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It is well established that the immune system can identify and destroy neoplastic

transformed cells in a process known as immunosurveillance. Most studies have focused

on the classical major histocompatibility complex (MHC) class Ia molecules, which are

known to play an important role on the presentation of tumor antigens to the immune

system in order to activate a response against tumor cells. However, a larger family

of non-classical MHC class Ib-related molecules has received less attention. In this

mini-review, we discuss the role of class Ib murine Qa-2 and its proposed human

HLA-G homolog on immunosurveillance during embryogenesis and cancer. Whereas,

both HLA-G and Qa-2 are involved in immune tolerance in pregnancy, the current

evidence suggests that they play opposite roles in cancer. HLA-G appears to promote

tumor progression while Qa-2 acts as a tumor suppressor awaking the immune system

to reject tumor cells, as suggested by studies on different cancer cell models, such as

melanoma, lymphoma, lung carcinoma, and our own results in mammary carcinoma.
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INTRODUCTION

The concept of cancer immunoediting with its three distinct phases:
elimination (immunosurveillance), equilibrium (persistence/dormancy) and escape (progression)
integrates the capacity of the immune system to both protect the host from cancer and promote
cancer development (1). Tumor antigens are presented by the major histocompatibility complex
(MHC) class I molecules on antigen-presenting cells (APCs) and recognized by CD8+ T cells,
which differentiate into cytotoxic T lymphocytes under co-stimulation of CD4+ T cells. In
addition, tumor cells are targets of innate immune cells, such as macrophages and natural killer
(NK) cells. Thus, neoplastic cells can be recognized and destroyed by both the innate and adaptive
immune systems. But if antitumor immunity is unable to completely eliminate them, tumor
variants may survive and enter into the equilibrium phase, where cells and cytokines of adaptive
immunity restrain tumor outgrowth. These dormant tumor cells may eventually escape the control
of immune cells and progress to clinically detectable malignancies. The immune system contributes
to tumor progression by selecting more aggressive tumor variants and allowing cancer cells to
survive and growth in immunocompetent hosts. Tumor cells that escape the control of immune
cells secrete factors that inhibit effector immune cell function and recruit inflammatory and
regulatory immune cells that generate an immunosuppressive microenvironment and promote
cancer progression (2).
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THE HUMAN HLA-G COMPLEX IN
PHYSIOLOGY AND CANCER

The human leukocyte antigen G (HLA-G) belongs to the
non-classical MHC complex, or class Ib, that has a potent
immunomodulatory activity in pathophysiological situations
requiring immune tolerance, such as fetus tolerance during
pregnancy, autoimmune and inflammatory diseases, and
acceptance of allograft transplantation in patients (3). The
diversity of HLA-G products occur by alternative splicing of a
primary transcript, which gives rise to four membrane-bound
(G1-G4) and three soluble (G5-G7) protein isoforms (4). In
addition, soluble isoforms can be generated by proteolytic
cleavage of membrane-bound HLA-G forms. While the basic
structure of HLA-G is similar to that of classical HLA class Ia
molecules, they differ in that HLA-G is less polymorphic (5).
HLA-G modulates the innate and adaptive immune systems by
interacting with inhibitory receptors on the surface of immune
cells, such as the immunoglobulin-like transcript 2 (ILT2) and
ILT4 on dendritic cells, ILT2 and the killer immunoglobulin-like
receptor 2DL4 (KIR2DL4) on NK cells, and ILT2 on T cells
and monocyte/macrophages (4, 6, 7). By binding to these
receptors, HLA-G directly inhibits immune cells. However,
it has been reported that upon binding to KIR2DL4 HLA-G
activates NK cells and promotes cytotoxicity and IFN-γ secretion
(8, 9). Furthermore, other studies did not find evidence for a
functional interaction between HLA-G and KIR2DL4 in NK
cells (10). Therefore, whether HLA-G is a ligand of KIR2DL4
is at present a matter of controversy (11). In addition, several
immune cells, including T cells, APCs and a subset of dendritic
cells can express or secrete HLA-G. Thus, APCs expressing
HLA-G1 induces CD4+ T cell differentiation into regulatory
T suppressor cells that block cytotoxic T lymphocyte function
(12). These Treg cells are important to sustain immune tolerance
and prevent autoimmune diseases. In normal tissues, the most
abundant expression of HLA-G is on the surface of trophoblasts
in the placenta where can effectively suppress the local immune
response in the uterus and promote maternal tolerance to the
fetus (13). Apart from this specific function, HLA-G shares with
classical HLA class Ia molecules the ability to present antigens
(14, 15), suggesting a role for HLA-G on the immune defense
against infection and anti-cancer response.

However, while downregulation of classical HLA class Ia
molecules is common to most cancers, overexpression of
membrane-bound and soluble HLA-G proteins have been found
in tumors, including lymphomas, leukemias, melanoma, and
breast, kidney, ovarian, lung, esophageal, gastric, pancreatic
and colorectal carcinomas. The majority of studies find HLA-G
expression in solid tumors to be associated with malignancy and
poor prognosis (3, 4, 16–18). In fact, HLA-G is considered as
a target for cancer gene therapy (19). However, there are some
reports showing the opposite. Thus, for example, upregulation of
HLA-G levels was found a favorable prognosis factor in triple-
negative breast carcinomas (20). In contrast to solid tumors,
HLA-G levels did not show any clear correlation with patient
outcome in hematological malignancies (4). HLA-G can modify
the action of innate immune cells by inducing tolerance in

APCs and inhibiting NK-cell mediated killing (see Figure 1).
Thus, APCs expressing HLA-G in the tumor microenvironment
have suppressive properties and are partly responsible for tumor
immune escape. On the other hand, soluble HLA-G secreted
by both tumor and immune cells may directly inhibit CD4+

and CD8+ T cell proliferation (21). In fact, plasma levels of
soluble HLA-G are higher in patients with pancreatic cancer
compared to healthy donors, and soluble HLA-G levels inversely
correlate with the number of peripheral activated T cells (22). It
is worth to mention that soluble HLA-G levels are significantly
higher in benign lesions than in malignant tumors and can
be used as a diagnosis tool to distinguish premalignant from
malignant stages (6, 23). HLA-G molecules can be transferred
from tumor cells to activated NK cells and other immune cells
by a process called trogocytosis, which involves the delivery of
plasma membrane fragments from one cell to another leading to
downregulation of the immune response (7, 24). This constitutes
an effective mechanism for tumor cells to evade surveillance
of surrounding immune cells. On the other hand, HLA-G has
been found to be secreted associated to extracellular vesicles;
i.e., exosomes originated by the endo-lysosomal pathway, derived
from melanoma cells (25) and placental trophoblasts (26), which
provide another mechanism for tumors to modulate the host
immune response and for trophoblasts to modify the maternal
immunological environment.

THE MURINE NON-CLASSICAL MHC
COMPLEX QA-2. ITS ROLE IN
EMBRYOGENESIS AND AUTOIMMUNITY

Qa-2 has been reported to be the HLA-G homolog in mice
(27). Both HLA-G and Qa-2 molecules have membrane-
bound and soluble forms that originate by alternative splicing,
display immunoregulatory roles, and are involved in embryonic
development (7). There are four major Qa-2 loci: Q6, Q7, Q8,
and Q9, which localize at the Qa region of chromosome 17 and
are present in different combinations in each mouse haplotype
(28). Since Q6 and Q8 loci are almost perfect duplicate of each
other, and Q7 and Q9 only differ by a single nucleotide leading
to a change of Gln in Q7 to Glu in Q9, they are referred as
Q6/Q8 and Q7/Q9 pairs. Therefore, Qa-2 gene clusters seem
to have evolved by sequential duplication of a primordial gene
pair consisting of one “odd” locus that originated Q7 and Q9
and one “even” locus that gave rise to Q6 and Q8 (27). The
pair Q6/Q8 encodes a transmembrane protein while the pair
Q7/Q9 encodes a glycosylphosphatidylinositol (GPI)-anchored
membrane protein. The GPI linkage facilitates clustering of Qa-
2 protein on lipid rafts and suggests a potential role for Qa-2 in
cell signaling (29).Q7/Q9may generate a soluble Qa-2 isoform by
alternative splicing, in which loss of exon 5 results in the inability
of the product to attach the GPI anchor (30, 31). In addition,
alike to HLA-G, soluble Qa-2 isoforms can also be generated by
shedding of membrane-bound forms (32).

Qa-2 expression on the cell surface requires the assembly
within the endoplasmic reticulum of a trimer. Qa-2 associates
with β2 microglobulin and is loaded with a small peptide,
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FIGURE 1 | Functions of HLA-G and Qa-2 on immune cells in the tumor microenvironment. HLA-G, either on the surface of tumor cells or in its soluble form or

associated with exosomes, inhibits different traits of immune cells through interaction with the inhibitory receptors ILT2 and ILT4, allowing tumor cells to escape from

immune surveillance. Also, HLA-G has been reported to interact with KIR2DL4 receptor to activate NK cells, although this is a matter of controversy (see the text). On

the other hand, Qa-2 has been reported to activate NK cells and CD8+ CTLs that inhibit tumor cell growth and mediate tumor rejection. Inhibition of NK cells by Qa-2

was also reported in vitro, and Ly49C postulated as a Qa-2 inhibitory receptor, see the text. Receptors on immune cells involved in the response to Qa-2 are presently

unknown. Likewise, whether Qa-2 is released to the extracellular milieu associated to exosomes remains to be investigated.

which is primarily produced in the cytosol by the ubiquitin–
proteasome pathway and then transported into the lumen of the
endoplasmic reticulum by the transporter associated with antigen
processing (TAP) protein, a heterodimer consisting of TAP1 and
TAP2 subunits (33). Qa-2 binds a wide array of TAP-dependent
self and non-self-nonameric peptides, which suggests Qa-2 has
an immunosurveillance function alerting for the presence of
intracellular pathogen infections or neoplastic transformation
(34). Thus, Qa-2 restricted CD8+ T cells contribute to protect
the host against infection with Mycobacterium tuberculosis (35)
and polyoma virus (36), the latter requiring CD4+ T cells for
its maintenance phase (37). Likewise, CD8+ T cells are involved
in the anti-tumor immune response elicited by Qa-2 (see
below).

Qa-2 genes were identified as Ped (preimplantation embryo
development) candidate genes that modulate the rate of embryo
cleavage division and subsequent fetal survival (38, 39). Embryos
from some mouse strains develop faster than those of other
strains, depending on the presence of Qa-2 protein (i.e., the
products of Q7/Q9 pair) on the surface of preimplantation
embryo. This has been named the Ped fast phenotype (39). It
was proposed that Qa-2 protein protects the developing fetus
from the attack of maternal NK cells and/or macrophages,
which could account for the higher rate of fetal loss observed
in embryos lacking Qa-2 protein (40). In addition, besides an
overall reproductive advantage, the presence of Qa-2 protein in
the embryo grants a healthier life to the adult mouse (41).

In adult tissues, Qa-2 is widely distributed but generally
at low levels. It is present in APCs, immature and mature
thymocytes, thymic epithelial cells, intestinal epithelial cells
and immunologically privileged sites/cells, such as the anterior
chamber of the eye, hair follicles and sperm in testis (31, 32,
42). Qa-2 has been involved in T lymphocyte proliferation,
particularly in CD4+ T cells (43). However, the α3 domain of Qa-
2 is unable to interact with CD8 in order to effectively activate
cytotoxic T cells (44). Qa-2 has been reported to mediate signal
transduction pathways, as antibody-induced crosslinking of Qa-
2 promoted proliferation of resting T cells depending on Fyn
(a member of the Src family of kinases), PI-3 kinase and Akt
(45). Also, Qa-2 is required for the selection of intraepithelial
unconventional CD8αα/TCRαβ T cells, which appear to be
regulatory cells involved in maintaining intestinal integrity (46).

HLA-G allelic variants inducing a significantly lower
expression level of HLA-G products are genetic risk factors for
Behcet’s disease, a chronic multi-systemic disorder involving
gastrointestinal, mucocutaneous, ocular, vascular, central
nervous and articular systems (47). A similar role for Qa-2 was
also shown in a Behcet’s disease-like mouse model induced by the
herpex virus simplex, in which silencing of Qa-2 by intravenous
injection of specific siRNA worsened the disease symptoms (48).

Acute graft rejection is the main complication in organ
transplantation. It involves allograft recognition by the immune
system as non-self and graft destruction by reactive immune
cells (49). It has been reported that patients with upregulated
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HLA-G expression in grafts and plasma have better allograft
acceptance that HLA-G-negative patients (50, 51). Lu and
coworkers have studied the relationship of Qa-2 expression
in grafts and peripheral blood lymphocytes (PBLs) with graft
rejection in a well-established murine skin transplantation
model in the presence or absence of immunosuppressive agents.
They found negative or weakly positive Qa-2 expression in
mice without immunosuppressive treatment similar to that of
control mice. In contrast, treatment with immunosuppressive
drugs upregulated Qa-2 expression in both grafts and PBLs
and prolonged the survival of skin allografts. Qa-2 expression
subsequently decreased during allograft rejection (52). These
results clearly point to an inverse relationship between Qa-2
levels and allograft rejection.

Whereas, HLA-G is a well-established ligand of the ILT family
of immune inhibitory receptors (4, 6, 7), little is known about
the receptors for Qa-2 in immune cells. A potential candidate
is paired immunoglobulin-like inhibitory receptor (PIR-B), the
murine ortholog of human ILT, which has been shown to interact
with MHC class I molecules (53) and HLA-G (54, 55). However,
to our knowledge, evidence for a functional interaction between
PIR-B and Qa-2 is still lacking. In a recent review, Goodall
and co-workers claim that Qa-2 binds Ly49C on NK cells (56).
Ly49C is a member of the lectin-like Ly49 family receptors,
the functional counterparts in mice of human KIR receptors.
However, the experimental demonstration for this interaction has
not been published yet.

THE ROLE OF Qa-2 IN CANCER

Similarly to classical HLA class Ia molecules, Qa-2 expression
was found to be downregulated in tumors and derived cell
lines, including melanoma, hepatoma, lymphoma, leukemia, and
mastocytoma, which suggested to the authors a suppressive role
for Qa-2 in cancer (42). In accordance with this hypothesis,
Chiang and Stroynowski demonstrated that restoration of Q9
expression in melanoma, lung carcinoma and T-cell lymphoma
cell lines that have downregulated Qa-2 expression resulted
in a CD8+ cytotoxic T lymphocyte (CTL)-mediated immune
response that inhibited in vivo tumor growth in syngeneic hosts
(57–59).

The lack of Qa-2 expression in B16 and B16-derived
melanoma cell lines with low and high metastatic capacities
suggest that downregulation of Qa-2 levels is an early event
during melanoma progression. Experiments with genetically
manipulated melanoma cells showed that TAP-2-dependent
restoration ofQ9 expression led to reduced tumorigenic potential
in syngeneic mice, and in vivo depletion studies indicated that
both NK cells and CD8+ CTLs collaborated in the rejection
response (57) (Figure 1). It should be mentioned, however, that
Q9 was previously shown to partially protect melanoma cells
from lysis by activated NK cells in vitro, suggesting that Q9
may interact with an inhibitory NK receptor (60) that might
correspond to Ly49C (56). Nevertheless, in vivo studies indicate
that Q9 sensitizes tumors to trigger a NK cell-mediated cytolytic
response either by directly killing tumor cells or by stimulating

downstream T cell responses through secretion of cytokines and
chemokines. Interestingly, the protection conferred by Q9 to
the host was stronger that the anti-tumor effect exerted by the
expression of its structurally homologous class Ia H2-Kb antigen
(57). Further studies demonstrated that Q9 protein is a target
for anti-tumor immune surveillance, as CD8+ T-cell-deficient
mice as well as β2 microglobulin and CD8-knockout mice were
unable to reject Q9-bearing melanoma tumors. Moreover, the
display of peptide-loaded Q9 on the surface of melanoma cells
induced strong immunological memory (58). The ability of
Q9 to act as a restriction element for anti-tumor CTL is not
specific of melanoma cells, as Q9 surface expression on 3LLA9F1
Lewis lung carcinoma or RMA T cell lymphoma cell lines
also induces a potent anti-tumor CTL response that eliminate
tumor cells in syngeneic hosts. Mice challenged with one
Q9-expressing tumor develop immunological memory against
subsequent challenge with different Q9-bearing tumor cells,
suggesting that Q9 has the capacity to present tumor antigens
shared by distinct lineages of cancer cells (59). Like Q9, Q8
protein is ubiquitously distributed in mouse normal tissues and
is frequently downregulated in tumors (42). Despite Q8 differs
significantly from Q9 in the amino acid sequence of α1 and
α2 domains involved in peptide binding and T cell recognition,
Q8 and Q9 have overlapping binding motifs and exhibit cross-
reactive CTL responses recognizing shared tumor-associated
antigens from melanoma, Lewis lung carcinoma and T cell
lymphoma (61). Whereas, the studies of Chiang and Stroynowski
suggest that Qa-2 activates innate and adaptive immune cells to
reject tumors, they hold some limitations that should be taken
into account. First, these studies come from only one laboratory
and should be confirmed by others. Second, the B78H1melanoma
cell model used in these experiments is not completely negative
for MHC class I molecules, but express low levels of HLA class I
antigens (http://www.lollini.it/b78.htm), and the possibility that
they were upregulated after TAP-2 transfection was not ruled out
experimentally.

We have addressed the role of Qa-2 in tumor growth and
progression using the 4T1 mammary carcinoma cell model. 4T1
tumor cells are representative of the highly aggressive triple-
negative subtype of human breast cancer (62). In the 4T1 cell line,
only a small percentage of cells (about 4%) express Qa-2 on the
cell surface, and Qa-2 protein levels were further reduced during
in vivo tumor growth and in tumor-derived cultured cells (63),
suggesting that Qa-2 expression is downregulated during breast
cancer development. Cell lines derived from tumors induced by
4T1 in the back skin, or in the mammary fat pad, of syngeneic
Balb/c mice elicited a partial epithelial-mesenchymal transition
(EMT) and exhibited increased stem cell characteristics and

TABLE 1 | Functional characteristics of HLA-G and Qa-2.

HLA-G Qa-2

Immune tolerance during pregnancy

Autoimmune disease

Graft rejection

Tumor growth

Promotes

Prevents

Protects

Promotes

Promotes

Prevents

Protects

Inhibits
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enhanced tumor-initiating and invasive capacities that correlated
with reduced Qa-2 expression. In fact, Qa-2 expression was
completely lost in a CD44high/CD24med/low cancer stem cell
subpopulation (64) isolated from these cell lines (63). This
striking result suggests the possibility that Qa-2 is excluded
from cancer stem cells, thus contributing to their evasion
from immunosurveillance. Nonetheless, this hypothesis deserves
further investigation. Downregulation of Qa-2 in cancer stem
cells appears to be mediated, at least partially, by the Src
signaling pathway. Indeed, pharmacological inhibition of Src
kinase activity enhanced Qa-2 expression and concomitantly
reduced stemness of 4T1 tumor-derived cell lines (63). Increased
Src activity is a general characteristic of malignancy associated
with EMT, stemness, invasion and metastasis (65). In order to
confirm the anti-tumor role of Qa-2, we forced the expression
of Q7 in 4T1 cells. Q7 is a key member of the Qa-2 family in
Balb/c mice (42). 4T1 cells overexpressing Q7 produced tumors
that grew slower and were less metastatic than control or parental
cells (63).

Interestingly, Servín-Blanco and colleagues have reported that
Qa-2-derived peptides elicited an anti-tumor immune response
against carcinomas induced by 4T1 cells in Balb/c mice resulting
in a significant inhibition of tumor growth and a reduction
in the number of metastatic lesions (66). This possibility of
immunotherapy targeting Qa-2 is shared by HLA-G, as HLA-
G-derived peptides were able to induce a CTL response against
HLA-G-expressing human renal carcinoma cells (67).

CONCLUDING REMARKS

In summary, Qa-2 has been found to have a different role
in cancer with respect to its putative human homolog HLA-
G. Whereas, HLA-G seems to help tumor cells to escape
from immunosurveillance by directly interacting with inhibitory
receptors that halt innate and adaptive immune cells, Qa-2
appears to activate NK and CD8+ CTLs to reject tumors.
Thus, despite similarities in structure and function during

embryogenesis and autoimmunity, both families of HLA class
lb proteins act in an opposite manner in the context of tumors
(Table 1). Therefore, downregulation of Qa-2 and upregulation
of HLA-G expression are major immune evasive mechanisms
used by murine and human tumors, respectively. Nevertheless,
in contrast to HLA-G, only a handful of reports have addressed
the functional implication of Qa-2 in tumors, and mainly using
a limited number of cell lines. Thus, studies on the role of
Qa-2 in cancer should be extended. Specially, in vivo models
of carcinogenesis with normal or genetically engineered mice
should be used in order to ascertain more accurately the
mechanisms of tumor suppression exhibited by these molecules.
Moreover, it would be of great interest to clarify the apparent
inverse relationship between Qa-2 and cancer stem cells using
both in vitro and in vivo models of cancer. Particularly relevant
to understand the different roles of HLA-G and Qa-2 in cancer
is to identify the specific receptors for Qa-2 in different immune
cells, either inhibitory or stimulatory, and the regulatory signals
triggered upon its binding.

AUTHOR CONTRIBUTIONS

IdS and MQ wrote the manuscript. LM-M and EF reviewed it.

FUNDING

The research developed in our laboratories is supported by
grants SAF2017-84183-R from the Spanish Ministry of Science,
Innovation and Universities to MQ, and APQ-04269-10 and
RED-00011-14 from the Foundation for Research Support of the
State of Minas Gerais (FAPEMIG) to EF.

ACKNOWLEDGMENTS

We thank Javier Pérez for his help with Figure 1. We apologize
with authors whose excellent work was not cited in this article
due to space limitations.

REFERENCES

1. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate

and adaptive immunity to cancer. Ann Rev Immunol. (2011) 29:235–71.

doi: 10.1146/annurev-immunol-031210-101324

2. VeselyMD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and

implications to cancer immunotherapy. Ann N Y Acad Sci. (2013) 1284:1–5.

doi: 10.1111/nyas.12105

3. Morandi F, Rizzo R, Fainardi E, Rouas-Freiss N, Pistoia V. Recent advances in

our understanding of HLA-G biology: lessons from a wide spectrum of human

diseases. J Immunol Res. (2016) 2016:4326495. doi: 10.1155/2016/4326495

4. Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J.

HLA-G: an immune checkpoint molecule. Adv Immunol. (2015) 127:33–144.

doi: 10.1016/bs.ai.2015.04.001

5. Rizzo R, Bortolotti D, Bolzani S, Fainardi E. HLA-G molecules in

autoimmune diseases and infections. Front Immunol. (2014) 5:592.

doi: 10.3389/fimmu.2014.00592

6. Curigliano G, Criscitiello C, Gelao L, Goldhirsch A. Molecular pathways:

human leukocyte antigen G (HLA-G). Clin Cancer Res. (2013) 19:5564–71.

doi: 10.1158/1078-0432.CCR-12-3697

7. Gomes AQ, Correia DV, Silva-Santos B. Non-classical major

histocompatibility complex proteins as determinants of

tumour immunosurveillance. EMBO Rep. (2007) 8:1024–30.

doi: 10.1038/sj.embor.7401090

8. Rajagopalan S, Fu J, Long EO. Cutting edge: induction of IFN-gamma

production but not cytotoxicity by the killer cell Ig-like receptor

KIR2DL4 (CD158d) in resting NK cells. J Immunol. (2001) 167:1877–81.

doi: 10.4049/jimmunol.167.4.1877

9. Kikuchi-Maki A, Yusa S, Catina TL, Campbell KS. KIR2DL4 is an IL-2-

regulated NK cell receptor that exhibits limited expression in humans but

triggers strong IFN-gamma production. J Immunol. (2003) 171:3415–25.

doi: 10.4049/jimmunol.171.7.3415

10. Le Page ME, Goodridge JP, John E, Christiansen FT, Witt CS. Killer

Ig-like receptor 2DL4 does not mediate NK cell IFN-gamma responses

to soluble HLA-G preparations. J Immunol. (2014) 192:732–40.

doi: 10.4049/jimmunol.1301748

11. Le Page ME, Goodridge JP, John E, Christiansen FT, Witt CS. Response

to comment on “killer Ig-like receptor 2DL4 does not mediate NK cell

IFN-gamma responses to soluble HLA-G preparations”. J Immunol. (2014)

192:4003–4. doi: 10.4049/jimmunol.1400492

Frontiers in Immunology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 2894

https://doi.org/10.1146/annurev-immunol-031210-101324
https://doi.org/10.1111/nyas.12105
https://doi.org/10.1155/2016/4326495
https://doi.org/10.1016/bs.ai.2015.04.001
https://doi.org/10.3389/fimmu.2014.00592
https://doi.org/10.1158/1078-0432.CCR-12-3697
https://doi.org/10.1038/sj.embor.7401090
https://doi.org/10.4049/jimmunol.167.4.1877
https://doi.org/10.4049/jimmunol.171.7.3415
https://doi.org/10.4049/jimmunol.1301748
https://doi.org/10.4049/jimmunol.1400492
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


da Silva et al. Qa-2 and HLA-G in Malignancy

12. LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. HLA-G1-expressing

antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl

Acad Sci USA. (2004) 101:7064–9. doi: 10.1073/pnas.0401922101

13. Hviid TV. HLA-G in human reproduction: aspects of genetics, function

and pregnancy complications. Hum Reprod Update (2006) 12:209–32.

doi: 10.1093/humupd/dmi048

14. Diehl M, Munz C, Keilholz W, Stevanovic S, Holmes N, Loke YW, et al.

Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol.

(1996) 6:305–14. doi: 10.1016/S0960-9822(02)00481-5

15. Di Marco M, Schuster H, Backert L, Ghosh M, Rammensee HG, Stevanovic S.

Unveiling the peptide motifs of HLA-C and HLA-G from naturally presented

peptides and generation of binding prediction matrices. J Immunol. (2017)

199:2639–51. doi: 10.4049/jimmunol.1700938

16. de Kruijf EM, Sajet A, van Nes JG, Natanov R, Putter H, Smit VT, et al.

HLA-E and HLA-G expression in classical HLA class I-negative tumors is

of prognostic value for clinical outcome of early breast cancer patients. J

Immunol. (2010) 185:7452–9. doi: 10.4049/jimmunol.1002629

17. Yie SM, Hu Z. Human leukocyte antigen-G (HLA-G) as a marker for

diagnosis, prognosis and tumor immune escape in human malignancies.

Histol Histopathol. (2011) 26:409–20. doi: 10.14670/HH-26.409

18. Ferguson R, Ramanakumar AV, Koushik A, Coutlee F, Franco E, Roger M.

Human leukocyte antigen G polymorphism is associated with an increased

risk of invasive cancer of the uterine cervix. Int J Cancer (2012) 131:E312–9.

doi: 10.1002/ijc.27356

19. Zidi I, Ben Amor N. Nanoparticles targeting HLA-G for gene therapy in

cancer.Med Oncol. (2012) 29:1384–90. doi: 10.1007/s12032-011-9942-8

20. Martinez-Canales S, Cifuentes F, Lopez De Rodas Gregorio M, Serrano-

Oviedo L, Galan-Moya EM, Amir E, et al. Transcriptomic immunologic

signature associated with favorable clinical outcome in basal-like breast

tumors. PLoS ONE (2017) 12:e0175128. doi: 10.1371/journal.pone.0175128

21. Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, et al. Soluble

HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J

Immunol. (2006) 176:1331–9. doi: 10.4049/jimmunol.176.3.1331

22. Xu YF, Lu Y, Cheng H, Jiang J, Xu J, Long J, et al. High

expression of human leukocyte antigen-G is associated with a poor

prognosis in patients with PDAC. Curr Mol Med. (2015) 15:360–7.

doi: 10.2174/1566524015666150401102218

23. CaoM, Yie SM, Liu J, Ye SR, Xia D, Gao E. Plasma solubleHLA-G is a potential

biomarker for diagnosis of colorectal, gastric, esophageal and lung cancer.

Tissue Antigens (2011) 78:120–8. doi: 10.1111/j.1399-0039.2011.01716.x

24. Johansen LL, Lock-Andersen J, Hviid TV. The pathophysiological impact

of HLA class Ia and HLA-G expression and regulatory T cells in

malignant melanoma: a review. J Immunol Res. (2016) 2016:6829283.

doi: 10.1155/2016/6829283

25. Riteau B, Faure F, Menier C, Viel S, Carosella ED, Amigorena S, et al.

Exosomes bearing HLA-G are released by melanoma cells. Hum Immunol.

(2003) 64:1064–72. doi: 10.1016/j.humimm.2003.08.344

26. Kshirsagar SK, Alam SM, Jasti S, Hodes H, Nauser T, Gilliam M,

et al. Immunomodulatory molecules are released from the first

trimester and term placenta via exosomes. Placenta (2012) 33:982–90.

doi: 10.1016/j.placenta.2012.10.005

27. Weiss EH, Golden L, Fahrner K, Mellor AL, Devlin JJ, Bullman H,

et al. Organization and evolution of the class I gene family in the major

histocompatibility complex of the C57BL/10mouse.Nature (1984) 310:650–5.

doi: 10.1038/310650a0

28. Stroynowski I, Tabaczewski P. Multiple products of class Ib Qa-2

genes which ones are functional? Res Immunol. (1996) 147:290–301.

doi: 10.1016/0923-2494(96)89642-8

29. Comiskey M, Warner CM. Spatio-temporal localization of membrane lipid

rafts inmouse oocytes and cleaving preimplantation embryos.Dev Biol. (2007)

303:727–39. doi: 10.1016/j.ydbio.2006.12.009

30. Ulker N, Lewis KD, Hood LE, Stroynowski I. Activated T cells transcribe an

alternatively spliced mRNA encoding a soluble form of Qa-2 antigen. EMBO

J. (1990) 9:3839–47. doi: 10.1002/j.1460-2075.1990.tb07602.x

31. Tian Z, Xu Y, Warner CM. Removal of Qa-2 antigen alters the Ped gene

phenotype of preimplantation mouse embryos. Biol Reprod. (1992) 47:271–6.

doi: 10.1095/biolreprod47.2.271

32. He X, Tabaczewski P, Ho J, Stroynowski I, Garcia KC. Promiscuous antigen

presentation by the nonclassical MHC Ib Qa-2 is enabled by a shallow,

hydrophobic groove and self-stabilized peptide conformation. Structure

(2001) 9:1213–24. doi: 10.1016/S0969-2126(01)00689-X

33. Tabaczewski P, Stroynowski I. Expression of secreted and

glycosylphosphatidylinositol-bound Qa-2 molecules is dependent on

functional TAP-2 peptide transporter. J Immunol. (1994) 152:5268–74.

34. Tabaczewski P, Chiang E, Henson M, Stroynowski I. Alternative peptide

binding motifs of Qa-2 class Ib molecules define rules for binding of self and

nonself peptides. J Immunol. (1997) 159:2771–81.

35. Shang S, Siddiqui S, Bian Y, Zhao J, Wang CR. Nonclassical MHC Ib-

restricted CD8+ T cells recognize mycobacterium tuberculosis-derived

protein antigens and contribute to protection against infection. PLoS Pathog.

(2016) 12:e1005688. doi: 10.1371/journal.ppat.1005688

36. Swanson PA II, Pack CD, Hadley A, Wang CR, Stroynowski I, Jensen PE, et al.

An MHC class Ib-restricted CD8T cell response confers antiviral immunity. J

Exp Med. (2008) 205:1647–57. doi: 10.1084/jem.20080570

37. Hofstetter AR, Ford ML, Sullivan LC, Wilson JJ, Hadley A, Brooks AG, et al.

MHC class Ib-restricted CD8T cells differ in dependence on CD4T cell help

and CD28 costimulation over the course of mouse polyomavirus infection. J

Immunol. (2012) 188:3071–9. doi: 10.4049/jimmunol.1103554

38. Goldbard SB, Verbanac KM, Warner CM. Role of the H-2 complex in

preimplantation mouse embryo development. Biol Reprod. (1982) 26:591–6.

doi: 10.1095/biolreprod26.4.591

39. Wu L, Feng H, Warner CM. Identification of two major histocompatibility

complex class Ib genes, Q9 and Q9, as the Ped gene in the mouse. Biol Reprod.

(1999) 60:1114–9. doi: 10.1095/biolreprod60.5.1114

40. Warner CM, Brenner CA. Genetic regulation of preimplantation

embryo survival. Curr Topics Dev Biol. (2001) 52:151–92.

doi: 10.1016/S0070-2153(01)52011-6

41. Watkins A, Wilkins A, Osmond C, Warner CM, Comiskey M, Hanson M,

et al. The influence of mouse Ped gene expression on postnatal development.

J Physiol. (2006) 571(Pt 1):211–20. doi: 10.1113/jphysiol.2005.099192

42. Ungchusri T, Chiang EY, Brown G, Chen M, Tabaczewski P, Timares L,

et al. Widespread expression of the nonclassical class I Qa-2 antigens in

hemopoietic and nonhemopoietic cells. Immunogenetics (2001) 53:455–67.

doi: 10.1007/s002510100347

43. Hahn AB, Tian H, Wiegand G, Soloski MJ. Signals delivered via the

Qa-2 molecule can synergize with limiting anti-CD3-induced signals

to cause T lymphocyte activation. Immunol Invest. (1992) 21:203–17.

doi: 10.3109/08820139209072259

44. Teitell M, Holcombe H, Cheroutre H, Aldrich CJ, Stroynowski I, Forman J,

et al. The alpha 3 domain of the Qa-2 molecule is defective for CD8 binding

and cytotoxic T lymphocyte activation. J Exp Med. (1993) 178:2139–45.

doi: 10.1084/jem.178.6.2139

45. De Fazio SR, Warner CM. Activation of T cells by cross-linking Qa-2, the

ped gene product, requires Fyn. Am J Reprod Immunol. (2007) 58:315–24.

doi: 10.1111/j.1600-0897.2007.00503.x

46. Das G, Gould DS, Augustine MM, Fragoso G, Sciutto E, Stroynowski I, et al.

Qa-2-dependent selection of CD8alpha/alpha T cell receptor alpha/beta(+)

cells in murine intestinal intraepithelial lymphocytes. J Exp Med. (2000)

192:1521–8. doi: 10.1084/jem.192.10.1521

47. Shimizu T, Ehrlich GE, Inaba G, Hayashi K. Behcet disease (Behcet syndrome).

Semin Arthritis Rheum. (1979) 8:223–60. doi: 10.1016/0049-0172(79)90004-0

48. Lee M, Choi B, Kwon HJ, Shim JA, Park KS, Lee ES, et al. The role

of Qa-2, the functional homolog of HLA-G, in a Behcet’s disease-like

mouse model induced by the herpes virus simplex. J Inflamm. (2010) 7:31.

doi: 10.1186/1476-9255-7-31

49. Hartono C, Muthukumar T, Suthanthiran M. Noninvasive diagnosis of acute

rejection of renal allografts. Curr Opin Organ Transplant. (2010) 15:35–41.

doi: 10.1097/MOT.0b013e3283342728

50. Rouas-Freiss N, LeMaoult J, Moreau P, Dausset J, Carosella ED. HLA-G in

transplantation: a relevant molecule for inhibition of graft rejection? Am J

Transplant. (2003) 3:11–6. doi: 10.1034/j.1600-6143.2003.30103.x

51. Qiu J, Terasaki PI, Miller J, Mizutani K, Cai J, Carosella ED. Soluble HLA-

G expression and renal graft acceptance. Am J Transplant. (2006) 6:2152–6.

doi: 10.1111/j.1600-6143.2006.01417.x

Frontiers in Immunology | www.frontiersin.org 6 December 2018 | Volume 9 | Article 2894

https://doi.org/10.1073/pnas.0401922101
https://doi.org/10.1093/humupd/dmi048
https://doi.org/10.1016/S0960-9822(02)00481-5
https://doi.org/10.4049/jimmunol.1700938
https://doi.org/10.4049/jimmunol.1002629
https://doi.org/10.14670/HH-26.409
https://doi.org/10.1002/ijc.27356
https://doi.org/10.1007/s12032-011-9942-8
https://doi.org/10.1371/journal.pone.0175128
https://doi.org/10.4049/jimmunol.176.3.1331
https://doi.org/10.2174/1566524015666150401102218
https://doi.org/10.1111/j.1399-0039.2011.01716.x
https://doi.org/10.1155/2016/6829283
https://doi.org/10.1016/j.humimm.2003.08.344
https://doi.org/10.1016/j.placenta.2012.10.005
https://doi.org/10.1038/310650a0
https://doi.org/10.1016/0923-2494(96)89642-8
https://doi.org/10.1016/j.ydbio.2006.12.009
https://doi.org/10.1002/j.1460-2075.1990.tb07602.x
https://doi.org/10.1095/biolreprod47.2.271
https://doi.org/10.1016/S0969-2126(01)00689-X
https://doi.org/10.1371/journal.ppat.1005688
https://doi.org/10.1084/jem.20080570
https://doi.org/10.4049/jimmunol.1103554
https://doi.org/10.1095/biolreprod26.4.591
https://doi.org/10.1095/biolreprod60.5.1114
https://doi.org/10.1016/S0070-2153(01)52011-6
https://doi.org/10.1113/jphysiol.2005.099192
https://doi.org/10.1007/s002510100347
https://doi.org/10.3109/08820139209072259
https://doi.org/10.1084/jem.178.6.2139
https://doi.org/10.1111/j.1600-0897.2007.00503.x
https://doi.org/10.1084/jem.192.10.1521
https://doi.org/10.1016/0049-0172(79)90004-0
https://doi.org/10.1186/1476-9255-7-31
https://doi.org/10.1097/MOT.0b013e3283342728
https://doi.org/10.1034/j.1600-6143.2003.30103.x
https://doi.org/10.1111/j.1600-6143.2006.01417.x
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


da Silva et al. Qa-2 and HLA-G in Malignancy

52. Lu N, Wang C, Yang X, Zhao S, Li X, Jiang H, et al. Dynamic

expression of Qa-2 during acute graft rejection. Mol Med. (2011) 17:248–55.

doi: 10.2119/molmed.2010.00133

53. Takai T, Nakamura A, Endo S. Role of PIR-B in autoimmune

glomerulonephritis. J Biomed Biotechnol. (2011) 2011:275302.

doi: 10.1155/2011/275302

54. Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the

functions of murine dendritic cells via the PIR-B immune

inhibitory receptor. Euro J Immunol. (2002) 32:2418–26.

doi: 10.1002/1521-4141(200209)32:9&lt;2418::AID-IMMU2418&gt;3.0.CO;2-L

55. Loumagne L, Baudhuin J, Favier B, Montespan F, Carosella ED, Rouas-Freiss

N. In vivo evidence that secretion of HLA-G by immunogenic tumor cells

allows their evasion from immunosurveillance. Int J Cancer (2014) 135:2107–

17. doi: 10.1002/ijc.28845

56. Goodall KJ, Nguyen A, Sullivan LC, Andrews DM. The expanding role of

murine class IbMHC in the development and activation of Natural Killer cells.

Mol Immunol. (2018). doi: 10.1016/j.molimm.2018.05.001

57. Chiang EY, Henson M, Stroynowski I. Correction of defects responsible

for impaired Qa-2 class Ib MHC expression on melanoma cells

protects mice from tumor growth. J Immunol. (2003) 170:4515–23.

doi: 10.4049/jimmunol.170.9.4515

58. Chiang EY, Stroynowski I. A nonclassical MHC class I molecule restricts

CTL-mediated rejection of a syngeneic melanoma tumor. J Immunol. (2004)

173:4394–401. doi: 10.4049/jimmunol.173.7.4394

59. Chiang EY, Stroynowski I. Protective immunity against disparate tumors is

mediated by a nonpolymorphic MHC class I molecule. J Immunol. (2005)

174:5367–74. doi: 10.4049/jimmunol.174.9.5367

60. Chiang EY, Henson M, Stroynowski I. The nonclassical major

histocompatibility complex molecule Qa-2 protects tumor cells from

NK cell- and lymphokine-activated killer cell-mediated cytolysis. J Immunol.

(2002) 168:2200–11. doi: 10.4049/jimmunol.168.5.2200

61. Chiang EY, Stroynowski I. The role of structurally conserved class I MHC in

tumor rejection: contribution of theQ8 locus. J Immunol. (2006) 177:2123–30.

doi: 10.4049/jimmunol.177.4.2123

62. Kaur P, Nagaraja GM, Zheng H, Gizachew D, Galukande M, Krishnan S,

et al. A mouse model for triple-negative breast cancer tumor-initiating cells

(TNBC-TICs) exhibits similar aggressive phenotype to the human disease.

BMC Cancer (2012) 12:120. doi: 10.1186/1471-2407-12-120

63. da Silva IL, Montero-Montero L, Martin-Villar E, Martin-Perez J, Sainz B,

Renart J, et al. Reduced expression of the murine HLA-G homolog Qa-2 is

associated with malignancy, epithelial-mesenchymal transition and stemness

in breast cancer cells. Sci Rep. (2017) 7:6276. doi: 10.1038/s41598-017-06528-x

64. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The

epithelial-mesenchymal transition generates cells with properties of stem cells.

Cell (2008) 133:704–15. doi: 10.1016/j.cell.2008.03.027

65. Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell

epithelial-to-mesenchymal transition, vascular permeability, microinvasion

and metastasis. Life Sci. (2016) 157:52–61. doi: 10.1016/j.lfs.2016.05.036

66. Servin-Blanco R, Chavaro-Ortiz RM, Zamora-Alvarado R, Martinez-

Cortes F, Gevorkian G, Manoutcharian K. Generation of cancer vaccine

immunogens derived from major histocompatibility complex (MHC) class I

molecules using variable epitope libraries. Immunol Lett. (2018) 204:47–54.

doi: 10.1016/j.imlet.2018.10.008

67. Komohara Y, Harada M, Ishihara Y, Suekane S, Noguchi M, Yamada A, et al.

HLA-G as a target molecule in specific immunotherapy against renal cell

carcinoma. Oncol Rep. (2007) 18:1463–8. doi: 10.3892/or.18.6.1463

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 da Silva, Montero-Montero, Ferreira and Quintanilla. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Immunology | www.frontiersin.org 7 December 2018 | Volume 9 | Article 2894

https://doi.org/10.2119/molmed.2010.00133
https://doi.org/10.1155/2011/275302
https://doi.org/10.1002/1521-4141(200209)32:9&lt;2418::AID-IMMU2418&gt;3.0.CO;2-L
https://doi.org/10.1002/ijc.28845
https://doi.org/10.1016/j.molimm.2018.05.001
https://doi.org/10.4049/jimmunol.170.9.4515
https://doi.org/10.4049/jimmunol.173.7.4394
https://doi.org/10.4049/jimmunol.174.9.5367
https://doi.org/10.4049/jimmunol.168.5.2200
https://doi.org/10.4049/jimmunol.177.4.2123
https://doi.org/10.1186/1471-2407-12-120
https://doi.org/10.1038/s41598-017-06528-x
https://doi.org/10.1016/j.cell.2008.03.027
https://doi.org/10.1016/j.lfs.2016.05.036
https://doi.org/10.1016/j.imlet.2018.10.008
https://doi.org/10.3892/or.18.6.1463
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	New Insights Into the Role of Qa-2 and HLA-G Non-classical MHC-I Complexes in Malignancy
	Introduction
	The Human HLA-G Complex in Physiology and Cancer
	The Murine Non-Classical MHC Complex Qa-2. Its Role in Embryogenesis and Autoimmunity
	The Role of Qa-2 In Cancer
	Concluding Remarks
	Author Contributions
	Funding
	Acknowledgments
	References


