasome and
other pathways involved in restriction of intracellular pathogen
growth. Mice genetically deficient on TLR4, TLR7, and TLR9,
MYD88, and UNC93B1 display increased blood parasitism and
mortality (8–13). Likewise, mice genetically deficient of IL12A,
IL12B, and STAT4, essential for the differentiation of IFN-
γ-producing Th1 cells, also display intense tissue and blood
parasitism with increased mortality (15, 33). Along with TLR
genes, IFNG is one of the main PRG involved in T. cruzi
parasite control (43). Mice genetically deficient on IFNG or
STAT1 display drastically augmented T. cruzi parasitism and
100% mortality 13 days after infection (20, 21, 24). It was
shown that T. cruzi amastigotes themselves dephosphorylate
STAT1 serine residues, inhibiting IFN-γ signaling; evasion of
IFN-γ signaling is further proof of the importance of the
IFN-γ in the control of intracellular parasitism (44). IFN-
γ-dependent PRG, like TNFA and NOS2, play a major role
in resistance to T. cruzi (45, 46). The key role of TNF-
α in T. cruzi control has been shown in TNFA-receptor 1
knockout mice (TNFRSFA1−/−), which display an increased
number of blood and tissue parasites and shortened survival
time (26). Platelet-activating factor (PAF) KO mice are more
susceptible to T. cruzi infection than wildtype mice, and its
protective effects depend on TNF-α-dependent NO production.
In the context of protection against T. cruzi, IFN-γ, and TNF-
α synergistically induce NF-kB activation to control T. cruzi
parasitism and mortality in mice, by upregulating the expression
of the PRG inducible nitric oxide synthase (NOS2), leading
to the production of large amounts of NO and microbicidal
reactive nitrogen species (RNS) (45, 46). NOS2-KO mice
are susceptible to T. cruzi infection, with increased parasite
burden and mortality due to lack of NO production (15, 47).
Interestingly, constitutive NOS1-KO mice also showed increased
parasitism and mortality (27). Genetic deficiency of macrophage
PI3KCG increases susceptibility to T. cruzi infection; PI3KCG
expression correlates with IFNG expression in CCCmyocardium
(38). IFN-γ increases ROS generation through induction of
NADP oxidases (NOX2) and mitochondrial ROS via NF-kB
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TABLE 1 | T. cruzi pathogen resistance and disease tolerance genes.

Symbol Name

PATHOGEN RESISTANCE GENES

tlr4 (8)

tlr7 (9)

tlr9 (9, 10)

Toll-like receptor 4

Toll-like receptor 7

Toll-like receptor 9

unc93b1 (9) Unc-93 homolog B1, TLR signaling regulator

myd88 (9, 11–13) Myeloid differentiation primary response 88

il6 (14)

il12 (15)

il12a (16)

il12b (17)

il17a (18, 19)

Interleukin 6

Interleukin 12A

Interleukin 12B

Interleukin 17A

ifng (13, 15, 20–23) Interferon-γ

stat1 (24)

stat4 (25)

Signal transducer and activator of transcription 1

Signal transducer and activator of transcription 4

tnfrsf1a (26) TNF receptor superfamily member 1A

nos1 (27) nitric oxide synthase 1

nos2 (15, 22) nitric oxide synthase 2, inducible

casp1 (28) caspase 1

pycard (28) Asc/PYD and CARD domain containing

ncf1 (29) P47phox/neutrophil cytosolic factor 1

ccl2 (30) C-C motif chemokine ligand 2

ccr5 (31, 32) C-C motif chemokine receptor 5

icam1 (33) intercellular adhesion molecule 1

cd28 (34) CD28 antigen

irgm1 (23) immunity-related GTPase family M member 1

ptafr (35) platelet-activating factor receptor

lgals1 (36) Galectin-1/lectin, galactose binding, soluble 1

pnpla8 (37) Phospholipase A2γ (iPLA2γ)/patatin-like phospholipase

domain containing 8

pi3kcg (38) phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic

subunit gamma

DISEASE TOLERANCE GENES

il6 (39) Interleukin 6

il10 (40, 41) Interleukin 10

il23 (39) Interleukin 23

il17ra (39, 42) Interleukin 17 receptor A

ebi3 (39) Epstein-Barr virus induced gene 3/ Interleukin-27p28

activation (47, 48). Mice knockout for NOX2 displayed increased
T. cruzi tissue parasitism and mortality due to the lack of
type 1 cytotoxic T cells (29). IFN-γ-induced ROS enhances
peroxynitrite anion (ONOO−) production, a strong oxidant
arising from the reaction of NO with superoxide radical
(O−

2 ) (49). ONOO− induces damage to multiple molecules
and is one of the ultimate effectors of parasite killing.
Peroxynitrite promotes morphological disruption of internalized
parasites, and induces severe alterations of energy metabolism,
calcium homeostasis, and trypanothione depletion, severely
impairing parasite redox homeostasis (50, 51). In addition,
IFN-γ can also exert its protective effects in vivo in a
NO-independent manner, through complementary events of
protection against T. cruzi, such as production of other
macrophage-derived effector molecules, MHC class II induction,

CD4+ T cell polarization, IgG isotype switch to IgG2a
and TLR induction (52–54). IRGM1, an IFN-γ-dependent
GTPase, plays a key role in phagosome maturation and in
the killing of intracellular pathogens contained in vacuoles
(55).

In addition to inflammatory cells, several other cell types,
including cardiomyocytes, fibroblasts and astrocytes, bear IFN-γ
receptors and respond to the cytokine (56, 57). IFN-γ activates
T. cruzi-infected macrophages and cardiomyocytes to produce
TNF-α, NO, microbicidal ROS, and RNS. In vitro treatment with
IFN-γ/TNF-α and IL1-β of mouse cardiomyocytes infected with
T. cruzi resulted in NO production and elevated trypanocidal
activity (58, 59). The primary role of IFN-γ mediating
protection against intracellular T. cruzi infection is depicted in
Figure 1.

IL17A is also a key PRG, and Th17T cells may confer
stronger protection against T. cruzi-related mortality than Th1
cells (60). IL-17A signaling is mainly dependent on TNF-
α receptor associated factor 6 (TRAF6), but it can strongly
promote TNF-α-induced NF-kB signaling by stabilizing pro-
inflammatory mRNAs (61). Indeed, IL17A KO mice displayed
an increase in blood and tissue parasitism with increased
mortality. This was related to an impairment of leukocyte
migration and activation of immune cells in the sites of
parasite infection, as well as by reduced production of NO
(18, 19). IL-17A also increases the persistence time of T. cruzi
in the parasitophorous vacuole, enhancing exposure time of
T. cruzi to the antimicrobial environment of endolysosomes,
which can be further enhanced by IFN-γ-induced mechanisms
(18). Genetic depletion of key inflammasome-related genes
CASP1 and PYCARD/Asc induce enhanced mortality and
increased parasitism (28). Mice knockout for genes involved
in migration pathways, like chemokines/receptors CCL2, CCR5,
and adhesion molecule ICAM1 also develop increased parasitism
and decreased survival, in line with the impaired recruitment of
leukocytes to sites of parasite replication (30–33). CD28 KOmice
display T cell activation defects, and NCF1 (p47phox/NOX2)
display a reduced type 1 CD8+ T cell response, leading to
impaired control of parasitism and increased susceptibility
to infection (29, 34). Although IL27RA KO mice develop
increased parasitism and mortality and was a priori classified
as a PRG, these mice develop grossly increased IFN-γ and
inflammatory cytokine production, and death was related to
the IFN-γ dependent tissue inflammation, a phenotype similar
to that of IL10 KO mice (62). This is in line with the
known effect of IL27RA signaling in the control of IFN-γ
and inflammatory cytokines. Phospholipase A2 γ knockout
mice show increased susceptibility to T. cruzi infection, and
decreased arachidonic acid and prostaglandin E2 production;
the mechanism of protection is still obscure (37). Galectin-1
KO mice displayed increased parasitism and mortality upon
infection with the Tulahuen strain, classifying it as a PRG (36).
However, subsequent studies with infection of Galectin-1 with
the RA strain showed reduced parasitism and mortality, which
is not a PRG profile (63). This suggests the phenotypes may
change according to the T. cruzi strain being tested and site of
infection.
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FIGURE 1 | Central role of IFN-γ in protection against T. cruzi and potential host cell damage by peroxynitrite. IFN-γ, interferon-gamma; TLR, Toll-like receptor, IL12R,

IL-12 receptor; IFNγR, IFN-γ receptor; JAK, Janus Associated Kinase; NO, nitric oxide; ONOO-, peroxynitrite; IRF, Interferon regulatory factor; STAT, Signal Transducer

And Activator Of Transcription; ROS, reactive oxygen species.

DISEASE TOLERANCE GENES IN T. cruzi

INFECTION

Table 1 shows the T. cruzi DTG. Remarkably, all T. cruzi
DTG (IL10, Ebi-IL27p28, IL17RA, IL23, IL6) shared as a
common feature the ability to reduce IFN-γ production or
Th1 differentiation. In addition to decreased parasitism and
increased mortality, inflammation was upregulated in all DTG-
deficient mice. Infection of IL-10 deficient mice is accompanied
by increased release of IFN-γ, TNF-α, IL-12, and RNS (40).
Mechanistically, IL-10 is a potent inhibitor of monocyte-
macrophage activation and NK cell activity and can inhibit
the synthesis of TNF-α and IL-12 and IFN-γ (64, 65). Mice
genetically deficient of IL-17RA or IL-23 showed increased
mortality due to a shift to a Th1 profile after infection and
augmented IFN-γ and TNF-α levels in the heart (39, 42, 66).
IL17RA signaling downregulated T-bet expression, and reduced
Th1T cell differentiation, and further downregulated IFN-γ
production in acute infection by recruiting IL-10-producing
suppressive neutrophils (42). Paradoxically, IL-17A is a PRG
(18). It is possible that a engagement of the IL-17 receptor
by a different IL-17 family member can be responsible for
the DTG effect of IL17RA. IL-23 negatively regulates IL-12-
induced IFN-γ production in CD8+ T cells by reducing STAT4
phosphorylation, independently of IL-17A, IL-17F, or IL-22 (18,
25, 67, 68). In addition, IL-23 is a key stimulatory cytokine for
Th17 and innate “type 17” cells that can respond immediately
to pathogenic insults; IL-23 may thus also suppress IFN-γ by
promoting IL17RA signaling (69). Infection of Ebi3/IL-27p28
deficient mice is accompanied by increased IFN-γ production,
with augmented Th1 immune response (70). Mechanistically,
Ebi3 signaling modulates overproduction of IFN-γ, by inducing

a population of IL-10 producing Tr1 T cells (39). On the other
hand, IL-6 can be both a PRG and a DTG, depending on the
model of T. cruzi infection. IL-6’s DTG activity may be secondary
to inhibition of Th1 differentiation through enhancing IL-4
production in CD4+ T cells (71), while its PRG activity may
be explained by its ability to upregulate endothelial adhesion
molecules, facilitating lymphocyte migration into non-lymphoid
tissues (14, 71). We will discuss evidence that IFNG, a major PRG
that operates as a key player in pathogen protection and is the
culprit of tissue damage in Chagas disease, is the main target of
modulation by DTGs with relevance in both the acute infection
and differential progression of chronic disease.

IMMUNE DYNAMICS IN ACUTE T. cruzi

INFECTION

T. cruzi subverts a highly conserved cellular pathway for the
repair of plasma membrane lesions and explores endogenous
cellular machinery for invasion, escape from the parasitophorous
vacuole, which allows intracytoplasmic survival, and replication
(72). The intracellular life cycle of T. cruzi is a major target of
the antiparasite response (73). Extracellular T. cruzi components,
such as trypomastigote-derived glycosylphosphatidylinositol
(tGPI) and glycoinositolphospholipid (eGIPL) engagemembrane
Toll-like receptors (TLR) 2 and 4 (74). Trypanosoma cruzi is
internalized by several different mechanisms, but end up in the
phagolysosomal compartment, where T. cruzi DNA and RNA
engage TLR7 and TLR9. TLR engagement promotes the Myd88-
mediated activation of NF-kB. Lysosome acidification promotes
escape of T. cruzi to the cytoplasm, where it differentiates into
the replicative amastigote forms. Amastigote replication in the
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cytoplasm leads to activation of inflammasomes that can induce
inflammatory cytokines and NF-kB activation. This induces pro-
inflammatory cytokines including IL-12, a PRG which elicits
differentiation of IFN-γ-producing Th1 cells soon after infection,
promoting Th1 cell differentiation. IFN-γ induces expression of
multiple other PRGs, such as TNFA and NOS2 (45, 46). Recent
studies have reported that IL17A is a key PRG, plays a major
protective role during the acute phase of infection (60). A strong
antibody response is also triggered, but apparently has a lower
effect on parasitism than innate immunity and acquired IFN-γ-
dependent CD4+ and CD8+ T cell responses (53).

Although powerful, the immune response that occurs during
acute infection leads to partial parasite control. T. cruzi
evades complete eradication, leading to the establishment of a
chronic persistent infection with low parasitism. T. cruzi-infected
individuals maintain increased production of inflammatory/Th1
cytokines like IFN-γ and TNF-α as compared to healthy
individuals, as a result of persistent stimulus of innate and specific
immunity (75).

IMMUNE DYNAMICS AND DIFFERENTIAL
DISEASE PROGRESSION TO CCC

Chronically infected individuals display differential disease
progression. While 60% of infected individuals remain disease-
free for life, 30% develop life-threatening CCC—a severe
inflammatory dilated cardiomyopathy, years after infection.
Ten percent develop gastrointestinal disease. CCC has a
worse prognosis than cardiomyopathies of non-inflammatory
etiologies, such as ischemic or idiopathic cardiomyopathy
(76). CCC patients show an increased number of IFN-γ-
producing Th1T cells and plasma TNF-α levels as compared with
ASY. Conversely, numbers of IL-10-producing CD4+CD25+
regulatory T cells (Tregs) CD4+CD25+ FoxP3+ Tregs and Th17
cells, as well as Ebi3/IL-27p28 levels are lower as compared with
ASY (28, 31, 39, 44, 60, 77) (Figure 2). The exacerbated Th1
response observed in the peripheral blood of CCC patients is
reflected on the Th1-rich inflammatory infiltrate predominantly
secreting IFN-γ and TNF-α. A lower, but significant, production t
of IL-4, IL-6, IL-7, IL-15, IL-18 was found in their heart tissue (57,
78–83). Indeed, IFN-γ is the most upregulated cytokine in CCC
heart tissue; concordantly, we observed significant expression
of T-bet, the hallmark Th1 transcription factor, in the CCC
myocardium (84). We found a positive correlation between
Tbet expression and left ventricular dilation, corroborating
the pathogenic role of Tbet positive/IFN-γ producing T cells
toward CCC. Conversely, mRNA expression of GATA3, RORγT,
and FoxP3, hallmark transcription factors of Th1-antagonizing
Th2, Th17, and Treg populations was low or undetectable.
In agreement, mRNA expression of their signature cytokines
IL4, IL13, IL17, IL10, and Treg molecular markers FOXP3 and
CTLA4 was also low or undetectable (84). IFN-γ-producing
CCR5+CXCR3+ Th1T cells are more abundant in CCC than
ASY (85), and the same cells were identified in CCC heart
tissue, along with their chemokine ligands (CCL3, CCL4, CCL5,
CXCL9, and CXCL10, respectively). CCL5 and CXCL9 were the

FIGURE 2 | Immune profile of CCC patients revolves around the IFN-γ axis.

CCC patients display increased production of PRGs IFN-γ and TNF-α, and

decreased levels of IFN-γ/Th1 suppressive factors as compared with ASY

patients. IL-10 and Ebi3/IL-27p28 are DTGs and IL-17, also reduced in CCC,

is included here as the DTG IL17RA signaling showed to suppress the

IFN-γ/Th1 axis. CCC, Chagas disease cardiomyopathy; PRG, pathogen

resistance gene; ASY, asymptomatic; DTG, disease tolerance gene; IFN-γ,

interferon-gamma; TNF-α, tumor necrosis factor alpha; IL, interleukin; Ebi3,

Epstein-Barr virus induced gene 3; IL17RA, interleukin 17 receptor A.

most highly expressed chemokine mRNAs, and the intensity
of the myocardial inflammation was positively correlated with
CXCL9 mRNA expression (86, 87). Together, this suggests
that locally produced Th1T cell-attracting chemokines play
a role in the selective accumulation of Th1T cells in CCC
hearts. Moreover, it indicates that the Th1 infiltrate in CCC
myocardium is essentially unopposed by regulatory cells or
cytokines, suffering little regulation. This lack of regulation could
explain the destructiveness of the inflammatory infiltrate, most
likely due to excessive collateral damage by IFN-γ-producing
T cells as described in acutely T. cruzi-infected mice. IFN-γ is
thus considered the culprit of CCC. We believe the unopposed
IFN-γ action is linked to the fact that DTGs that reduce IFN-γ
production and/or Th1T cell differentiation IL10, Ebi3/IL27p28,
and genes involved in IL-17 signaling are downregulated in CCC
patients.

The immunomodulatory profile of ASY patients, with
increased levels of DTG and lower levels of the PRG IFN-γ,
indicates that ASY patients are in a state of disease tolerance.
It is interesting to notice that the majority of chronic Chagas
disease patients −60%- are disease-tolerant ASY patients. This
is in line with evolutionary studies indicating that selection of
DTG is dominant over PRG, leading to higher frequencies of
individuals expressing DTG than PRG.

DELETERIOUS EFFECTS OF IFN-γ

While IFN-γ can control parasites, excessive levels can cause
tissue damage and death in the acute and chronic phases. IFN-
γ effectively regulates the expression of over 1,000 genes through
activation of Janus tyrosine kinase (JAK) and phosphorylation of
transducer and activator of transcription 1 (STAT-1) pathway,
along with other mechanisms (88, 89). Among key IFN-γ-
inducible inflammatory genes are TNF-α, and several other
inflammatory cytokines and chemokines, interferon-inducible
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factor 1 (IRF1) and other PRG, including inducible nitric oxide
synthase (NOS2) (90). Multiple findings suggest that IFN-γ plays
a central pathogenic role in the myocarditis and heart failure
in CCC patients. Systemic T. cruzi persistence drives continued
production of IFN-γ by T cells, important for parasite control
through NOS production, as well as activating ROS through
induction of NADP oxidases and mitochondrial ROS through
NF-kB (47, 48). However, T. cruzi is highly resistant to ROS;
IFN-γ and the accompanying NOS and ROS can also induce
severe disturbances of heart function. IFN-γ can modulate gene
expression in immune cells and cardiomyocytes. A significant
proportion of genes modulated in the CCC myocardium and
hearts from acutely infected mice are inducible by IFN-γ (86, 91).
Significantly, transgenic mice overexpressing IFN-γ develop a
TNF-α-dependent myocarditis and cardiomyopathy (92, 93). In
cardiomyocytes, IFN-γ treatment reduced contractility, induced
NO/peroxynitrite-dependent cardiomyocyte apoptosis, reduced
cardiomyocyte area, and also induced atrial natriuretic factor
and production of chemokines CCL3, CCL5, and CXCL1 (94–
96). IFN-γ regulates cardiac fibrosis by increasing fibroblast
proliferation, production of hyaluronan and metalloproteinases
2 and 9 (95, 97, 98).

IFN-γ AND MITOCHONDRIA: DANGEROUS
LIAISONS

Evidence of mitochondrial dysfunction has been found in
hearts of animal models of Chagas disease, as well as the
myocardium of CCC patients. This is especially relevant for CCC
pathogenesis, since mitochondrial dysfunction is a paramount
feature of heart failure of diverse etiologies (99). Nisha Garg
and her group pioneered and studied in detail mitochondrial
dysfunction in hearts of murine models of acute and chronic
Chagas disease and in vitro infection models (100). Regarding
mitochondrial damage in human CCC, our group described
altered expression of mitochondrial genes and 16S mitochondrial
rRNA in CCC heart lesions (57). We also found a selective
reduction of protein expression of ATP synthase and creatine
kinase activity—key mitochondrial energy metabolism enzymes-
in CCC heart lesions (101). In agreement, mitochondrial DNA
content was found to be reduced in CCC heart tissue (102),
further indicating that mitochondrial function is compromised
in CCC. Evidence indicates that many damaging effects of
IFN-γ are secondary to promoting peroxynitrite-dependent and
independent mitochondrial dysfunction and oxidative stress.
IFN-γ effects on mitochondria include inhibition of the oxidative
metabolism (103) an increased rate of ATP depletion (104) and
inhibition of creatine kinase expression (105, 106). Moreover,
IFN-γ+TLR ligand (LPS) treatment of cardiomyocytes– but
not T. cruzi infection per se—downregulates expression of
multiple mitochondrial genes. These genes were involved in
the electron transport chain, mitochondrial fission, mitophagy,
mitochondrial, and nuclear gene transcription (51). NF-kB
activation is one of the main mechanisms of mitochondrial
damage induced by IFN-γ. Although IFN-γ does not directly
activate NF-kB, it enhances TNF-α-induced NF-kB nuclear

FIGURE 3 | Interplay between IFN-γ and DTG determines the fate of

mitochondria. IFN-γ/TNF-α strongly activate NF-kB signaling. Unchecked

NF-kB activation leads to mitochondrial dysfunction, including decreased

MMP, increased ROS production and reduced ATP production. IFN-γ-lowering

DTG can reduce IFN-γ/TNF-α activation of NF-kB and shift the balance

favoring SIRT1, Nrf2, and AMPK. Agonists can protect mitochondria and

myocardial damage by reverting NF-kB activity in experimental CCC. DTG,

DISEASE tolerance gene; IFN-γ, interferon-gamma; TNF-α, tumor necrosis

factor alpha; NF-kB, nuclear factor kappa B; SIRT1, Sirtuin-1; Nrf2, nuclear

respiratory factor 2; AMPK, 5′ adenosine monophosphate-activated protein

kinase; MMP, mitochondrial membrane potential; ROS, reactive oxygen

species; ATP, adenosine triphosphate.

translocation. IFN-γ/TNF-α-driven NF-kB activation is known
to cause dissipation of the proton gradient and impairment of the
mitochondrial membrane potential (MMP) and ATP synthesis,
leading to apoptosis (106, 107). Persistent activation of NF-kB
by IFN-γ/TNF-α has been described to potentiate ROS release,
which can in turn increase tissue damage and mitochondrial
energy imbalance (106). Indeed, inhibition of NF-kB has been
shown to improve MMP with substantial decrease of NOS2/NO
induction and ROS release. Taken together, these reports strongly
suggest that IFN-γ may play a significant role in mitochondrial
dysfunction and heart failure. Excessive mitochondrial ROS
production by cardiomyocytes is considered as a central cause of
heart failure (108, 109).

A significant crosstalk occurs between NF-kB and
mitochondrion-protecting proteins. NF-kB signaling down-
regulates sirtuin-1 (SIRT1) activity through the expression
of IFN-γ, ROS, and NO (110). SIRT1, an antioxidant and
anti-inflammatory protein, regulates the oxidative respiration
and cellular survival and is highly expressed in the heart, acting
as an inhibitor of NF-kB inflammatory signals (111). While
NF-kB stimulates glycolytic energy flux in acute inflammation,
SIRT1 inhibits NF-kB and enhances mitochondrial oxidative
metabolism through 5

′

AMP-activated protein kinase (AMPK)
resulting in the resolution of inflammation (110). Treatment
of T. cruzi-infected mice with SIRT1 and/or AMPK agonists
SRT1720, resveratrol and metformin reduced myocardial NF-kB
transcriptional activity, inflammation and oxidative stress,
resulting in beneficial results for restoration of cardiac function
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(100, 112). Preserving Nrf2 activity was shown to arrest the
mitochondrial and cardiac oxidative stress, cardiac fibrosis,
and heart failure in murine T. cruzi infection (113). Nrf2 is the
master regulator of the antioxidant response, a transcription
factor controlling expression of hundreds of genes (114), and
promotes mitochondrial biogenesis (115). HMOX1 (Heme
oxygenase 1), a key effector of the Nrf2 antioxidative response,
is upregulated in the hearts of acutely infected mice (91),
but not in the myocardium of CCC patients. Furthermore,
its paralog HMOX2 is downregulated in CCC myocardium
(ECN and CC, submitted for publication), indicating that
Nrf2-dependent antioxidative defenses are even lower in CCC
myocardium than in acute T. cruzi myocarditis (91). It has
been recently observed that mitochondrial damage due to any
stimulus leads to inflammation. Figure 3 shows the interplay
between IFN-γ, DTG, NF-kB, and its antagonists, mitochondrial
protective factors SIRT1, Nrf2, and AMPK vs. the outcome of
mitochondrial function and inflammation.

ROS activate NF-kB, and dysfunctional or damaged
mitochondria release mitochondrial DAMPs (damage-associated
molecular patterns) including mitochondrial DNA (mtDNA)
leading to the activation of the TLR9/Myd88/NF-kB, cGas/Type
I IFN, and NRLP3 inflammasome pathways (116). In summary,

the release of mitochondrial DAMPs in response to initial
inflammatory stimuli and infection can establish a sterile
inflammation process, a self-perpetuating positive feedback loop
of mitochondrial damage and inflammation. This process has
been found to occur in heart failure of diverse etiologies, and
has been called sterile cardiac inflammation (117). Such sterile
inflammation could be a contributing factor for the maintenance
of inflammation in the absence of T. cruzi and may potentiate
inflammatory damage in CCC (Figure 4). Together, these results
indicate that mitochondrial dysfunction and mitochondrial ROS
production are major pathogenic factors and therapeutic targets
in CCC.

HOST GENETIC FACTORS ASSOCIATED
TO DIFFERENTIAL DISEASE
PROGRESSION

The finding that 30% of Chagas disease patients develop CCC
suggested the participation of genetics in differential disease
progression. This was reinforced by the finding of familial
aggregation of cases of CCC in endemic area settings (118).
CCC patients display a more intense inflammatory response

FIGURE 4 | Inflammation-induced mitochondrial dysfunction starts a positive feedback loop. Inflammation in CCC can trigger mitochondrial dysfunction and damage,

leading to release of mtROS and other mitochondrial DAMPs which can trigger inflammation cascades themselves, using several pathways. Such mitochondrial

DAMP-induced inflammation can perpetuate inflammation and promote further mitochondrial dysfunction in a positive feedback loop. “Sterile” cardiac inflammation

mediated by mitochondrial damage could thus perpetuate and/or potentiate inflammation in the hearts or CCC patients. CCC, Chagas disease cardiomyopathy;

DAMPs, damage-associated molecular patterns; mtROS, mitochondrial reactive oxygen species; mtDNA, mitochondrial DNA; TFAM, transcription factor A,

mitochondrial; cGAS, Cyclic GMP-AMP Synthase; NRLP3, NLR family pyrin domain containing 3; TLR9, toll-like receptor 9; MyD88, myeloid differentiation primary

response 88; STING, stimulator of interferon genes protein; TBK1, TANK binding kinase 1; IRF, interferon regulatory factor; NF-kB, nuclear factor kappa B; IFN,

interferon; TNF-α, tumor necrosis factor alpha.
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TABLE 2 | PRG and DTG gene polymorphisms associated with CCC, severe CCC, or death.

Gene Name Gene type

(KO studies)

Associated polymorphisms

(patients)

Phenotype Association study references

TLR PATHWAY

TLR4 Toll Like Receptor 4 PRG D299G/T399I CCC (119)

TNF/TNFR

TNFA Tumor necrosis factor alpha rs1799964, rs1800629, TNFα −238,

TNFα −308

CCC (120–122)

TNFA Tumor necrosis factor alpha −308, TNFα2 CCC - death (123)

Th1/IFNγ

IL12B Interleukin 12A PRG IL12B+1188 CCC (124)

IFNG Interferon gamma PRG rs2430561 CCC (125, 126)

CHEMOKINES

CCL2 C-C Motif Chemokine

Ligand 2

PRG CCL2-2518, rs2530797, rs4586,

rs3917891

CCC (127)

CCR5 C-C Motif Chemokine

Receptor 5

PRG CCR5+59029, rs1799987,

rs2856758, rs2734648, rs3176763,

rs11575815, rs1799988

CCC (87, 127–129)

CCR5 C-C Motif Chemokine

Receptor 5

PRG rs1800024 CCC - severity (130)

IFNγ-INHIBITING GENES

IL10 Interleukin 10 DTG IL10-1082 CCC (131)

EBI3 Epstein-Barr Virus Induced

3/IL-27p28

DTG rs4740, rs4905 CCC severity (39)

CCC severity, associated with CCC with ventricular dysfunction (Left ventricular ejection fraction <40%).

than the ASY patients, who seem to have a more regulated
immune response. Given the importance of inflammatory
mechanisms for CCC pathogenesis, genetic susceptibility to CCC
may result from functionally relevant genetic polymorphisms
that lead to variations in the intensity of the innate or
acquired immune response and in inflammatory cytokines
and chemokines involved in the pathogenesis of the disease.
Common genetic association studies compare frequencies of a
genetic polymorphism (single nucleotide polymorphism, SNP)
in a candidate gene (picked by the investigator) in two
populations (typically disease and control). If a gene variant
is more frequent in the disease group, it is said to be
associated with the disease and assumed to confer risk toward
developing disease. These studies show genetic contributions
that are typically small, explaining <10% of the phenotype
of complex, polygenic diseases like CCC. A SNP found to
be associated with a disease may be directly connected to
a phenotype (e.g., a polymorphism in a transcription factor-
binding sequence in the promoter region, affecting gene
expression) or merely a marker of a linked biologically relevant
polymorphism. In the case of Chagas disease, we performed
a thorough literature search at the PUBMED database and
retrieved 145 association studies addressing polymorphisms
in 76 genes, which disclosed 62 SNPs from 44 genes to be
associated with CCC. From those, 9 SNPs/genes were associated
with CCC severity—SNPs were more frequent among severe
CCC patients, with significant left ventricular dysfunction
(ejection fraction <40%), as compared to the remaining
CCC patients.

In our literature search, we found that 7 genes with
polymorphisms associated with CCC or severe CCC were
also defined as PRG or DTG in mouse knockout infection
studies (Table 2). The 5 PRG belonged to the TLR, Th1, or
chemokine pathways/processes. Since TNF-α signaling is key in
both the acute infection and CCC, we added TNFA and TNF-
receptor alpha (TNFRSF1A) to this table, even though TNFA
was only assessed in association studies (120–123, 132, 133),
and TNFRSF1A only in knockout infection experiments (26).
The two DTG Ebi3/IL27p28 and IL-10 both modulate IFN-γ via
downregulation of IFN-γ production and Th1 differentiation.
Such genes are central in the pathogenesis of CCC, as IFN-
γ and TNF-α-producing cells migrate to CCC heart tissue in
response to chemokines CCL2 and CCR5.While the−308 variant
of TNFA has been associated with increased production, this has
not been validated every time. Significantly, polymorphisms in
several other genes belonging to the same pathways (TLR-IL12-
IL18-IFNG-TNFA-NF-kB, chemokines/receptors, inflammasome
including both IL1B, and IL18) have been associated with CCC.

The heterozygous TLR4-D299G/T399I genotype occurred
more frequently in ASY infected subjects than CCC patients
(OR = 5.4, 95% CI = 1.03–52.6, P = 0.02) (119). In
humans, D299G/T399I reduces TLR4 responsiveness to
lipopolysaccharide and associates with increased susceptibility
and/or severity of numerous infectious and inflammatory
diseases. The TIRAP variant S180L was found to be more
prevalent in the ASY group than in the CCC group (OR =

0.31, 95%CI = 0.16–0.60, P = 0.0084) (134). Mutation leads
to a decrease in signal transduction upon ligation of TLR2 or
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TLR4 to their respective ligands. Weitzel et al. have shown a
similar trend of association for TLR4 (119). A similar study on
a large Brazilian population found that TIRAP rs8177376A/A
is associated with an increased susceptibility to CCC (OR
= 1.36; 95%CI= 1.19–1.80, P = 0.037) (127). This same
TIRAP variant confers protection against malaria, tuberculosis,
pneumococcal disease, and bacteraemia (135). Polymorphisms
in the TNFA-LTA region have been extensively studied. TNFA
–LTA polymorphisms (−308, −244, and −238) were studied
on a Peruvian cohort with negative results (132), while it was
found to be associated in a Mexican population (OR = 3.03,
95% CI = 1.29–7.12, P = 0.008) (120). Pissetti et al. have
shown that the LTA (+252) polymorphism was significantly
associated with Chagas disease as compared with healthy
seronegative individuals in a Brazilian population (133). Pissetti
et al. have shown that this allele is associated with higher TNF-α
production in Brazilian Chagas disease patients as compared
to healthy seronegative individuals (OR = 1.846, 95%CI =

1.057–3.223, P = 0.03) (121). Similar results were detected on a
Colombian cohort (122). Severe CCC patients with significant
ventricular dysfunction carrying the susceptibility genotypes
TNFA−308 or TNFA A2 microsatellite display a significantly
shorter survival time than those carrying other alleles (OR =

0.51, 95%CI = 0.27–0.97, P = 0.04) (123). CCL2 is an important
chemokine attracting monocytes/macrophages to inflamed
tissue. The plasma concentrations CCL2 are associated with
myocardial dysfunction in patients with severe CCC, dilated
cardiomyopathy and acute myocardial infarction (55, 136, 137).
Ramasawmy et al. have shown on their Brazilian population
that the variant at position CCL2−2518A allele conferred
susceptibility to CCC in a Brazilian population (OR = 4.1;
95%CI= 1.7–11; P= 0.001) (138), a result that was subsequently
confirmed (rs2530797: OR = 1.46; 95%CI = 1.11–1.92, P
= 0.007) (127). Multiple studies have identified associations
between different polymorphisms in the CCR5 gene (87, 127–
129, 139–142). A polymorphism in IFNG rs2430561 was found
to be associated with CCC (126). The IL12B +1188C allele was
found to be associated with CCC in a similar population (OR =

3.39, 95%CI= 1.3–9.15, P = 0.015) (124).
Finally, genes tagged as DTG were also associated in genetic

studies. The functional IL10 gene polymorphism −1082G/A
is associated with the development of CCC in a Brazilian
population (OR = 0.84, 95%CI = 1.44–4.95, p < 0.01) (131).
Similar data were obtained in Colombia (143). Ebi3/IL-27p28
regulates IFN-γ -mediated myocarditis by promoting an anti-
inflammatory environment through IL-10. Medina et al. has
shown that Ebi3 polymorphism (SNP rs4740) is less frequent
in patients with severe cardiopathy (6.6%) compared to patients
with the indeterminate form (OR 3.157, 95% CI= 1.15–8.64, p=
0.025) (39).

DOES T. cruzi GENETIC VARIABILITY PLAY
A ROLE IN DETERMINING THE OUTCOME
OF HUMAN CHAGAS DISEASE?

In addition to host genetic susceptibility factors, genetic variation
in T. cruzimay also play a role in the outcome of Chagas disease.

In animal models of infection, different T. cruzi strains show
very distinct patterns of acute phase death, induction/activation
of cytokines, PRGs and DTGs, tissue tropism, and development
of chronic infection (144, 145).

Major subgroups of T. cruzi genetic variability have been
classified into 6 discrete type units (DTU)- TcI to TcVI,
each with a distinct geographical distribution. It has been
reported that TcI (Colombian) and TcII (Y) strains differentially
activate human monocytes (146). However, there was no
difference in the DTUs found in the CCC and the ASY
groups in a same geographical region; heart disease is caused
by the DTUs that are prevalent in a given region (147–
150) Although DTUs were not clearly associated with Chagas
disease outcomes, T. cruzi genetic complexity surpasses the
simple DTU classification. It is likely that yet undisclosed
genetic variants of T. cruzi may influence the development of
CCC, as shown in mice (145), which will certainly interact
with the host genome to lead to different outcomes. Infection
of BALB/c or C57BL/6 mice leads to differential activation
of PRGs (151).

CONCLUDING REMARKS

The finding that all identified T. cruzi DTGs converge
on the inhibition of IFN-γ production and/or Th1T cell
differentiation indicates the importance of this homeostatic
control to avoid IFN-γ-induced death in the acute phase.
Downmodulation of the IFN-γ response by DTGs favors T. cruzi
evasion and the establishment of chronic infection. Among
chronically infected patients, disease progression is associated
with distinct immune profiles. In chronically infected ASY
patients, IFN-γ production levels are adequately modulated
by DTG IL10, Ebi3/IL27p28, Th17/IL17RA signaling, along
with Treg, promoting a state of disease tolerance. Conversely,
in CCC, an imbalance between DTG and IFNG causes
increased IFN-γ production associated with inflammatory
cardiac damage. Excessive myocardial IFN-γ signaling can lead
to mitochondrial dysfunction. In turn this leads to energy
imbalance, impairment of contractile function. Mitochondrial
dysfunction induces further inflammation, in a positive feedback
loop that can help perpetuate myocardial inflammation in
CCC.
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