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Passive transfer studies in humans clearly demonstrated the protective role of IgG

antibodies against malaria. Identifying the precise parasite antigens that mediate

immunity is essential for vaccine design, but has proved difficult. Completion of the

Plasmodium falciparum genome revealed thousands of potential vaccine candidates,

but a significant bottleneck remains in their validation and prioritization for further

evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite

proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic

approaches, to select and prioritize potential immune targets. We expressed 109 P.

falciparum recombinant proteins, the majority of which were obtained using amammalian

expression system that has been shown to produce biologically functional extracellular

proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate

high-throughput multiplexed antibody detection from individual samples.

The microarray assay was highly specific; antibodies against P. falciparum proteins were

detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The

intensity of antibody reactivity varied as expected from strong to weak across well-studied

antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The

inter-assay and intra-assay variability was minimal, with reproducible results obtained in

re-assays using the same chip over a duration of 3 months. Antibodies quantified using

the multiplexed format in KILchip v1.0 were highly correlated with those measured in
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the gold-standard monoplex ELISA [median (range) Spearman’s R of 0.84 (0.65–0.95)].

KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad

applicability to studies of naturally acquired immunity against malaria by providing a

standardized tool for the detection of antibody correlates of protection. It will facilitate

rapid high-throughput validation and prioritization of potential Plasmodium falciparum

merozoite-stage antigens paving the way for urgently needed clinical trials for the next

generation of malaria vaccines.

Keywords: Plasmodium falciparum, merozoite, antibodies, vaccine candidates, protein microarray, bioinformatics

INTRODUCTION

Protein microarrays are increasingly used in the “omic” era of
research in multiple formats that share the basic requirement
to investigate interactions of tens to thousands of proteins
simultaneously (1). They have had important translational
applications in biomarker discovery to guide patient diagnosis,
treatment and prognosis, as well as in drug discovery and
vaccine antigen identification (2). Protein microarrays have
facilitated a rapid, systematic and high-throughput approach to
probing an entire pathogens’ proteome or fraction thereof for
immunoreactivity, in an approach that forms part of a reverse
vaccinology workflow. These have aided in the discovery of
potential diagnostic markers forMycobacterium tuberculosis and
SARS-coronavirus as well as potential vaccine candidates in over
30 human pathogens including Plasmodium falciparum (2, 3).

P. falciparum malaria causes ∼450,000 deaths per year (4),
and is of major public health importance to sub-Saharan Africa
(5). Recent gains in reducing the burden appear to have stalled
despite ongoing control efforts (4, 6). Efforts to design a
highly effective vaccine that would protect against this disease
have been hampered by the complexity of the organism and
its’ multi-stage life cycle: its genome encodes >5,300 proteins
that are expressed variably in different tissues as the infection
develops in the host (7). Coupled to this is an impressive array
of strategies for generating protein polymorphisms or protein
variants and redundant erythrocyte invasion pathways, which
facilitate immune evasion (8–10). Consequently, although efforts
to develop a highly effective malaria vaccine have been on-going
for over a century, this goal has yet to be achieved. The current
leading vaccine candidate against P. falciparum malaria has
limited efficacy and induces only short-lived protective immunity
(11, 12).

Multiple P. falciparum and/or P. vivax protein arrays
have been designed over the past decade to help identify
and prioritize potential malaria vaccine antigen candidates.
The majority of these arrays have been manufactured using
either the E. coli-based or the wheat germ cell free in-vitro
transcription/translation expression system, with the largest to
date including ∼30% of the entire P. falciparum proteome (13–
17). Protein selection was based on stage-specific transcription or
protein expression, sub-cellular localization, secondary protein
structures or documented immunogenicity in human and
animal models. However, the in-vitro transcription/translation
systems are relatively poor at generating functional surface

proteins, which frequently require disulphide bonding and/or
post-translational modification to attain their correct three-
dimensional structure. Nevertheless, subsequent studies have
down-selected proteins from this initial panel (18–31), indicating
that essentially >75% of the parasite genome has yet to
be evaluated in the context of immunity. A few additional
proteins have been tested independently in smaller scale
studies accounting for only a marginal increase in the
proportion of the parasite proteome evaluated to date (32–
34). These studies have rationally selected merozoite proteins
that were established or plausible targets of antibodies, and
evaluated antibody associations with protection in longitudinal
studies using standard ELISA-based approaches (32, 33). They
highlighted the importance of evaluating a broad repertoire
of antigens and combinations of antibody responses in
studies of acquired immunity. However, there still remains
a need for a common platform with standardized protein
expression and high-throughput antibody detection methods
that can be applied widely across different clinical studies
(35). This would accelerate identification of protective antibody
targets and facilitate the comparisons between studies and
populations.

To contribute to vaccine candidate discovery, as well as
the validation and prioritization of existing candidates for
clinical trials, we designed a novel protein microarray. We
focused on the merozoite stage that is a target of immunity
that can prevent or reduce the clinical symptoms of malaria.
As per the case with other infectious diseases (36, 37),
we hypothesized that proteins on or associated with the
surface of the invasive P. falciparum merozoite would be
accessible targets for protective antibodies (33). We mined
the literature to identify multiple potential surface-associated
merozoite proteins (32–34, 38–43) and added new proteins
that were identified as immunogenic in adults from malaria-
endemic countries and had proteomic and/or bioinformatic
features suggestive of merozoite surface-localization, secretion
and/or involvement in erythrocyte invasion (44). We expressed
and purified these proteins and printed them on a custom
microarray, which we refer to as KILchip v1.0 for its origin
at the KEMRI-Wellcome Trust Research Programme in Kilifi,
Kenya where the majority of the work was carried out. We
demonstrate that KILchip v1.0 is highly specific, has minimal
inter- and intra-assay variation, and is strongly correlated with
equivalent data acquired using the gold-standard monoplex
ELISA.
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MATERIALS AND METHODS

Protein Selection
We aimed to design a microarray that would include proteins
already considered as vaccine candidates, as well as novel proteins
that had not been studied in the context of protective immunity.
This would serve multiple purposes: (i) validation of existing
vaccine candidates in new sample sets, (ii) identification of
novel potential candidates and (iii) facilitation of head-to-head
comparisons of all selected candidates in the same experiment.
To this end, we selected a panel of antigens previously published
in Zenonos et al. (38), Richards et al. (32), Crosnier et al. (39),
Tetteh et al. (34), Raj et al. (43), Polley et al. (40, 45), Kimbi et al.
(46), Metzger et al. (47), Taylor et al. (41), and Burghaus and
Holder (48), for inclusion in the KILchip v1.0. These proteins
are known or predicted to be anchored or associated with
the surface of merozoites, secreted from its apical organelles
or involved in erythrocyte invasion and have been shown to
correlate with protection from clinical malaria (32, 33). We also
included 28 novel proteins selected through a protein discovery
pipeline that employed proteomic approaches for the detection
of proteins that were either immunogenic or located on the
surface of merozoites (44). Down-selection criteria for the novel
proteins included either (i) the presence of a predicted N-
terminal signal peptide and/or transmembrane domain(s), (ii)
upregulated transcription at the late stages of the asexual life
cycle, (iii) a predicted role in merozoite invasion (49) and (iv)
novel with regards to a potential role in protective immunity.

Recombinant P. falciparum Protein
Expression
Plasmids containing codon-optimized genes of interest were
either obtained from the plasmid repository Addgene (https://
www.addgene.org) or newly synthesized by GeneartAG as has
been previously published (38, 39). Briefly, predicted signal
peptides and transmembrane domains were excluded and the
serine or threonine amino acid residues in all potential N-
linked glycosylation sites (NXS/T) were substituted with alanine.
Codon-optimized genes of interest were sub-cloned into a
derivative of the pTT3 expression vector (also obtained from
Addgene) that contained an N-terminal signal peptide derived
from the mouse kappa light chain to drive secretion of antigen
and a rat Cd4 domains 3 and 4 tag followed by a hexa-histidine
tag for protein purification (39). Proteins were subsequently
expressed using the Expi293 expression system (Invitrogen)
according to manufacturer’s instructions. Briefly, Expi293F cells
were cultured to a density of 2.0 × 106 cells/ml and transfected
with expression vectors using the Expifectamine 293 transfection
reagent (Invitrogen). Cells were then incubated at 37◦C with
8% CO2 in an orbital shaker at 125 rpm. Culture supernatants
were harvested 6 days post-transfection and proteins purified
using Ni-NTA purification columns (Invitrogen). Themajority of
proteins included in KILchip v1.0 were expressed using the above
mammalian expression system.

A minority of proteins were expressed in E. coli using pGEX-
2T and pMAL-c2X vectors to produce fusion proteins with
the carriers glutathione-S-transferase (GST) andmaltose-binding

protein (MBP), respectively. These were transformed into BL21
(DE3) E. coli cells and expressed as previously described (34, 40–
42). The gene encoding Pf SEA1 protein was amplified from
P. falciparum 3D7 cDNA using previously described primers
(43). The PCR products were cloned into pEXP5-NT/TOPO
expression vector and transformed into BL21 (DE3) pLysS
E.coli cells. Cell expansion, induction of protein expression and
subsequent purification was performed as previously published
(34, 40–42). Purified recombinant proteins were dialysed into
phosphate buffered saline and quantified using NanoDrop
(Thermo scientific) before printing onto nitrocellulose slides.
Further details are provided in the Supplementary information.

LC-MS/MS Analysis, Protein Validation,
and Circular Dichroism Spectroscopy
Five to fifteen µg of purified recombinant proteins were
denatured in 50mM Tris-HCL pH 8.0 (Sigma) containing 8M
urea (Sigma). Proteins were reduced with 40mM dithiothreitol
(Sigma), alkylated with 80mM iodoacetamide (Sigma) and
precipitated using cold acetone. Pelleted proteins were
resuspended in 15 µl of 6M urea in 50mM Tris-HCL pH
8.0 and digested with trypsin/Lys-C mix (Promega) according
to manufacturer’s instructions using the two step in-solution
digestion. Peptides were desalted using P10 c18 pipette ZipTips
(Millipore), dried using the Speedvac concentrator (Thermo
Scientific) and resuspended in 15 µl of 99% H20, 1% acetonitrile,
and 0.1% formic acid. Peptides (5 µl) were loaded using a
Dionex Ultimate 3,000 nano-flow ultra-high-pressure liquid
chromatography system (Thermo Scientific) on to a 75µm ×

2 cm C18 trap column (Thermo Scientific). Chromatographic
separation of peptides was carried out on a reverse-phase 50
cm-long column (Thermo Scientific) maintained at 40◦C over
a 60-min elution gradient (2–40% of mobile phase B; 80%
acetonitrile with 0.1% formic acid) at a flow rate of 0.3 µl/min.
Peptides were measured using LC instrumentation consisting
of a Dionex Ultimate 3,000 nano-flow ultra-high-pressure
liquid chromatography system (Thermo Scientific) coupled
via a nano-electrospray ion source (Thermo Scientific) to a Q
Exactive Orbitrap mass spectrometer (Thermo Scientific). The
ms1 settings were: Resolution, 70,000; Automatic gain control
(AGC) target, 3e6; maximum injection time, 100ms; scan
range, 380–1600 m/z; while the ms2 settings were: Resolution,
17,500; AGC target, 5e4; maximum injection time, 100ms;
isolation window, 1.6 m/z. The top 10 most intense ions were
selected for ms2 and fragmented with higher-energy collision
fragmentation using normalized collision energy of 28 and
these ions were subsequently excluded for the next 20 s. Mass
spectrometry raw files were searched on Proteome Discoverer
software version 1.3.0.339 (Thermo Scientific) using the Mascot
server (Matrix Science) using a concatenated database of human
and 3D7 Plasmodium falciparum protein FASTA sequences.
Cysteine carbamidomethylation was set as a fixed modification
and deamidation of asparagine or glutamine and methionine
oxidation as variable modifications. The false discovery rate
(FDR) was set to 0.01 for both proteins and peptides and a
maximum of two missed cleavages were allowed in the database

Frontiers in Immunology | www.frontiersin.org 3 December 2018 | Volume 9 | Article 2866

https://www.addgene.org
https://www.addgene.org
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kamuyu et al. Plasmodium falciparum Merozoite Protein Microarray

search. A minimum of two unique peptides for a protein was
considered a positive identification.

Two proteins were selected for circular dichroism
spectroscopy analysis (50). Briefly, phosphate buffer (50mM
NaH2PO4 pH 8.0, 0.1M NaCl) and samples in phosphate buffer
were degassed in a vacuum at room temperature and the CD
spectra recorded on a J-715 spectropolarimeter (Jasco). Six
accumulations were taken per protein with continuous scans
taken using a 1mm (0.1 cm) quartz cuvette, a scan rate of 50
nm/min, a band width of 1.0 nm and a resolution of 0.5 nm. The
raw CD data (ellipticity θ in mDeg) were normalized for protein
concentration and the number of residues yielding the mean
residue ellipticity [θ] in mDeg·cm2·dmol−1

·res−1.

Data Availability
The mass spectrometry raw files generated and analyzed in the
current study have been deposited to the ProteomeXchange
Consortium51 (PXD011746), via theMassIVE partner repository
(MSV000083144), under the following title: KILchip v1.0 A
novel Plasmodium falciparum merozoite protein microarray
to facilitate malaria vaccine candidate prioritization. The
FTP for the dataset is available here: ftp://massive.ucsd.edu/
MSV000083144.

KILchip v1.0 Protein Microarray Assay
Overview
We designed our protein microarray to test 21 unique
serum samples per slide with a customized barcode for slide
identification. Four slides fitted into a 4 × 24 hybridization
cassette (Arrayit Corporation ARYC), thus accommodating
84 samples per cassette and 336 samples per hybridization
workstation (ARYC), each of which contains 4 hybridization
cassettes (Figure 1).

Microarray Protein Map
Each slide contained 21 identical protein mini-arrays. Each mini-
array had 384 features (printed spots) at a volume of 400 pl
per spot. Recombinant P. falciparum proteins (n = 111) and
controls (n= 17) were printed on each mini-array in triplicate, at
the same concentration, using the same printer (Ultra Marathon
micro-arrayer, ArrayJet) and printing protocol. The first control
spots were Alexafluor647 human IgG (Jackson ImmunoResearch)
that served as landmarks demarcating the four edges of each
mini-array (4 spots to match the edges of each mini-array).
Purified human IgG (Jackson ImmunoResearch, 1 spot), served
as the second control that confirmed the activity of the secondary
antibody utilized in the assay. Protein printing buffer (30%
glycerol/PBS, 9 spots) was used as the third set of controls that
allowed for the monitoring of background reactivity and for the
detection of any potential protein carryover during printing. The
last sets of controls were the CD4, MBP, and GST proteins (1 spot
each) to control for any potential antibody reactivity against the
tags, each of which is present in one or more of the recombinant
P. falciparum antigens. Thus, each mini-array contained a total
of 384 features: 333 derived from 111 P. falciparum recombinant
proteins (109 proteins, 2 of which were included twice) and 51
from 17 controls, all printed in triplicate.

Microarray Printing
We optimized the concentrations for individual proteins, serum
samples and the secondary antibody by checkerboard titration.
Proteins were printed on nitrocellulose slides (ONCYTE
SuperNOVA, GraceBio) at a concentration of 250µg/ml using
the Ultra Marathon micro-arrayer (ArrayJet) with the Inkjet
printing technology and the command center 1.5.0.1 (ArrayJet).
Printing was carried out at 50% relative humidity and at 18◦C.
As a drying step, slides were incubated overnight at 18◦C in
the arrayer after printing, before storage in slide boxes with
dessicant at 4◦C until use. A salt scan was carried out at a
high photomultiplier (PMT) at the 532 nm wavelength (green
channel) to verify post-printing quality and at the 635 nm
wavelength (red channel) to allow visualization of the landmark
spots.

Antibody Detection
Printed slides were carefully assembled onto the hybridization
cassette and sealed using silicone gaskets (ARYC) to form leak-
proof individual wells. We modified a published protocol for
the detection of antibodies (51). Briefly, wells were washed
thrice with 0.1% Tween 20/HEPES buffered saline (1.4M NaCl,
50mMKCl, 20mMCaCl2, 10mMMgCl2, 100mMHEPES; HBS)
followed by HBS to remove any unbound proteins. Non-specific
binding to the slide surface was prevented by blocking with 200
µl of 2% BSA/0.1% Tween 20/HBS for 2 h at room temperature
while rotating on a microarray hybridization station (ARYC) at
350 rpm. Wells were subsequently washed thrice and incubated
overnight at 4◦C with 150 µl of serum diluted 1:400 and rotating
at 350 rpm on the hybridization station. Thereafter, wells were
washed as described above and incubated with 150 µl of donkey
anti-human IgG-Fcγ fragment specific Alexafluor647 for 3 h at
room temperature followed by three washes. Slides were carefully
disassembled from the hybridization cassettes, rinsed thrice in
distilled water and dried by centrifugation at 300 g for 5min
using a combiSlide adapter (Eppendorf) and stored in slide
boxes in the dark. Slides were scanned using a Genepix 4,000 B
scanner coupled to the GenePix Pro & Microarray Acquisition
and Analysis Software (Molecular Devices).

ELISA
A standard protocol for an indirect ELISA was performed
as has been previously described (52–54). Briefly, a pre-
determined concentration for each recombinant protein was
either heat-treated at 80◦C for 10min or left untreated and
coated overnight at 4◦C on 96-microwell ELISA plates (Dynex
4HBX Immunolon). Wells were washed four times in PBST
(phosphate-buffered saline/0.05 Tween 20) and blocked at room
temperature with 1% skimmed milk (Marvel)/PBST for 5 h.
Individual wells were washed and incubated with 100 µl of
either test sera or a panel of monoclonal antibodies overnight
at 4◦C, before being washed four times in PBST and incubated
for 3 h at room temperature with 100 µl of the respective
horseradish peroxidase-conjugated secondary antibody diluted
in 1%Marvel/PBST. Wells were washed four times in PBST
and incubated at room temperature with 100 µl of substrate
development buffer consisting of H2O2 and o-phenylenediamine
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FIGURE 1 | Configuration of KILchip v1.0. Individual slides contain 21 identical mini-arrays comprised of protein spots and a barcode for identification. Each

mini-array contains 384 individual spots that include proteins and controls printed in triplicate. Four slides are assembled onto a hybridization cassette, four of which

are simultaneously processed in a microarray hybridization work-station (image from Arrayit Corporation, used with permission).

dihydrochloride (SigmaFAST). The reaction was stopped with
30µl of 2M H2SO4 per well and the absorbance read at 492 nm.

Serum Samples
Ethics Statement
This study was carried out in accordance with the
recommendations of “the Declaration of Helsinki, and
the Kenyan National Scientific and Ethical Review Unit
(SERU)” with written informed consent from all subjects.
The protocol was approved by SERU, reference number
KEMRI/SERU/CGMR-C/001/3139.

Kilifi Adults
Samples from life-long adult residents of Junju in Kilifi, Kenya
collected in 2008 were used for assay optimization (n = 66).
These sera were assayed for antibody responses to well-studied
recombinant merozoite proteins using monoplex ELISA assays,
and the data compared with that generated from the same
proteins printed onKILchip v1.0. Five serum samples from adults
residing in Sweden who reported no travel to malaria-endemic
regions and designated malaria naïve sera (MNS) were used as
negative controls. Purifiedmalaria immunoglobulins (MIG) were
obtained from a pool of healthy Malawian adults and were used
to generate a standard curve as previously described (54). An
additional serum pool from Kenyan adult residents of Kilifi,
Kenya was designated malaria immune sera (MIS) and served as
a second positive control.

Statistical Analysis
Spot intensities were acquired using the GenePix scanner
(Molecular Devices). Background, pre-scan and purification-tag
intensities were subtracted (55) before analysis of within sample
variability using the Coefficient of Variation (CV)

CV =

σ

µ
(1)

where σ is the standard deviation and µ the mean fluorescent
intensity (MFI).

We used a two-step variance-stabilizing normalization to
minimize the systematic variation commonly observed with this
type of data. The first step was to handle the differences that
could have occurred with different batches of data (machines
or day) using the ComBat (SVA package in R). In the second
step, variance-stabilizing normalization was used tominimize the
systematic variation commonly observed with this type of data
(55–58).

RESULTS

Recombinant Proteins
One hundred and ten P. falciparum merozoite proteins
were selected from the literature based on their surface
localization, known or predicted roles in erythrocyte invasion
and associations with protective immunity (32–34, 38–42).
Twenty-eight additional novel proteins were identified using
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a combination of immuno-proteomics and bioinformatics. Of
these, 111 P. falciparum proteins, 21 of which were novel
targets, were successfully printed onto KILchip v1.0 (Figure 2
and Supplementary Table 1). These included 82 full-length
ectodomains or the largest predicted extracellular loop of multi-
membrane proteins and 29 protein fragments obtained from
different regions of eight unique proteins. Thirteen protein
fragments corresponded to polymorphic variants of MSP1
(n = 7), MSP2 (n = 3), MSP3 (n = 1) and SURFIN4.2 (n
= 2) (Figure 2 and Supplementary Table 1). All the remaining
proteins were based on the P. falciparum 3D7 sequence and
in total, 87 unique P. falciparum merozoite proteins are
printed on KILchip v1.0. Two antigens (MSP2-CH150/9 and
PF3D7_0424400) were printed twice to serve as additional
internal controls.

Protein Quality
The quality of the majority of the recombinantly expressed
proteins/protein fragments included in KILchip v1.0 have been
validated elsewhere, including the demonstration of specific
protein-protein interactions (34, 38–41, 43, 45–48). A subset
of the well-studied proteins namely: AMA1, EBA175, MSP1,
MSP4, and RH5 were evaluated using monoclonal antibodies
targeting conformational and disulfide-constrained epitopes
in these proteins. Recombinant proteins were tested against

humAbAMA1 (59), mAb R217 (60), mAb R218 (60), mAb 2.44
(61), mAb 5.2 (62), mAb 2AC7 (63, 64), and mAb QA1 (64).
As shown in Figure 3A, each monoclonal antibody was highly
reactive with its respective antigen and showed no reactivity
when the target antigen was heat-denatured, confirming the
presence of conformational and disulfide-constrained epitopes in
the panel of recombinant proteins. As expected, low or negligible
reactivity was observed between monoclonal antibodies and off-
target recombinant proteins. The presence of heat-labile epitopes
was further confirmed by testing native and heat-denatured
recombinant proteins for their reactivity with MIS. As shown in
Figure 3B, a decrease in immunoreactivity was observed when
the proteins were heat-denatured. However, for MSP4, only a
minimal drop in immunoreactivity was observed, suggesting the
presence of linear epitopes. Collectively, these results suggest
that proteins included in KILchip v1.0 were folded correctly
and contained heat-labile, conformational epitopes. In addition,
circular dichroism analysis of MSP3 and SPATR indicated that
these proteins appear to be folded (Supplementary Figure 1).

The novel proteins reported here were expressed using
Expi293F cells under the same conditions, lending support to
their quality with regards to post-translational modifications
and disulfide bond formation. The purity of the novel proteins
was assessed using reducing SDS gels and mass-spectrometry
analysis. Nineteen (90%) of the novel proteins (n = 21)

FIGURE 2 | P. falciparum merozoite protein panel included in KILchip v1.0. Proteins were either selected from the literature or from a combination of proteomics and

bioinformatics analysis. Details of the parasite proteins are provided in Supplementary Table 1. *Protein fragments refers to specific amino acid regions selected

from within a full-length protein ectodomain. #The protein fragments based on the 3D7 allele include MSP1-19 (Block 17), MSP1 Block 2 full, MSP1 Block 2 repeat,

MSP3, MSPDBL1 N-terminus, MSPDBL1 C-terminus, MSPDBL2 N-terminus, MSPDBL2 C-terminus, 2 extracellular loops of PF3D7_0629500, PfSEA1, SURFIN 4.2

3D7A, SURFIN 4.2 3D7B and the C-terminus of SURFIN 4.2. %Thirteen polymorphic variants of the P. falciparum merozoite proteins MSP1, MSP2, MSP3, and

SURFIN 4.2 were included in KILchip v1.0. These included MSP1 Block 2 from the K1, MAD20, PaloAlto, Wellcome and RO33 alleles, the CH150/9 and DD2 alleles

of MSP2, the K1 allele of MSP3 and the K1A and K1B alleles of SURFIN 4.2. &Protein tags refer to specific amino acids or polypeptides fused to target proteins to

facilitate their subsequent affinity purification. These include the CD4 hexa-histidine, MBP and GST tags. @Technical controls for the assay included Alexafluor647

human IgG, purified human IgG and protein printing buffer.
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FIGURE 3 | Detection of heat-labile and conformational epitopes in a subset of recombinant proteins. Native and heat-denatured recombinant proteins were tested for

reactivity against malaria immune sera (MIS), malaria naïve sera (MNS) and 5 monoclonal antibodies targeting conformational-dependent epitopes. (A) The monoclonal

antibodies targeting conformational and disulfide-constrained epitopes on AMA1 (humAbAMA1), the F2 domain of EBA175 region II (mAb R217), the F1 domain of

EBA175 region II (mAb R218), MSP1 (mAb 5.2), MSP4 (mAb 2.44), RH5 (mAb QA1 and mAb 2AC7) and rat CD4 domain (OX68) were used to measure reactivity

against recombinant proteins by ELISA. All recombinant proteins demonstrated high reactivity with their respective monoclonal antibodies only. Low/negligible

reactivity was observed after heat-denaturation of the recombinant proteins. (B) High antibody reactivity was detected with native recombinant protein. Decreased

reactivity was observed with the heat-denatured proteins. Low reactivity was detected with malaria naïve sera (MNS) in both native and heat-denatured proteins.
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included in KILchip v1.0 were readily detectable on Coomassie
stained SDS gels and migrated at a size compatible with their
predicted molecular weights (Supplementary Figure 2). Mass-
spectrometry analysis confirmed the identity of the majority of
recombinant proteins (Supplementary Table 2).

KILchip v1.0
Specificity
To confirm the specificity of antibody detection, individual mini-
arrays were probed with the following positive and negative
controls: (i) malaria immune sera (MIS), (ii) malaria naïve
sera (MNS) and (iii) sample buffer consisting of 2% BSA/0.1%
Tween 20/HBS. As expected, strong fluorescence was detected
on each mini-array for the landmarks (blue) and commercial
human IgG (green), whilst none was detected against the printing
buffer (yellow) (Figure 4A, all panels). When probed with MIS,
high levels of antibody reactivity against multiple P. falciparum
proteins were clearly visible (Figure 4A, panel 1). In contrast,
when probed with MNS, negligible antibody reactivity was
observed. Similarly, when probed with sample buffer, nil or

minimal reactivity was observed against P. falciparum proteins
(Figure 4A, panel 2 and 3 respectively).

We further explored the specificity by comparing antibody
reactivity to selected, previously characterized proteins in
individual samples from Kenyan adults (n = 66) and malaria
naïve Swedes (n = 5). The intensity of antibody reactivity
varied between these selected proteins in the order AMA1
> MSP2 > MSP3 > PfRH5 > RIPR (Figure 4B and
Supplementary Figure 3). The median (minimum-maximum)
fluorescence intensity (MFI) responses to AMA1, MSP2, and
MSP3 were 23629 (1426-64840), 4762 (733-37025), and 2105
(72-4069), respectively in the Kenyan adults. MFI responses
to RH5 and RIPR were low at 44 (4-914) and 28 (-2-994),
respectively (Figure 4B). In contrast, reactivity against all P.
falciparum proteins was low or negligible when probed with
the non-malaria exposed serum from Swedish adults (Figure 4C
and Supplementary Figure 3). AMA1, MSP2, and MSP3 are
well-characterized immunodominant merozoite antigens while
RH5 and RIPR appear to not be primary targets of naturally
acquired antibody responses in some studies (32, 33, 65, 66).

FIGURE 4 | Specificity of KILchip v1.0. Positive and negative controls were used to confirm specificity. (A) High antibody reactivity was detected using malaria

immune sera (MIS) and low or negligible reactivity was observed with malaria naïve sera (MNS). No reactivity was observed with the sample buffer with the exception

of the technical controls. Blue, landmarks; green, commercial human IgG and yellow, printing buffer. (B) Antibody reactivity to selected well-characterized merozoite

antigens AMA1, MSP2 (3D7), MSP3 (3D7), Rh5, and RIPR varied as expected in MIS (blue) and serum samples from adult residents of Kilifi. Kenya (red). High

reactivity to AMA1, MSP2 (3D7), and MSP3 (3D7) and low reactivity to Rh5 and RIPR was observed in the serum samples. (C) Antibody reactivity to

well-characterized antigens AMA1, MSP2, MSP3, Rh5, and RIPR were all low/negligible when tested in serum samples from Swedish residents.
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A direct comparison of antibody responses to multiple antigens
can be evaluated using KILchip v1.0 as each protein was printed
at the same concentration (250µg/ml), and would be tested
simultaneously with the same sera, providing information on
the relative immunogenicity of this panel of merozoite antigens
(Supplementary Figure 4).

Intra- and Inter-assay Variability
Intra-assay variability was tested using 66 serum samples
obtained from Kenyan adults resident in Kilifi. Antibody
measurements between protein spot replicates tested in the
same assay and on the same day were strongly positively

correlated, Spearman’s R > 0.9770, p < 0.0001 (Figure 5). Inter-
assay variability was tested using the positive and negative
control sera. Antibody reactivity was measured repeatedly on
five separate microarray slides printed over five consecutive days
using identical printing conditions. As shown in Figure 6, the
average signal intensities against individual proteins were highly
reproducible.

Protein Stability on KILchip v1.0
To determine the durability of the microarray slides, we
measured responses to the same batch of slides over a 3 months
period using the reference reagent, MIG. These slides were
printed on the same day, with identical printing conditions and

FIGURE 5 | Intra-assay variability of antibody detection by KILchip v1.0. A comparison of antibody responses to triplicate readings of AMA1, MSP1, and MSP2 was

measured in 66 serum samples from adults living in the malaria endemic region of Kilifi, Kenya. A strong positive correlation of >0.98 was observed in all three-way

scatter plots tested for the three antigens. Correlation between triplicate readings for recombinant AMA1 (A–C), MSP1 (D–F) and MSP2 (G–I).
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FIGURE 6 | Inter-assay variability of antibody detection by KILchip v1.0.

Positive and negative controls were used to measure antibody responses to 5

protein arrays printed on 5 consecutive days using identical printing conditions

and the same batch of recombinant proteins. Data presented are the mean

MFI values of triplicate readings obtained with MIS (top graph) and MNS

(bottom graph) to a subset of the proteins (n = 26) printed on each mini-array.

Individual proteins are represented as dots and lines have been included to aid

visualization.

the same batch of recombinant proteins. A tripling dilution of
MIG was used to measure responses to each protein and to
generate a standard curve. We performed a pairwise comparison
of the slopes for each of the sigmoidal 5-parameter curves
generated for each antigen over the 3-months period (n =

4 sigmoidal curves; 6 pairwise comparisons per antigen) (67,
68). We observed no significant differences in the slopes for
all 6 pairwise comparisons for 79/111 (71%) proteins (T-test;

p > 0.05). Of the 32 proteins whose slopes differed significantly
from each other, eight proteins had a single curve that differed
while 24 proteins had 2 or more significantly different slopes.
Results from 12/111 (10%) of the proteins printed on the array
are shown in Figure 7 and demonstrate that the curves to the
majority of proteins were comparable indicating the detection
of responses up to 3 months post printing without significant
variation.

Strong Correlations Between KILchip v1.0 and the

Monoplex ELISA
We compared measurements obtained using 12/111 proteins
(representing ∼10% of the P. falciparum proteins included
in the array) printed on KILchip v1.0 vs. the identical
proteins using our standardized ELISA in 66 samples from
Kenyan adults. As shown in Figures 8A–L, a strong positive
Spearman’s correlation coefficient R of between 0.65 and 0.95
was observed between antibodies measured by KILchip v1.0
and by the standard ELISA, P < 0.0001. Sixty-seven percent
of the proteins tested had a correlation coefficient R above
0.8 (Figures 8A–H). A wider dynamic range of antibody
measurement was evident in the protein array assay as observed
for AMA1 (Figure 8B), where a subset of samples whose
MFI values ranged from 40,000 to 60,000 all had an optical
density value of 4.0 (red box), the upper limit detectable by
ELISA.

DISCUSSION

KILchip v1.0 is a new protein microarray designed to
simultaneously quantify antibodies against multiple P.
falciparum merozoite proteins and is currently configured
to include >100 proteins, the majority of which are full-length
ectodomains from secreted and surface exposed proteins. This
facilitates the standardized measurement of antibodies against
multiple merozoite proteins in cohort studies or in controlled
human malaria infections, both of which are currently used to
identify and prioritize potential vaccine candidates. It can be
utilized to evaluate antibody dynamics and to monitor antibody
decay or longevity. The chip is flexible and can be adapted
to include fewer or more proteins, allelic variants of selected
proteins, full-length proteins or functionally relevant domains
of proteins of interest. Adaptations of the chip could expand
from the current species-specific focus on P. falciparum in
KILchip v1.0, and be designed to test additional Plasmodium
species singly or in parallel. Of particular importance to the
research setting in sub-Saharan Africa, the chip is durable, easily
stored and transported, and can be shared between partnering
laboratories. With modest investments, this tool could transform
the pace at which P. falciparum antibody response data is
generated across the African continent and the same principles
could be applied to other infections, ultimately contributing to
improvements in health through the development of diagnostics
and vaccines.

Although other protein microarrays have been in existence
since the early 2,000 s, none has been designed and developed
from Africa specifically to study naturally acquired immunity
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FIGURE 7 | Stability of KILchip v1.0. A reference reagent, MIG, consisting of purified immunoglobulins (98% Total IgG) was used to generate a standard curve by

testing a tripling dilution against all antigens printed on the protein array. A batch of slides printed at the same time was tested 24, 40, 54, and 86 days post printing.

The standard curve showed good concordance without significant variation. Red, blue, black, and green lines were obtained from measurements obtained on day 24,

day 40, day 54, and day 86 post printing of the slides.

against P. falciparum malaria merozoites (13, 15, 69, 70). In
addition, KILchip v1.0 consists predominantly of merozoite
specific proteins, the majority of which were full-length
ectodomains, a considerable improvement from evaluating
segments of proteins, as is the case for other pre-existing
protein microarrays available for P. falciparum. This was
enabled by the use of a recently published method for
transient protein expression of P. falciparum surface proteins
in mammalian cells (39). Many of the proteins included
in KILchip v1.0 are known to be immunogenic to varying
degrees during natural exposure to malaria parasites, but
have only been evaluated in a handful of cohort studies
(32, 33). Typically, the exact nature, size and quality of
antigens tested in these studies vary considerably, making
it difficult to accurately compare results (35). Consequently,
although some antigens have been studied for nearly 30 years,
it is still not clear which proteins should be prioritized as
vaccine candidates in clinical trials. KILchip v1.0 now provides

a standardized tool that enables head-to-head comparisons
of the immunoreactivity of a large number of proteins in
multiple cohorts. One such study is already underway in
which samples from at least 15 distinct geographical locations
spread across 7 African countries have been tested using
KILchip v1.0 (SMART: South-South Malaria Antigen Research
Partnership) (71) and highlights the potential strength of KILchip
v1.0.

We demonstrate that KILchip v1.0 is a sensitive tool for
the detection of P. falciparum specific antibody responses.
It is highly reproducible within and between assays and a
strong concordance with the gold-standardmonoplex ELISA was
observed, comparable to the results reported for the different P.
falciparummicroarrays currently in use (13). Crucially, antibody
measurements were stable on KILchip v1.0 up to 3 months
post-printing, providing a suitable time frame for the testing of
multiple samples. This is probably due to the addition of 60%
glycerol to the recombinant proteins at the time of printing which

Frontiers in Immunology | www.frontiersin.org 11 December 2018 | Volume 9 | Article 2866

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kamuyu et al. Plasmodium falciparum Merozoite Protein Microarray

FIGURE 8 | Concordance between KILchip v1.0 and the gold standard ELISA. A comparison of antibody responses to 12 antigens measured simultaneously in

KILchip v1.0 and individually by ELISA. Sixty-six serum samples from adults living in the malaria endemic region of Kilifi, Kenya were used to facilitate comparisons. A

strong positive correlation of >0.8 was observed in 8 of the antigens (A–H) while four antigens (I–L) showed a correlation coefficient between 0.65 and 0.78. Red box

- serum samples in which antibody responses reached the upper limit of detection when measured by ELISA, yet distinguishable by microarray with MFI values

ranging from 40,000 to 60,000.

provides a stabilizing effect on proteins preventing degradation
(72). Slides are conveniently stored with desiccant at 4◦C.

In comparison to our standard ELISA protocol (52, 54), our
microarray utilized 0.375 µl of serum to measure responses
to all proteins simultaneously, compared to 23 µl required
for ELISA assays of the same number of proteins. Similarly,
over 100-fold less recombinant protein was required and the
laser scanning and data acquisition by the GenePix 4,000 B
scanner allowed for much wider dynamic ranges of antibody
measurement. Lastly, this is a custom microarray format that
could be scaled upwards or downwards and can be adapted to
meet specific requirements. In the current version of KILchip
v1.0, a single slide has 21mini-arrays each containing 384 protein
spots. This can be re-designed to include more or less proteins,

to focus on allelic versions of specific proteins or to facilitate
the simultaneous characterization of stage or species-specific
antibody responses.

Although we selected 138 proteins/protein fragments for
inclusion in KILchip v1.0, we were unable to obtain recombinant
protein for 27 targets due to challenges in protein expression.
These include targets such as RH4, RAP1-2, RhopH3, GLURP,
SERA1, and SERA6 that have also been reported to be difficult
to obtain in recombinant form in previous studies (38, 39).
Also, the DBL domains of MSPDBL1 and MSPDBL2 have
been previously obtained in soluble recombinant form using
the baculovirus expression system but this has not yet been
established within our laboratories (34). We also observed
low antibody responses to some of the merozoite proteins
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such as RH5 and RIPR, similar to responses measured in
adults from Kenya (65) and Mali (66). However, a higher
response to these proteins expressed in the wheat germ cell-
free expression system has been reported in children in Papua
New Guinea (73), suggesting that the protein expression
system used may influence the antibody responses measured.
Another limitation of the KILchip v1.0 is that the majority
of proteins are based on the 3D7 P. falciparum isolate which
may underestimate responses to highly polymorphic proteins
and limit the evaluation of antigenic diversity on humoral
responses and immunity. Efforts are underway to generate an
additional protein array that will include allelic variants of
specific proteins that warrant further study. Lastly, adsorption
of proteins onto nitrocellulose-coated slides may interfere
with protein structure and consequently with the detection
of conformation-dependent antibody responses (74). However,
these and other solid-surface platforms such as in ELISAs are
widely utilized for antibody detection for vaccine candidate
discovery and prioritization in multiple infectious and non-
infectious diseases.

Current and future versions of KILchip v1.0 will be essential
to multi-center prospective cohort studies designed to identify
correlates of protection, allowing the research community
to rapidly compare results head-to-head, and fast track the
prioritization of new and old potential vaccine candidates. This
would bridge an important gap for the urgently needed evidence
base that could guide the development of the next generation of
malaria vaccines. Efforts are underway to make this a resource
that could be provided at a minimal cost to the malaria research
community.
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Supplementary Table 1 | List of P. falciparum merozoite proteins included in

KILchip v1.0. The details of the P. falciparum merozoite proteins provided include

the expression system used, the region of the protein expressed, the P. falciparum

strain the protein was based on and the recombinant expression levels achieved.

The expression levels were categorized as low, intermediate and high based on

the concentration of purified protein obtained following transfection of a standard

concentration of 50.0 × 106 Expi293F cells. The protein concentration following

purification and concentration of low, intermediate and high expressors were

<100µg/ml, 100–250µg/ml, and >250µg/ml, respectively. The expression levels

are given as guide only given the variability that may be observed with different

expression batches. We observed no differences in the background signals when

malaria naïve sera were tested against recombinant proteins grouped according to

their expression levels (Kruskal-Wallis H Test for trend: p-value = 0.5975) (data not

shown).

Supplementary Table 2 | Mass-spectrometry confirmation of novel Plasmodium

falciparum recombinant proteins. Mass-spectrometry confirmation of the novel

Plasmodium falciparum recombinant proteins included in KILchip v1.0. Data for

PF3D7_0830500, PF3D7_1025300, PF3D7_1229300, PF3D7_1252300,

PF3D7_1237900, PF3D7_1343700, and PF3D7_0629500_SEG2 are not yet

available.

Supplementary Figure 1 | Circular dichroism spectroscopy on recombinant

SPATR and MSP3. Circular Dichroism (CD) spectra graphs for SPATR (A) and

MSP3 (B) proteins are plotted from mean residual ellipticity [θ] (mDeg ·
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cm2·dmol−1·res−1) as a function of the wavelength, λ (nM). The ellipticity for the

blank (phosphate buffer (50mM NaH2PO4 pH 8.0, 0.1M NaCl)) was subtracted

from the ellipticity for the protein samples before calculation of the mean residue

ellipticity [θ].

Supplementary Figure 2 | Purity of novel Plasmodium falciparum proteins.

Coomassie stained SDS gels showing 19 purified recombinant proteins. The

numbers in bracket indicate the predicted molecular masses (in KDa) for each

protein. Protein bands for PF3D7_1343700 and PF3D7_0629500_SEG2 were not

readily visible on a coomassie stained SDS gel. Protein bands for AMA1 and

CD4-hexa-histidine tags were included as controls.

Supplementary Figure 3 | Antibody responses to previously characterized

merozoite proteins. The protein spots corresponding to previously characterized

merozoite antigens AMA1, MSP2 (3D7), MSP3 (3D7), Rh5, and RIPR are shown in

protein arrays probed with MIS and MNS sera. Red-AMA1, Yellow-MSP2,

Blue-MSP3, Orange-RH5, and Green-RIPR.

Supplementary Figure 4 | Immunoreactivity of all the recombinant proteins

printed on KILchip v1.0 measured using a pool of sera from naturally exposed

adults. The immunoreactivity of the 111 novel proteins was tested using malaria

immune sera (MIS, red bars) and malaria naïve sera (MNS, blue bars). Bar charts

show mean plus standard deviation; n = 2.
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