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Graft-vs.-host disease (GVHD) remains a major obstacle to the success of allogeneic

hematopoietic stem cell transplantation (HSCT). GVHD occurs because donor T cells in

the allograft recognize the genetically disparate host as foreign and attack the transplant

recipient’s tissues. While genetic incompatibility between donor and recipient is the

primary determinant for the extent of alloimmune response, GVHD incidence and severity

are also influenced by non-genetic factors. Recent advances in immunology establish

that environmental factors, including dietary micronutrients, contribute significantly

to modulating various immune responses and may influence the susceptibility to

autoimmune and inflammatory diseases of experimental animals and humans. Emerging

clinical and preclinical evidence indicates that certain micronutrients may participate

in regulating GVHD risk after allogeneic HSCT. In this review, we summarize recent

advances in our understanding with respect to the potential role of micronutrients in

the pathogenesis of acute and chronic GVHD, focusing on vitamins A and D.

Keywords: vitamin A, vitamin D, retinoic acid, vitamin D receptor, graft-vs.-host disease, allogeneic hematopoietic
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MICRONUTRIENTS AND IMMUNITY

Micronutrients are compounds that are only needed in small amounts, yet are essential for
the proper growth and development of the human body. These vitamins and minerals are
indispensible for the production and function of various enzymes and hormones that are critical for
maintaining optimal physical and mental function. An aberrant micronutrient status contributes
to the increased susceptibility to various infectious, inflammatory, and metabolic conditions such
as colitis, diabetes, cancer, obesity, and cardiovascular disease.

The importance of the micronutrients vitamins A and D in health has been recognized since the
early twentieth century. More recent advances have led to the discovery of the critical role of these
molecules in the immune system (1). Current highlights within this field include the finding that
maternal vitamin A levels significantly influence the proper development of secondary lymphoid
organs in offspring and determine the fitness of their immune system in later life (2). Lack of
vitamin A-mediated signaling in utero substantially reduced the anti-pathogen immune response of
newborn mice (2). Similarly, vitamin D also plays a role at the maternal-fetal interface, preventing
inflammatory responses such as pre-eclampsia (3). These immunomodulatory effects may be long
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lasting as maternal vitamin D deficiency has been shown to
contribute to a greater likelihood of atopic responses in the
neonatal lung (4, 5). These findings reveal how nutritional status
during fetal life can profoundly affect immune responses in
adulthood, highlighting the importance of vitamins A and D in
the development and maintenance of a competent, yet tightly
regulated immune system.

GRAFT-VS.-HOST DISEASE (GVHD) AND
NUTRITIONAL FACTORS

GVHD remains a major obstacle limiting the broader application
of allogeneic hematopoietic stem cell transplantation (HSCT), an
effective treatment for a number ofmalignant and non-malignant
hematological disorders (6–8). GVHD is the consequence of
a normal, yet exaggerated, immune reaction elicited by donor
T cells when they encounter alloantigens expressed by the
transplant recipient. Acute GVHD (aGVHD) pathophysiology is
characterized by strong inflammatory components while chronic
GVHD (cGVHD) displays more autoimmune manifestations (9–
13). The pathogenesis of GVHD is a complex process involving a
variety of host and donor immune cells (Figures 1, 2). The major

FIGURE 1 | Acute GVHD and vitamins A and D. aGVHD pathogenesis involves: (1) Activation of host APCs due to release of inflammatory cytokines

and PAMPs/DAMPs from tissue damaged by HSCT conditioning. Intestinal damage by conditioning serves to amplify inflammatory responses. (2) Activation of donor

T cells when they encounter host APC. Donor T cells undergo differentiation, expansion, and acquisition of tissue homing specificity during this stage (2a).

Inflammatory cytokines produced by donor T cells and bacterial LPS can further activate innate immune cells such as macrophages (2b). (3) Inflammatory mediators

from donor T cells and innate immune cells lead to target cell apoptosis. Cytotoxic CD8T cells can mediate direct cell killing. Tr1/Tregs play immunomodulatory roles in

aGVHD pathogenesis. The effects of vitamin A/RA (shown in green) on aGVHD are complex and not completely understood. Vitamin A/RA promotes donor T-cell

intestinal homing. Inhibiting donor T-cell RAR signaling suppresses the induction of gut-homing molecules and favors Treg cell differentiation. It has also been reported

that RA inhibits donor T cell expansion and cytokine production. The potential effects of vitamin A/RA on host APCs are currently under investigation. The effects of

vitamin D (shown in orange) on aGVHD may include suppressing the activation of host APCs, inhibiting the activation and cytokine production of donor T cells as well

as promoting the induction of Tr1/Treg. The figure is adapted from Ferrara et al. (9).

determinant for the development and the severity of GVHD is
the genetic disparity between the donor and recipient. However,
some non-genetic factors such as the level of exposure to damage
associated molecular patterns (DAMPs) and pathogen-associated
molecular patterns (PAMPs) are also important components
of GVHD pathophysiology, due to their ability to amplify
inflammatory responses (14). In addition, other host factors may
also influence the function of various immune cells andmodulate
the alloimmune response.

Nutritional status is a significant variable among patients
undergoing allogeneic HSCT. In fact, nutritional support appears
to affect the development of GVHD, with adequate enteral
nutrition being associated with reduced GVHD risk as compared
to parenteral nutrition (15–18). These studies indicate that the
interaction between certain oral nutrition and the gastrointestinal
tract can modulate GVHD risk. Thus, patient nutritional status
may be an independent and modifiable factor influencing
GVHD severity (19). It is conceivable that an improved
nutritional status may provide patients with an increased
ability to tolerate treatment-associated toxicity and recover from
GVHD-associated tissue damage. More importantly, certain
micronutrients may also be actively involved in regulating
the initiation, development, and resolution of inflammatory
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FIGURE 2 | Chronic GVHD and vitamins A and D. cGVHD pathogenesis involves: (1) Early inflammation and tissue injury. An existing inflammation and danger signals

activate innate immune cells and recruits donor T cells to the tissue. (2) Dysregulated immunity with loss of tolerance. Activated CD4T cells stimulate the maturation of

auto-reactive B cells. (3) Mature B cells produce various autoantibodies against host antigens. (4) Aberrant tissue repair and fibrosis via macrophages and fibroblasts.

Tr1/Treg play immunomodulatory roles in chronic GVHD pathogenesis. It has been reported that synthetic retinoid (shown in green) reduces cGVHD by inhibiting Th1

and Th17 cells. It may also facilitate the generation of Tr1/Tregs. The potential effects of vitamin D on cGVHD (shown in orange) may include positive effects on

Tr1/Treg function and polarization as well as inhibitory effects on proinflammatory T cell polarization, inflammatory cytokines, autoantibody secretion and collagen

production. This figure is adapted from Cooke et al. (12).

responses after HSCT. In this review, we briefly summarize the
potential roles of vitamins A and D in GVHD pathogenesis.

EFFECTS OF VITAMIN A ON GVHD

Vitamin A is a multifunctional vitamin involved in a wide range
of biological processes. Most biological effects of vitamin A
are exerted by its major metabolite, retinoic acid (RA) (20).
The conversion from vitamin A to RA requires two hydrolysis
steps catalyzed first by alcohol dehydrogenases (ADHs), followed
by aldehyde dehydrogenases (RALDHs). RALDHs are the rate-
limiting enzymes for RA synthesis and are expressed in limited
tissues (21). Heterodimers of retinoic acid receptors (RARs)
and retinoid X receptors (RXRs) mediate RA signaling. These
heterodimers bind to retinoic acid responsive elements (RARE)
of target genes and regulate gene transcription. One of the most
important physiological functions of vitamin A and RA is to
regulate immune responses, and dysregulated retinoid signaling
can lead to a weakened immunity against pathogens and/or the
loss of immune homeostasis (20, 22).

RA has pleiotropic effects on cells of the innate and adaptive
immune system (23–25). It can target T cells, B cells, antigen
presenting cells (APCs), and innate lymphoid cells (ILCs) to
regulate immune responses. RA induces the expression of gut-
homing molecules CCR9 and α4β7 on various immune cells,

augmenting cell migration to the intestines (26–28). At steady
state, RA promotes the induction of tolerogenic dendritic cells
(DCs). However, in the presence of inflammatory cytokines
such as IL-15, RA promotes the induction of inflammatory
DCs and intensifies pathogenic mucosal immune responses (29).
RA has also been shown to influence the development of DC
subsets in the spleen and intestines (30–33). RA also plays a
central role in modulating intestinal CD4+ T cell responses
and enhances the stability of natural regulatory T cells (Tregs)
(34). Together with TGF-β, RA promotes the conversion of
naïve T cells into induced-Tregs at the expense of Th17 cells
(35, 36). Vitamin A deficiency is associated with impaired oral
tolerance, suggesting an important role of RA in maintaining
intestinal homeostasis (37, 38). On the other hand, the RA-
RAR-α axis is important for CD4+ T cell activation and effector
function under inflammatory conditions (39, 40). Finally, RA
promotes the induction of ILC3 but suppresses the generation
and cytokine production of ILC2 (41). These observations
demonstrate the complex and sometimes paradoxical functions
of RA within the immune system, as it can possess either pro-
inflammatory or anti-inflammatory properties depending on the
context.

In the context of GVHD, Koenecke and colleagues used
a dietary approach to first examine how recipient vitamin A
levels affect donor T cell trafficking after experimental HSCT

Frontiers in Immunology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 2853

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chen and Mayne Role of Vitamins A and D in GVHD

(42). Vitamin A-deficient (VAD) recipient mice had a reduced
percentage and absolute number of donor T cells in the intestine,
which was attributable to diminished expression of gut-homing
molecules α4β7 and CCR9. VAD recipients survived longer than
control vitamin A-normal (VAN) mice due to gastrointestinal
protection, though they developed more severe hepatic GVHD.
These results indicated that vitamin A affects GVHD target organ
tropism of donor T cells, with a particularly important role in
controlling the migration of donor T cells to the intestine, a
critical GVHD target organ (43). We and others then used a
genetic approach to examine the role of RA signaling in GVHD
pathogenesis. These studies consistently showed that genetic
ablation of RAR-α on donor T cells significantly decreased the
ability of these cells to cause lethal GVHD (44, 45). This was
largely due to reduced expression of gut-homingmolecules CCR9
and α4β7 on donor T cells with diminished intestinal migration.
In contrast, administrating RA exogenously to recipient mice
increased expression of gut-homing molecules on donor T
cells and increased their gut-tropism, leading to a significantly
increased overall mortality (44–46). In addition, inhibiting RAR-
α reduced donor T cell differentiation toward a Th1 phenotype
and favored the induction of Tregs (45), which also contribute to
the decreased ability of these cells to cause GVHD. Importantly,
genetic inhibition of RAR-α signaling on donor T cells does
not compromise their ability to mediate the graft-vs.-leukemia
effect.

In an effort to improve the translational potential of this
research, we treated donor mice with BMS493, a pan-RAR
antagonist. Recipients of BMS493-treated donor T cells showed
improved overall survival after HSCT compared to recipients
of vehicle-treated donor T cells, indicating that pharmacological
inhibition of the retinoic acid pathway on donor T cells
can reduce their alloreactivity and ability to cause GVHD
(47). Interestingly, chronic vitamin A deficiency changed the
composition of the donor T cell compartment with a reduction
in the percentage of CD4+ T cells, resulting in reduced ability
of transferred T cells from VAD mice to cause lethal GVHD
(47). Thus, both host and donor vitamin A levels appear to affect
the development of experimental GVHD (42, 47). While most
preclinical studies suggest a detrimental effect of RA on GVHD,
it has also been reported that RA treatment reduces aGVHD (48)
and a synthetic retinoid ameliorates cGVHD (49). Differences
in mouse GVHD models used, RA levels in situ, and local
cytokine milieu could all potentially contribute to these differing
observations.

Apart from above preclinical studies, emerging clinical data
also demonstrate the involvement of vitamin A/RA in GVHD
pathogenesis. A recent study found that lower levels of vitamin
A are associated with increased intestinal GVHD in children
receiving allogeneic HSCT (50). The incidence of grades 2–
4 GVHD was also significantly higher in patients with lower
vitamin A levels. These observations appear in contrast to
a murine study in which vitamin A deficiency is associated
with a reduced intestinal GVHD and improved overall survival
(42). This discrepancy could be due to inherent differences
between mouse model and human disease or increased severity
of experimentally induced vitamin A deficiency compared

to clinical deficiency/insufficiency. In addition, the study by
Lounder et al. actually used serum vitamin A levels above
or below a median value, instead of vitamin A deficiency
or sufficiency, to separate patient groups. Finally, there was
also evidence that low serum vitamin A levels are associated
with more severe ocular GVHD in allogeneic HSCT patients
(51). Thus, both preclinical and clinical data indicate a
significant involvement of vitamin A and RA pathway in GVHD
pathogenesis.

EFFECTS OF VITAMIN D ON GVHD

Vitamins D and A are similar in that they are the only two
vitamins whose active metabolites have hormone-like properties.
Indeed, the active metabolite of vitamin D, calcitriol, is a well-
established secosteroid hormone with multiple roles throughout
the human body (52). Though vitamin D may be acquired
nutritionally, a large proportion of vitamin D is synthesized in
the human body. This synthesis is initiated in the skin as UV-
B rays cause the photolysis of 7-dehydrocholesterol, forming
vitamin D3. In the liver, vitamin D3 is hydroxylated to 25-
hydroxyvitamin D3 (25(OH)D3) by enzymes such as CYP2R1
and CYP27A1 (53, 54). 25-hydroxyvitamin D3 is the principal
circulatingmetabolite of vitaminD and 25(OH)D3 concentration
is typically used as an indicator of vitamin D status. This
inactive 25(OH)D3 is hydroxylated once more in the kidney
via the enzyme CYP27B1 to become the biologically active
hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), also known
as calcitriol.

Vitamin D utilizes similar signaling mechanisms to vitamin
A. Calcitriol binds to the vitamin D receptor (VDR), which
heterodimerizes with RXR (55, 56). VDR-RXR heterodimers that
are bound to calcitriol act as transcriptional regulators by binding
vitamin D response elements (VDREs) of target genes (57). The
classical physiological roles of vitamin D (via calcitriol) are in
calcium and phosphate homeostasis and bone metabolism, with
other roles being referred to as “non-classical” functions. The
discovery of vitamin D binding within immune cells in the early
1980s and eventual description of VDR expression in immune
cells were key steps in the study of the non-classical effects of
vitamin D on the immune system (58–60).

It has been shown in numerous studies that calcitriol
inhibits maturation and inflammatory cytokine production
of DCs (61–64). These changes in DC differentiation and
function also result in a skew toward a more tolerogenic
DC profile with the ability to drive Treg, T-regulatory cell
type 1 (Tr1), and Th2 cell development (65). Importantly,
calcitriol also appears to exhibit direct effects on CD4T cell
populations to modify immune function. In vitro treatment
of T cells with calcitriol inhibits proliferation under several
activating conditions (66, 67). Calcitriol has been shown to be
effective as a treatment in numerous mouse models of diseases
that are driven by Th1 and Th17 cells, suggesting a global
immunomodulatory effect on these cell types (68–71). Calcitriol
also appears to inhibit proliferation and pathogenicity of CD8T
cells since VDR-deficient CD8T cells are hyperproliferative
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and proinflammatory (72, 73). Calcitriol inhibits production
of IFN-γ and stimulates IL-4 secretion in invariant natural
killer (iNKT) cells (70). Finally, calcitriol leads to decreased B
cell proliferation and differentiation to plasma cells. However,
it is unclear if these effects are due to direct effects on
the B cell, or due to reduced interactions with CD4T
cells (74).

There is a significant history of studies on the effects of vitamin
D and its analogs on allograft survival in several tissues (75,
76). However, preclinical studies in animal models of allogeneic
HSCT are rather limited. To our knowledge, only one study of
VDR agonism has been reported in animal models of GVHD.
In this study, a vitamin D analog reduced aGVHD severity
and immune cell infiltration in liver, skin, and spleen of rats
(77). In vitro studies utilizing human monocyte-derived DCs
recapitulated previously results showing that vitamin D led to
the development of more immature tolerogenic DCs. Vitamin
D-treated DCs activated allogeneic CD4 and CD8T cells with
a greater IL-10 to IFN-γ ratio, and these T cells were less
proliferative in mixed lymphocyte reactions (MLRs) (78). In
another study, alloreactive T cells were shown to express greater
levels of VDR (79). Addition of calcitriol to the MLR led to a
decrease in the percentage of proliferating T cells. This appeared
to be due to direct action of calcitriol on the alloreactive T cells
since the allogeneic DC were matured in the absence of calcitriol
and irradiated prior to be used in the MLR (79).

The first reports for a potential role of vitamin D in
human GVHD came through candidate gene studies analyzing
known VDR polymorphisms. Interestingly, the results of these
studies are quite variable. Some studies suggest roles for various
polymorphisms in GVHD when present in the recipient only
(80–82), some studies suggest a role for VDR genotype in
both the donor and recipient (83), while another more recent
study found no significant association between GVHD and
VDR polymorphisms in the donor nor recipient (84). Taken
together, these results suggest that in some instances the a
allele of VDR may play a role in aGVHD risk when present
in recipients of HSCT. However, not all studies have found
such an association and the results may vary between different
populations (84). One complicating factor of these studies was
that the vitamin D status of the individuals studied was often
unknown. Thus, any differences in VDR activity associated
with disease could be obfuscated depending on whether an
individual’s vitamin D stores were sufficient to provide for VDR
function.

Though genetic studies of VDR suggest a potential role
for vitamin D signaling in GVHD, patient serum levels of
vitamin D may provide a more direct method of investigation.
Indeed, it appears that individuals undergoing HSCT are at
particular risk for vitamin D deficiency/insufficiency (85–89).
Several retrospective studies have thus investigated whether
vitamin D status prior to HSCT corresponds with subsequent
development of GVHD (90–92). These studies seem to suggest
a relatively consistent association of cGVHD with lower
vitamin D status, whereas the results for aGVHD are more
variable. In a more recent study, however, levels of vitamin D
pre-HSCT did not correlate to development of aGVHD nor

cGVHD in a group of pediatric patients (93). Interestingly,
the one-year survival rate did differ significantly, with 35%
mortality in the deficient group vs. 0% in the insufficient and
7% in the sufficient groups, suggesting a beneficial effect of
higher vitamin D levels on overall survival after allogeneic
HSCT (93).

Given the potential association of vitamin D status and
GVHD, the effect of supplementation was further investigated.
Even though HSCT patients may be particularly at risk for
vitamin D insufficiency/deficiency, supplementation can
increase their vitamin D status (86, 90). Rosenblatt et al.
reported observation of two patients with steroid refractory
cGVHD who were treated with supplemental vitamin D
for bone mineral abnormalities. Impressively, both had
their symptoms wane to the point that they were removed
from immunosuppression after vitamin D treatment (78).
A marked improvement in cGVHD was also observed in a
subsequent analysis of 12 adult HSCT patients who were given
1,000 IU/day vitamin D to treat osteopenia or osteoporosis
(94).

To date, we are aware of only one published prospective
study of vitamin D supplementation in HSCT patients (95).
This investigation demonstrates that vitamin D may play a role
in the prevention of cGVHD, as suggested previously (78, 90–
92, 94). Intriguingly, there was no difference in aGVHD among
the patient groups in this study. It is worth noting that in
this study vitamin D supplementation began only 3 days prior
to transplantation. Indeed, the authors show that significantly
higher levels of 25(OH)D3 were not observed in the serum
until day 7 in high-dose and day 21 in low-dose patients (95).
This signifies that aGVHD may have been initiated in the
absence of sufficiently elevated levels of vitamin D. Further
investigation into the effect of earlier supplementation to raise
serum vitamin D levels prior to HSCT to prevent aGVHD is
of interest. Overall, the data surrounding vitamin D and the
immune system as well as the initial studies on vitamin D and
GVHD suggest that it is highly likely that vitamin D could
exhibit positive effects in the prevention and/or treatment of
GVHD (96).

Conclusions and Perspectives
In conclusion, we believe that small molecules like vitamins A
and D could have the potential to influence the development
of GVHD after allogeneic HSCT. These micronutrients may
modulate crosstalk between the various immune cells involved
in the pathogenesis of GVHD, thus influencing disease initiation,
progression, and resolution (Figures 1, 2). Their levels may also
have prognostic value, serving as independent risk factors for
predicting the severity of organ-specific or systemic GVHD.Most
importantly, nutritional intervention before and after allogeneic
HSCT may be used as an adjuvant therapy to reduce GVHD
risk and improve the outcome of allogeneic HSCT (95, 97,
98). We propose that GVHD research using animal models
should consider dietary composition. More preclinical studies
in this understudied research area will provide new insights
into how nutritional factors contribute to GVHD pathogenesis.
Finally, more prospective randomized controlled clinical trials
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are needed to fully reveal the potential of using micronutrients
such as vitamins A and D as simple and inexpensive
approaches with minimal side effects to mitigate clinical
GVHD.
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