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Background: Physical activity might attenuate inflammation and neurodegeneration in

multiple sclerosis (MS). Erythropoietin, which is produced upon exposure to hypoxia, is

thought to act as a neuroprotective agent in MS. Therefore, we studied the effects of

intermittent hypoxic training on activity energy expenditure, maximal workload, serum

erythropoietin, and immunophenotype focusing on regulatory and IL-17A-producing T

cells.

Methods: We assigned 34 relapsing-remitting MS patients within a randomized, single

blind, parallel-group study to either normoxic (NO) or hypoxic (HO) treadmill training, both

3 times/week for 1 h over 4 weeks (Clinicaltrials.gov identifier: NCT02509897). Before

and after training, activity energy expenditure (metabolic chamber), maximal workload

(incremental treadmill test), walking ability, depressive symptoms (Beck Depression

Inventory I), serum erythropoietin concentrations, and immunophenotype of peripheral

blood mononuclear cells (PBMCs) were assessed.

Results: Energy expenditure did not change due to training in both groups, but was

rather fueled by fat than by carbohydrate oxidation after HO training (P = 0.002).

Maximal workload increased by 40 Watt and 42 Watt in the NO and HO group,

respectively (both P < 0.0001). Distance patients walked in 6min increased by 25m

and 27m in the NO and HO group, respectively (NO P = 0.02; HO P = 0.01). Beck

Depression Inventory score markedly decreased in both groups (NO P = 0.03; HO

P = 0.0003). NO training shifted Treg subpopulations by increasing and decreasing the

frequency of CD39+ and CD31+ Tregs, respectively, and decreased IL-17A-producing

CD4+ cells. HO training provoked none of these immunological changes. Erythropoietin

concentrations were within normal range and did not significantly change in either group.
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Conclusion: 4 weeks of moderate treadmill training had considerable effects on fitness

level andmood in MS patients, both under normoxic and hypoxic conditions. Additionally,

NO training improved Th17/Treg profile and HO training improved fatty acid oxidation

during exercise. These effects could not be attributed to an increase of erythropoietin.

Clinical Trial Registration: ClinicalTrials.gov; NCT02509897; http://www.clinicaltrials.

gov

Keywords: multiple sclerosis, hypoxia, endurance training, walking ability, energy metabolism, Tregs, Th17 cells

INTRODUCTION

Multiple sclerosis (MS) is an immune-mediated disease
characterized by inflammation and neurodegeneration within
the central nervous system (1). Physical activity might positively
influence the inflammatory as well as the neurodegenerative
aspects of the disease. Voluntary exercise in experimental
autoimmune encephalomyelitis (EAE)mice attenuated disability,
immune cell infiltration and preserved axons, andmotor neurons
in the spinal cord (2). Some evidence suggests a beneficial effect
of exercise on cytokine responses and neurotrophic factors
in MS patients (3–6). Cross-sectional studies have shown a
positive association between cardiorespiratory fitness and gray
matter volumes and white matter integrity in MS patients
(7, 8).

Erythropoietin is thought to act as a neuroprotective agent in
MS. Its application delayed disease onset, reduced inflammation
and clinical scores in acute EAE in rats (9) and exerted
positive effects in a small study on progressive MS patients
(10) and as add-on therapy in acute optic neuritis (11). Serum
erythropoietin naturally increases upon exposure to hypoxia.
However, studies in healthy subjects, mostly athletes, showed
a high inter-individual variability and no clear dose-response
relationship has been established so far (12).

Training in hypoxia can induce similar training effects at a
lower workload than training in normoxia (13), which could
be beneficial in MS patients with reduced mobility. In a pilot
study on the effects of intermittent hypoxia in MS patients,
spasticity was significantly reduced after aerobic training under
both normoxic and hypoxic conditions. However, only hypoxic
training resulted in a significantly improved 6-min walk test,
indicating improved endurance capacity (14).

Th1 and Th17 responses as well as malfunction of Tregs
have been shown to contribute to the pathogenesis of MS by
shifting the immune response toward inflammation (15–19). A
limited number of small clinical studies showed that physical
activity decreases IFN-γ and IL-17 plasma levels in MS patients
(20, 21), implicating that physical activity could be beneficial for
MS patients.

Therefore, we studied the effects of intermittent hypoxic
training on serum erythropoietin, activity energy expenditure,
maximal workload, and immunophenotype focusing on IFN-γ-,
IL-17A-producing and regulatory T cells. We hypothesized that
4 weeks training under hypoxia would exert greater effects on
efficiency of muscle work duringmoderate intensity exercise than
training under normoxia.

METHODS

Study Design
This was a randomized, single blind, controlled, parallel-group
study conducted at the Experimental and Clinical Research
Center of Charité Universitätsmedizin Berlin from July 2015
to April 2017 (ClinicalTrials.gov identifier: NCT02509897;
Figure 1). Randomized assignment of patients to either
normoxic or hypoxic training (1:1) was based on two computer-
generated lists for single treatments, one for women and one for
men. Patients and all investigators involved in immunological
outcomemeasurements were blinded to the treatment allocation.
However, persons who supervised the training sessions had to
know the allocation in order to set the hypoxia chamber to the
right condition. Training sessions were similar in both groups
and moderate hypoxia was not perceivable by patients.

Patients
We screened 39 patients with relapsing-remitting MS according
to the 2010 panel criteria (22) from June 2015–March 2017
(last follow-up April 2017). Key inclusion criteria were a stable
immune-modulatory therapy or no MS medication for at least 6
months, an expanded disability status scale (EDSS) score < 4.5
(23), age between 20 and 60 years, and a bodymass index between
18.5 and 30.0 kg/m2. Key exclusion criteria were primary or
secondary progressive forms of MS, clinical relapse within 3
months prior to or during the study, and clinically relevant heart,
lung, liver, and kidney diseases. The institutional review board of
Charité Universitätsmedizin Berlin approved the study. Written
informed consent in accordance with the Declaration of Helsinki
was obtained from all patients prior to study entry.

All patients lived in the greater Berlin area about 35m above
sea level and had not visited higher altitudes within the weeks
before the study. We advised patients to continue their habitual
activity level and lifestyle throughout the study.

Hypoxia Chamber
Training sessions were conducted in a normobaric hypoxia
chamber (11 m2, 38 m3; Linde AG, Berlin, Germany). Oxygen
content within the room was reduced by mixing the incoming air
with nitrogen delivered from a nitrogen tank containing liquid
nitrogen. Oxygen and carbon dioxide concentrations within the
room were continuously monitored throughout the training
sessions with two redundant sensors for each gas and the inflow
of fresh air and nitrogen were automatically adjusted accordingly.
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FIGURE 1 | CONSORT 2010 flow diagram.

Training Intervention
Patients were submitted to a 4-week training program.
During training, they briskly walked on a motorized treadmill
(h/p/cosmos mercury 4.0, h/p/cosmos sports and medical
GmbH, Germany) at 65% of their individual maximal heart
rate. One group trained under normobaric normoxia (21% FiO2,
NO), the other one under normobaric hypoxia corresponding
to 2,500m altitude (15% FiO2, HO). Individual maximal heart
rate was determined beforehand in an incremental treadmill
test. All patients attended 12 training sessions within 4 weeks.
Each session lasted 1 h, during which patients walked three times
15min on the treadmill followed by a 5min break. Heart rate was
monitored continuously and either pace or slope of the treadmill
was adjusted by the supervisor to maintain the required heart
rate.

Study Protocol
Before (V1) and after training (V2), patients were tested after
a 12-h overnight fast. Additionally, all patients were asked
to refrain from caffeine and alcohol containing beverages
on the preceding day and from smoking on the study day
itself. We obtained venous blood for erythropoietin and blood
count measurements and for peripheral blood mononuclear cell
(PBMC) isolation. Body composition was determined by Air-
Displacement Plethysmography (Bod Pod, Life Measurements,
Inc., Concord, CA). Carbon dioxide production (VCO2) and
oxygen consumption (VO2) were measured in a metabolic
chamber - a comfortable, airtight room (5 m2, 11 m3) that is
constantly supplied with fresh air like an open circuit indirect

calorimeter (24). VO2 and VCO2 were used to assess changes
in energy expenditure (EE) and respiratory exchange ratio
(RER= VCO2/VO2).

While being seated in a comfortable chair, resting EE was
measured over 40min followed by a 75 g oral glucose load. Then,
patients started exercising on a bicycle ergometer (VIAsprint
150 P, Ergoline, Germany) at a workload of 0.5 W/kg body
weight over 40min. During exercise, heart rate was monitored
continuously and rates of perceived exertion on a 10-point scale
(25) were recorded every 10min. Exercise was followed by a
recovery period (40min).

After EEmeasurements, patients had a 60min break for taking
breakfast. Then, they underwent a 10m walk test (10 mWT)
and a 6min walk test (6 MWT). For the 10 mWT, patients were
asked to walk a 10m long course as quickly as possible. The test
was repeated three times and the mean gait speed was used for
assessment. For the 6 MWT, patients were asked to walk a 25m
long course up and down for 6min while the covered distance
was measured. The 10 mWT is a validated measure of walking
ability, whereas the 6 MWT rather measures walking endurance
(26). After another break, patients completed an incremental
VO2max test on a motorized treadmill. The test was adapted
from Langeskov-Christensen et al. who tested the validity and
reliability of VO2max measurements in MS patients vs. healthy
controls (27). We decided to use a treadmill protocol because
walking is more important for daily life activities than cycling.
The test started with a 5min warm-up at a self-chosen pace
between 3.5 and 5.3 km/h. Then the treadmill was switched to
a steeper slope every 1.5min until exhaustion. Increments were
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calculated individually based on sex, age, height and weight in
order to exhaust patients within 10min (28). During the test,
breath-by-breath gas exchange and an electrocardiogram were
recorded (Quark, COSMED, Italy). Before the test and within
one min after exhaustion, blood was obtained from an earlobe
to determine blood lactate concentrations.

Questionnaires
Possible changes in fatigue and self-reported depressive
symptoms were evaluated with the Fatigue Severity Scale
(FSS), the Modified Fatigue Impact Scale (MFIS), and the
Beck Depression Inventory (BDI-I), respectively. All three
instruments are commonly used and validated in MS patients
(29–31).

The habitual physical activity level of patients was evaluated
with a questionnaire asking for work, leisure, and sports activities
within the preceding year (32). Resting EE per hour was
calculated from the baseline EE measurement in the metabolic
chamber and the respective values were multiplied by energy cost
and duration (hour/week) of the respective activity (33).

Peripheral Blood Mononuclear Cell
Analysis
PBMCs were processed and analyzed as described previously
(34). Briefly, peripheral venous blood was obtained and
mononuclear cells were isolated within 4 h by density gradient
centrifugation using Biocoll (Merck, Darmstadt, Germany)
and cryopreserved until further processing. Thawed cell
aliquots were either labeled for extracellular antigens using
fluorophore-conjugated monoclonal antibodies or CD4+ cells
were selected (Miltenyi CD4+ Selection Kit). Cells (106)
from CD4+ and CD4− fractions were placed onto U-bottom
plates and re-stimulated for 4 h at 37◦C and 5% CO2 in
a humidified incubator in a final volume of 200 µl RPMI
1640 (Sigma) supplemented with 10% FBS (Merck), 100 U/ml
penicillin (Sigma), 100 mg/ml streptomycin (Sigma), 50 ng/ml
phorbol 12-myristate 13-acetate (Sigma), 250 ng/ml ionomycin
(Sigma), and 1.3 µl/ml Golgistop (BD). After re-stimulation,
cells were labeled with Aqua Life/Dead Viability Staining
kit (Invitrogen) for discrimination between dead and viable
cells. Furthermore, cells were labeled with respective surface
antigen-specific fluorophore-conjugated monoclonal antibodies,
then fixated and permeabilized by FoxP3/Transcription Factor
Staining Kit (eBioscience), and subsequently labeled with
respective intracellular-antigen-specific fluorophore-conjugated
monoclonal antibodies. Samples were analyzed using FACSCanto
II multicolor flow cytometer (BD). Gating strategy of the flow
cytometry analysis is shown in Figure S1. Data analysis was
performed with FlowJo 10.3 (FlowJo LLC) and FCSExpress V6.02
(De Novo Software) software.

Outcome Measures
Primary outcome measure was an improved efficiency of muscle
work during moderate intensity exercise assessed by indirect
calorimetry (metabolic chamber) after 4 weeks training under
hypoxia vs. normoxia.

Secondary outcome measures were maximal workload
(incremental treadmill test), walking ability (10 mWT and
6 MWT), serum erythropoietin concentrations and immune-
regulation of lymphocytes (Th17 cell/Treg balance), all after 4
weeks training under hypoxia vs. normoxia.

Statistical Analysis
This was a pilot study. Thus, all tests should be understood
as constituting exploratory data analysis. Therefore, no sample
size calculation or adjustments for multiple testing were made.
Statistical analyses were performed with GraphPad Prism
(versions 6.01 and 7.01) and Charles Zaiontz Real Statistics
Resource Pack software (Release 5.4). Data in graphics are shown
as single values or as mean and standard error of the mean. For
clinical data, two-way ANOVA followed by Sidak post-hoc test
was used and the P-values for training effects within one group
(before vs. after training) and differential training effects between
groups (NO vs. HO) are shown in the figures.

For immunological data, distribution of samples was tested by
Shapiro-Wilk test using Real Statistics Resource Pack. Depending
on their distribution, training effects within one group (before
vs. after training) were compared by Student’s two two-tailed t-
test or non-parametric Wilcoxon’s test. Training effects between
groups (NO vs. HO) were compared by Student’s unpaired two-
tailed t-test or Mann-Whitney U test. A P-value < 0.05 indicated
statistical significance.

RESULTS

Demographic and anthropometric characteristics of the
34MS patients (all Caucasians) who completed the study
are summarized in Table 1. There were no clinically relevant
differences in the baseline characteristics of the NO and HO
group. Disease modifying therapies were diverse among patients
and distribution was comparable between groups (Table 1).

TABLE 1 | Baseline characteristics of 34MS patients1.

Normoxia Hypoxia

Women/men 11/6 11/6

Age, years 51 (10) 49 (9)

BMI, kg/m2 24.0 (4.4) 25.3 (4.8)

Body fat, % 29.1 (10.1) 29.5 (10.2)

PAL 1.72 (0.27) 1.76 (0.27)

Disease duration, months2 158 (35–456) 156(2–336)

EDSS, arbitrary units2 3.0 (0.0–4.0) 3.0 (1.0–4.0)

No immunomodulatory therapy (n) 4 4

Immunomodulatory therapy (n) 13 13

Interferons (n) 3 6

Glatiramer acetate (n) 3 2

Dimethyl fumarate (n) 4 3

Teriflunomide (n) 3 1

1Data are given as means (SD) unless stated otherwise. BMI, body mass index; PAL,
physical activity level; EDSS, expanded disability status scale. 2Median (total range).
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Systemic Energy Metabolism
We investigated systemic metabolism at rest and during
moderate bicycle exercise. Baseline resting EE did not differ
significantly between the groups and did not change due to
training in either group (Figure 2A). After starting exercise, EE
increased immediately within the first 10min and more slowly
during the following 30min without reaching a steady state in
both groups. Total increase in EE within 40min exercise did not
differ between the groups, indicating comparable fitness levels at
baseline. During the recovery period, EE decreased regularly but
did not reach resting levels in both groups. Neither NO nor HO
training had significant effects on EE during moderate bicycle
exercise (Figure 2A).

Baseline resting RER did not differ between the groups (NO:
0.78 ± 0.03; HO: 0.78 ± 0.04), again indicating well matched
groups, also on a metabolic level. After 4 weeks of training,
resting RER were virtually the same (NO: 0.77 ± 0.04; HO: 0.77
± 0.04). In the NO group, RER increased to a lesser extent during
exercise at baseline and there was only a trend toward decreased
RER during exercise after the training (P = 0.07). This indicates
an already sufficient fatty acid oxidation at baseline with only
slight improvement due to training. However, in the HO group,
RER increased more potently at baseline and was significantly
lower after training (P = 0.002), indicating an improved fat
oxidation due to training (Figure 2B).

Primary Outcome Measure
Energy efficiency (workload/EE during exercise) did not change
in either group due to training (NO: 28.4 ± 8.1% vs. 28.3 ±

3.2%, NS; HO: 28.9 ± 4.8% vs. 29.5 ± 5.0%, NS; Figure 3A).
Although energy efficiency, i.e., efficiency of muscle work during
bicycle exercise, was rather unchanged, other relevant secondary
measures of performance did improve.

Physical and Mental Effects of Training
At baseline, VO2max in an incremental treadmill test was 32.8 ±
7.5 ml/min/kg BW in the NO group and 30.3 ± 7.1 ml/min/kg
BW in the HO group. VO2max did not change markedly due to
training in either group (NO: 33.4± 7.6ml/min/kg BW,HO: 30.5
± 7.7 ml/min/kg BW; both NS). At baseline, maximal workload
was 141 ± 64W in the NO group and 130 ± 60W in the HO
group. After training, workload was increased by 40W in the
NO group (P < 0.0001) and by 42W (P < 0.0001) in the HO
group (Figure 3B). HO training was not superior to NO training
in improving maximal workload.

At baseline, gait speed was 179 ± 41 cm/s in the NO group
and 178 ± 30 cm/s in the HO group. Gait speed significantly
increased in the NO group (194 ± 37 cm/s, P = 0.02) and
slightly increased in the HO group (185 ± 33, NS). Although the
improvement of 8% in the NO group is not considered clinically
meaningful, it is noteworthy that especially the slowest patients
in this group improved whereas those with almost normal gait
speed did not change (Figure 3C). At baseline, distances patients
walked in 6min were 534 ± 110m in the NO group and 549 ±

102m in the HO group. Distances increased by 25m in the NO
group (P = 0.02) and by 27m in the HO group (P = 0.01;

FIGURE 2 | Systemic energy metabolism during exercise (metabolic

chamber). (A) Energy expenditure (EE) and (B) respiratory exchange ratio

(RER) at rest and during bicycle exercise after glucose in MS patients before

(open circles) and after (closed circles) 4 weeks of normoxic (NO, n = 16,

black circles) and hypoxic (HO, n = 17, gray circles) treadmill training. Data as

mean (SEM), P-value (training) by ANOVA.

Figure 3D). HO training was not superior to NO training in
improving gait parameters.

Baseline FSS was 3.6 ± 1.6 in the NO group and 3.7 ±

1.7 in the HO group. Thus, mean values of the groups did
not indicate fatigue. However, seven patients in each group
had scores between 4.0 and 6.4 before the training. Although
mean severity of fatigue did not change in either group, 50%
of fatigued patients had lower scores after the training (two
after NO and five after HO training). Baseline MFIS was
26.8 ± 17.2 in the NO group and 30.2 ± 17.2 in the HO
group. In line with the severity of fatigue, its impact on daily
activities did not change in either group (Figure 3E). Baseline
BDI scores were 7.5 ± 6.1 in the NO group and 7.1 ± 6.6
in the HO group. BDI scores significantly decreased in both
groups (NO−2 points, P = 0.03; HO−3 points, P = 0.0003).
Although baseline means did not indicate depression, five and six
patients in the NO and HO group, respectively, were classified
as depressed (values > 10). Two and four of them were below
10 after NO and HO training, respectively (Figure 3F). HO
training was not superior to NO training in changing fatigue or
depression.

Surprisingly, none of these changes were mediated through
changes in EPO. Concentrations were within normal range at
baseline and did not significantly change due to training in either
group (NO: 9.4 ± 3.2 vs. 10.6 ± 3.5 mIU/ml, NS; HO: 8.6 ± 4.1
vs. 9.0 ± 3.7 mIU/ml, NS). Also other markers of erythropoiesis
like reticulocyte and red blood cell count did not change due to
training (data not shown).
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FIGURE 3 | Fitness, walking ability, fatigue and depression. (A) Working

efficiency, (B) maximal workload in an incremental treadmill test, (C) gait

velocity in a 10m walking test (10 mWT), (D) walking endurance in a 6min

walking test (6MWT), (E) Modified Fatigue Impact Scale (MFIS), (F) Beck

Depression Inventory (BDI-I). All in MS patients after 4 weeks of normoxic (NO,

n = 16, black circles) and hypoxic (HO, n = 17, gray circles) treadmill training.

P-values by ANOVA and Sidak post-hoc test.

Venous glucose and triglyceride concentrations were within
normal range at baseline and did not significantly change due to
training in either group. However, after training HDL cholesterol
was significantly higher in the NO group and total cholesterol
and LDL cholesterol were significantly higher in the HO group
(Table 2).

Immunological Effects of Training
We performed an intensive immunophenotyping of our patients.
Using flow cytometry, we focused on CD4+ regulatory T cell
(Treg) and CD4+ T helper cell (Th) populations. Frequency of
Tregs characterized either as CD4+ CD127− CD25+ or, more
specifically, as CD4+ CD127− CD25+ expressing the Treg-
specific transcription factor FoxP3+ (referred throughout this
paper as FoxP3+ Tregs) did not change due to training in either
group (Figures 4A,B, Figure S2A).

However, additional analysis of the expression patterns by
t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis,

TABLE 2 | Serum metabolic markers of MS patients before and after 4 weeks of

normoxic (n = 17) and hypoxic treadmill training (n = 17).

Normoxia Hypoxia

Before After Before After

Glucose, mg/dl 89 (10) 87 (13) 88 (8) 84 (12)

Total cholesterol, mg/dl 228 (51) 237 (40) 207 (46) 221 (50)*

LDL cholesterol, mg/dl 140 (48) 142 (36) 124 (42) 134 (45)*

HDL cholesterol, mg/dl 68 (16) 72 (18)* 64 (19) 67 (18)

Total/HDL ratio 3.5 (1.1) 3.5 (1.1) 3.4 (1.0) 3.5 (1.0)

LDL/HDL ratio 2.2 (0.9) 2.1 (0.9) 2.1 (0.9) 2.2 (0.9)

Triglycerides, mg/dl 104 (67) 114 (68) 95 (35) 97 (35)

Data are given as means (SD). LDL, low density lipoprotein; HDL, high density lipoprotein.
*P < 0.05 before vs. after training (Wilcoxon signed rank test).

which takes the expression of the CD markers CD31 (PECAM-
1), CD39 (ectonucleoside triphosphate diphosphohydrolase-1+,
NTPDase1+) and CD45RA into account, showed that the
FoxP3+ Treg population was heterogeneous for the above
markers (Figure 4C). This led us to analyze other distinct
populations of Tregs, such as CD45RA− CD31+ FoxP3+ and
CD45RA+ CD39+ FoxP3+ Tregs (Figures 4F,G). This analysis
revealed that NO training increased the frequency of CD39+

CD31− Tregs (P= 0.02; Figure 4D) and CD39+ Tregs, P= 0.03;
Figure S2B). Further, frequency of CD39− CD31+ Tregs was
decreased after NO training (P = 0.04; Figure 4E, Figure S2C).

Frequency of CD45RA− CD31+ FoxP3+ Tregs did not change
(Figure 4F), whereas CD45RA+ CD39+ FoxP3+ Tregs were
higher after NO training (P = 0.05; Figure 4G). Counterpart
proportions of these Treg populations did not change due
to training (CD39+ CD45RA- FoxP3+, CD31+ FoxP3+
CD45RA+, Figure S2D,E, respectively).

To compare training effects, we assessed differences of Treg
populations between V2 and V1 (1V2-V1; Figure 5). NO and
HO training differentially changed CD39− CD31+ (P = 0.01),
CD39+ CD31− Tregs (P= 0.05) and CD39+ FoxP3+ CD45RA+

Tregs (P = 0.03). However, at the level of Tregs training effects
were not different (Figure 5, Figure S2A). In the NO group,
1V2-V1 values revealed a clear shift toward the CD39+ direction
with a subsequent decrease of CD31+ positivity. In contrast, HO
training promoted a shift toward the CD31+ Treg direction with
a consequent decrease of the CD39+ phenotype (Figure 5).

Furthermore, we evaluated pro inflammatory cytokines such
as IL-17A, TNFα and IFN-γ. For this, CD4+-enriched cell
fractions were in vitro re-stimulated in order to investigate
cytokine expression of CD4+ T cells by flow cytometry. NO
training significantly decreased the frequency of total IL-17A+

(P = 0.01) and IL-17A+ TNFα− (P = 0.02) CD4+ cells
(Figures 6A,B), but did not affect the frequency of IL-17A+

TNFα+ and total TNFα+ CD4+ cells (Figures 6C,D). HO
training did not change any of these CD4+ cell populations.

Neither NO nor HO training altered frequencies of
IFN-γ+, IFN-γ+ IL-17A+, IFN-γ+ IL-17A− CD4+ T cells
(Figure S3). Furthermore, median fluorescence intensity (MFI)
of IFN-γ-labeling of CD4+ cells showed that IFN-γ-MFI of these
cells was not altered after both trainings (Figure S4).
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FIGURE 4 | Frequency changes of different regulatory T cell populations. (A) Regulatory T cells defined as CD4+ CD25+ CD127− or (B) FoxP3+ CD4+ CD25+

CD127−. (C) t-Distributed Stochastic Neighbor Embedding (t-SNE) plot for the expression-distribution of CD25, CD127, FoxP3, CD45RA, CD31 and CD39 within

one representative sample (red ellipses indicate regulatory T cells). (D) CD39+ CD31− and (E) CD39− CD31+ Tregs defined as being CD25+ CD127− CD4+. (F)

Memory phenotype CD31+ FoxP3+ CD45RA− Tregs and (G) naïve phenotype CD39+ FoxP3+ CD45RA+ Tregs in MS patients after 4 weeks of normoxic (NO,

n = 16, black circles) and hypoxic (HO, n = 14, gray circles) treadmill training. Three samples not analyzed due to quality issues. P-values by Student’s paired t-test
or Wilcoxon signed rank test.
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FIGURE 5 | Shifts toward CD39+ and CD31+ Treg phenotypes. Differences between V2 and V1 (1V2-V1) of the examined Treg populations were compared and are

shown around a hexagon radar chart. 1V2-V1 percentage point values were plotted on the matching axis of the radar chart. Positive values indicate an increase,

negative values indicate a decrease of the measured parameter after training. Red lines (no change), NO (black circles and dark gray shaded area on radar chart), HO

(gray circles and light gray shaded area on radar chart). P-values by Student’s t-test or Mann-Whitney U-test.

DISCUSSION

Physical activity is recommended as an important
complementary tool in MS therapy (35, 36). Here we studied
metabolic, mental and immunological effects of a moderate
treadmill training and hypothesized that intermittent hypoxic
training would add to the beneficial effects of a normoxic
training. We investigated 34 patients with relapsing remitting
MS who were comparable for age, body mass index, body fat
content, physical activity level, disease duration, and EDSS. The
men to women ratio was about 1:2. Since both groups were well
matched, differential intervention effects are less likely to be
attributable to any of the baseline characteristics.

Primary outcome measure was an improved energy efficiency
during moderate intensity exercise. Expanding less energy for

the same intensity of exercise would point to an improved
fitness level. Energy efficiency of patients in this study was
comparable with that of healthy persons (27.6 ± 4.5%; own
unpublished data). Four weeks of moderate treadmill training did
not increase energy efficiency during bicycle exercise. However,
extreme baseline values in the NO group were within normal
range after training. Energy efficiency might have increased with
longer training duration. Also, due to shortage of space in the
metabolic chamber, patients were tested on a bicycle instead of a
treadmill.

Despite unchanged energy expenditure, HO training
markedly increased fatty acid oxidation during exercise.
This is in line with two other studies which found a shift
toward fatty acid oxidation in healthy men after exercising
in hypoxia (37) and in overweight men resting in hypoxia
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FIGURE 6 | Frequency of IL-17A and TNFα producing T cells. Frequencies of (A) total IL-17A+, (B) IL-17A+ TNFα−, (C) IL-17A+ TNFα+, and (D) TNFα+ CD4+ cells

in MS patients after 4 weeks of normoxic (NO, n = 16, black circles) and hypoxic (HO, n = 14, gray circles) treadmill training. Three samples not analyzed due to

quality issues. Comparison of training effects (1V2-V1, right column). P-values before vs. after training by Student’s paired t-test or Wilcoxon signed rank test.

P-values NO vs. HO by Mann-Whitney U test or Student’s t-test.

(38). In a previous study, we found increased carbohydrate
and therefore decreased fatty acid oxidation during exercise
in MS patients compared to healthy controls (24). Improved
fatty acid oxidation, and thereby preservation of carbohydrate

stores, might improve management of energy resources in
MS patients. Thus, other relevant training effects observed
after hypoxic training might be due to improved energy
metabolism.
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A meta-analysis of 40 studies showed that weight-adjusted
VO2max values of MS patients were significantly lower compared
to healthy controls, and that aerobic training could increase
VO2max by 3.5 ml/min/kg BW (39). However, baseline VO2max

values of our patients were comparable to those of healthy
individuals. Neither training increased VO2max, presumably due
to insufficient training time and intensity. However, maximal
workload increased by about 40W or 30% in both groups. This
increase is much higher than that attained in other MS studies,
where increases ranged from 5 to 12W or 4 to 11% (40–42).
Thus, a 4-week treadmill training seems to be more effective
for increasing maximal workload than bicycle training applied
in most studies. However, familiarization with walking on a
treadmill could have contributed to these higher increases.

Walking is frequently affected in MS patients, which
negatively impacts on activities of daily life and contributes to
decreased quality of life (26, 43). Moreover, gait function is
perceived as the most valuable bodily function by MS patients
(44) and is, therefore, one of the most relevant objectives in MS
care. Gait speed was improved only after NO training, although
the change was less than 20% and, therefore, not considered
to be clinically meaningful (26). However, it is noteworthy that
especially the slowest patients in this group improved. Thus,
for those most impaired, training made a relevant difference.
Mean distances patients walked in 6min before training were
about 90m shorter than those of healthy subjects aged 50–
85 years (45). Training markedly increased walking distances
by about 25m in both groups. Our patients recognized this
improvement as the most valuable outcome of the study (oral
communication).

Although exercise seems to be moderately effective in the
treatment of fatigue in MS patients, effects are variable between
studies and subjects (46). We found no improvement of fatigue,
possibly because 65% of our patients were considered as non-
fatigued with FSS scores below 4.6 and MFIS scores below
38 (47). Depression is two to five times more common in
MS patients than in the general population, with 25–50% of
patients developingmajor depression (48). Although our patients
had only minimal, mild or moderate depressive symptoms,
we found a marked decrease of BDI scores in both groups.
This is in line with Rasova et al. who found decreased
scores after physiotherapy, aerobic training and a combined
program (49). Although it is not clear if depression is always
secondary to immunological changes in MS (48), immunological
effects observed in our study could have decreased depressive
symptoms, especially after NO training.

A total of 12 h exposure to normobaric hypoxia corresponding
to 2,500m altitude over 4 weeks was obviously not sufficient
to induce an increased EPO production. There is little data
on the time course of EPO production in humans. One small
study showed that continuous exposure to normobaric hypoxia
corresponding to 5,500m for 120min sufficiently increased EPO
production (50). However, both this altitude and intervention
time would not have been feasible in our training study with MS
patients due to safety issues and time constraints of participants.
Nevertheless, intermittent normobaric hypoxia might result in
EPO-dependent and EPO-independent effects.

Physical activity can improve blood lipid profile, which is
commonly affected in MS. At baseline, total and LDL cholesterol
levels were borderline high in both groups and increased slightly
and markedly in the NO and HO group, respectively. However,
HDL cholesterol levels were above 60 mg/dl in both groups both
before and after the training, indicating protection against heart
disease. Slightly increased total and HDL cholesterol were also
reported in some case-control studies inMS (51). Total/HDL and
LDL/HDL cholesterol ratios were about 3.5 and 2 in both groups,
respectively, indicating a low atherogenic risk.

Besides physical and mental health, immunological status
is important for disease progression in MS. MS is a chronic
autoimmune disease, previously considered to be predominantly
a disease with a Th1 skew, yet, there is a growing body of
evidence showing the role of Th17 answer in the pathogenesis
of MS (19). Besides the Th1-Th17 skew, genetic predisposition,
CD8+ cytotoxic T cells, low levels of vitamin D (52, 53) and
malfunctioning Treg homeostasis have been shown to contribute
to the pathology of the disease (17).

Physical activity has been shown to affect immune responses
in athletes, healthy volunteers and MS patients (21, 54–57). In a
murine asthma model and in elite swimmers, exercise increased
the frequency of Tregs (56, 58). In our study, neither NO nor
HO training had a significant effect on the frequency of Treg
cells. There were, however, trends for an increase after NO and
a decrease after HO training.

Treg malfunction plays a role in the pathogenesis of MS (17).
Naïve Treg function seems to be disturbed in early and late
stages of MS, whereas memory Treg homeostasis recovers in the
progressive phase (16, 17). CD39+ and CD31+ Tregs represent
two different modalities. CD39 expression has been previously
measured predominantly in FoxP3+ CD45RO+ T cells (59,
60), which possess a highly suppressive and anti-inflammatory
capacity by removing free ADP/ATP (60). Additionally it was
demonstrated that the frequency of circulating CD39+ Tregs
is decreased in relapsing-remitting MS patients compared to
healthy volunteers (60). Furthermore, Fletcher et al. showed
that CD39+ CD25high CD4+ Tregs suppress IL-17 production,
while their CD39− CD25high CD4+ counterparts could produce
IL-17 (18). Conversely, previous reports indicate that the
adhesion molecule CD31 is expressed mostly on CD45RA+

recent thymic emigrant Tregs (59, 61, 62). In line with previously
published data, we confirmed this distribution. However, and of
interest, in the present study a notable number of CD45RA+

Tregs were CD39+ positive, and several CD45RA− Tregs were
capable of expressing CD31. Thus, it would be tempting to
speculate that the training regimen could have effects on
functionality of Treg subpopulations. However, this needs to
be addressed in future studies. NO training had a beneficial
effect on the immunophenotype by promoting CD45RA+

CD39+ CD31− Tregs and decreasing their CD45RA− CD39−

CD31+ counterparts shifting the Tregs toward CD39 phenotype.
However, HO training did not exert this effect.

There are only a few studies investigating the effect of
training on IL-17-producing cells. Combined exercise training
(24 sessions over 8 weeks) decreased IL-17 and IFN-γ in
plasma and supernatants of cultured PBMCs from women with
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relapsing-remitting MS (20). In line with this, cultured PBMCs
from patients with relapsing-remitting MS, who had trained
2 h per week for 12 weeks, produced significantly less IL-17
(21). We applied flow cytometry to investigate the IL-17A and
TNFα-expression of CD4+ cells, which are considered to be the
major source of IL-17A. The frequency of IL17-A+ cells was
significantly decreased after NO training.

However, there was a slight increase of IL-17A+ cells after
HO training. Thus, additional hypoxia seems to diminish this
favorable effect of training. This finding is parallel to the study of
Dang et al. reporting that HIF-1 regulates the Treg/Th17 balance
in mice, leading to the activation of IL-17 genes and proteosomal
degradation of FoxP3 (63). Although we did not measure HIF-1
expression, its induction in theHO groupmight have contributed
to our findings.

Since physical training has been shown to decrease plasma
levels of IFN-γ in MS patients (20, 21), we examined the IFN-
γ-expression of CD4+-enriched cells. However, we found no
decrease in the frequency of IFN-γ-producing CD4+ cells or
in their MFI after our training regimens. Of note, MFI might
not always reflect the secreted amount of cytokines with 100%
accuracy (64). Thus, further experiments are necessary to validate
IFN-γ-expression after training in MS patients.

Although groups in this study were well matched and our
training regimen produced considerable effects, HO training
did not increase EPO levels and had no additional advantages.
This might have been different with higher altitude, training
intensity and duration. Overall, a training period of 4 weeks
is quite short. A longer training period might have increased
VO2max and other outcome measures even further. Energy
metabolism had to be tested on a bicycle instead of a treadmill,
which might have masked training effects. Moreover, longer-
term studies could evaluate cognitive decline outcomes like
Symbol Digit Modalities Test or Paced Auditory Serial Addition
Test (65). However, our training regimen was feasible, well
tolerated by all participants and we did not observe any adverse
effects of hypoxia. We feel that this positive experience with
physical activity was crucial for most participants who increased
their activity after the study. Also, immunological data did
not indicate that an increased exposure to hypoxia would be
favorable.

We investigated metabolic, mental and immunological effects
of a moderate treadmill training. We found that both training
regimens had considerable but partly differential effects. We
assume that hypoxic and normoxic training worked through an
improved energy metabolism and immune status, respectively.
Both improvements could in turn enhance mood and mobility.
Our study strengthens the notion that a moderate and feasible
training regimen positively influences factors relevant for the

disease course of MS. However, longer-term studies are needed
to effectively improve more outcome measures of physical
and mental health. Moreover, other immunological parameters
implicated with exercise and MS should be investigated in future
studies.
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