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HSV-1-induced corneal scarring (CS), also broadly referred to as Herpes Stromal

Keratitis (HSK), is the leading cause of infectious blindness in developed countries. It

is well-established that HSK is in fact an immunopathological disease. The contribution

of the potentially harmful T cell effectors that lead to CS remains an area of intense

study. Although the HSV-1 gene(s) involved in eye disease is not yet known, we have

demonstrated that gK, which is one of the 12 known HSV-1 glycoproteins, has a

crucial role in CS. Immunization of HSV-1 infected mice with gK, but not with any other

knownHSV-1 glycoprotein, significantly exacerbates CS, and dermatitis. The gK-induced

eye disease occurs independently of the strain of the virus or mouse. HSV-1 mutants

that lack gK are unable to efficiently infect and establish latency in neurons. HSV-1

recombinant viruses expressing two additional copies of the gK (total of three gK genes)

exacerbated CS as compared with wild type HSV-1 strain McKrae that contains one

copy of gK. Furthermore, we have shown that an 8mer (ITAYGLVL) within the signal

sequence of gK enhanced CS in ocularly infected BALB/c mice, C57BL/6 mice, and

NZW rabbits. In HSV-infected “humanized” HLA-A∗0201 transgenic mice, this gK 8mer

induced strong IFN-γ-producing cytotoxic CD8+ T cell responses. gK induced CS is

dependent on gK binding to signal peptide peptidase (SPP). gK also binds to HSV-1

UL20, while UL20 binds GODZ (DHHC3) and these quadruple interactions are required

for gK induced pathology. Thus, potential therapies might include blocking of gK-SPP,

gK-UL20, UL20-GODZ interactions, or a combination of these strategies.

Keywords: ocular, eye disease, virus replication, corneal scarring, peptide, SPP, GODZ

ROLE OF HSV-1 GLYCOPROTEINS IN PROTECTION AND
DISEASE

HSV-1 encodes at least 85 genes (1) and 12 of these genes code for glycoproteins (1–6). These
glycoproteins (gB, gC, gD, gE, gG, gH, gI, gJ, gK, gL, gM, and gN) are the major inducers and
targets of humoral and cell-mediated immune responses following infection (4, 7–10). We have
constructed recombinant baculoviruses expressing high levels of each of the 10 HSV-1 glycoprotein
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genes (3–6, 11–20). Based on immunization studies in mice, we
have classified these 10 baculovirus-expressed genes into four
groups: (i) Immunization with gB, gC, gD, gE, or gI completely
protects mice against lethal challenge (11–15); (ii) No significant
protection was seen with gH, gJ, and gL (5, 6, 16–18); (iii)
Immunization with gK leads to severe exacerbation of eye disease
(3, 19, 20); and (iv) Immunization with gG also showed a
tendency to be harmful (6, 16).

HERPES STROMAL KERATITIS (HSK)

HSV-1-induced CS, also broadly referred to as herpes stromal
keratitis (HSK), can lead to blindness. HSV-1 is the leading
cause of corneal blindness due to an infectious agent in
developed countries (21–26). In the U.S., ∼30,000 people suffer
recurrent ocular HSV episodes annually, requiring doctor visits,
medication, and in severe cases, corneal transplants. It is
estimated that 70–90% of American adults have antibodies to
HSV-1 and/or HSV-2, and about 25% of these individuals have
clinical symptoms upon routine clinical exam (21–26). HSV-1
is responsible for >90% of ocular HSV infections. The global
incidence of Herpes Keratitis is roughly around 1.5 million
including 40,000 new cases of severe visual impairment and
blindness each year (27). A significant proportion (15–50%) of
primary genital herpes is caused by HSV-1, and recent studies
indicate that the proportion of first clinical episode genital
herpes due to HSV-1 is increasing (28–30). Despite the frequent
recurrence of ocular herpes, there are no vaccines available
for HSV infections (31). In addition, no drug has been FDA
approved for the prevention of ocular recurrences.

HERPES INFECTION AS AN
IMMUNE-MEDIATED EVENT

Viral infections trigger the host immune response in a way that
the immune system gets highly compromised (32). Chronic viral
infections have evolved different mechanisms by which they
escape the response of protective immune response presenting
a serious challenge to the infected host (32). Many factors come
into play, which are responsible for causing the spread of the
disease and, if not properly managed, it can pose a serious threat
to the host (33). Current therapies for treatment of ocular HSV-1
infection include the use of antiviral drugs and corticosteroids
which can minimize the lesions but often lead to certain side
effects (34); therefore, new measures need to be adopted. Studies
on mouse models of ocular HSV-1 infection have unraveled
many insights into the disease pathogenesis paving ways to
future innovative therapies (35, 36). It is well-documented that
HSV-1 pathology is a consequence of the immune response
mounted by the host after virus infection and therefore, it is
considered an immunopathological disease (37). During the
course of HSV-1 infection, a series of events take place involving
the replication of virus in the epithelial cells and formation of
new blood vessels which accounts for the angiogenic response
(33). The infectious virus is cleared from the eye by day 6–7
post infection, but secondary effects lead to the induction of

strong cellular immune response with the appearance of immune
cell infiltrates in the cornea resulting in damage to the eye (38,
39). Recent studies done in mice showed that HSV-1 infection
also leads to corneal nerve damage/retraction, which results in
loss of corneal sensitivity and blink reflexes and promotes HSK
pathogenesis (40).

In this review, we will discuss the role of gK in HSV-1-induced
CS and will propose new potential therapeutic approaches to
reduce or control gK-induced CS.

gK AND ITS ROLE IN HERPES INFECTION

gK encoded by the UL53 gene is one of the HSV-1 glycoproteins
and is expressed on the virions (1, 3, 41). gK is a highly
hydrophobic 338-amino acid protein with a predicted molecular
mass of 37 kDa (1). gK has a cleavable 30-amino-acid NH2-
terminal signal sequence and is N-glycosylated on amino acids
48 and 58 (1, 42, 43). In HSV-1 infected cells, gK is expressed
as a 39 kDa high-mannose precursor polypeptide, designated
precursor gK (pgK), which is further glycosylated to produce a
41 kDa mature glycoprotein (41). When we expressed gK using a
recombinant baculovirus, four gK-related baculovirus-expressed
polypeptides of 29-, 35-, 38-, and 40-kDa were detected (3). The
35-, 38-, and 40-kDa species were susceptible to tunicamycin
treatment revealing that they were N-glycosylated. The 35-
kDa protein represented the cleaved and partially glycosylated
peptide, whereas the 29-kDa protein represented the cleaved
unglycosylated peptide. gK translated in vitro had a molecular
mass of 36 kDa with four possible membrane-spanning regions
(43, 44). Studies using insertion/deletion mutants have shown
the importance of gK in virion morphogenesis and egress (45–
47). Deletion of gK results in the formation of extremely rare
microscopic plaques indicating that gK is required for virus
replication, a concept that is supported by the observation that
gK-deficient virus can only be propagated on complementing
cells that express gK (45, 46).

gK shares 100% amino acid homology between different
strains of HSV-1 (1, 48, 49). Similar to HSV-1 gK, HSV-2 is
also 338 amino acids long but with ∼84% amino acid homology
(1, 50, 51). In addition to HSV-1 and HSV-2, gK is also present
in other members of alphaherpes viruses. The gK homologies
between different alphaherpes viruses are shown in Figure 1.
Protein sequence alignment is illustrated using clustal omega, in
which we show that gK from Macacine Herpes Virus 1 (McHV-
1), Bovine Herpes Virus 1 (BoHV-1) and Varicella zoster virus
(HH3, VZV), share 66, 33 and 28% sequence homology with
HSV-1 gK, respectively (Figure 1). Kousoulas’ group reported
that HSV-1 gK is a structural component of virion particles and
demonstrated that gK is a Golgi complex-dependent glycosylated
species (52). Previously, it was shown that HSV-1 UL20 is
required to interact with gK for HSV-1 infection (53). Also,
a similar study with Bovine herpes virus type 1 (BoHV-1),
a member of the alphaherpes virus family, demonstrated that
BoHV-1 gK and UL20 proteins function together in a manner
similar to HSV-1 gK and UL20 in virus spread and infection.
UL20 has a role in cell surface expression of gK but is not required
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FIGURE 1 | gK protein sequence alignment in different strains of alphaherpes viruses. Protein sequence was aligned by clustal omega and percentage of amino acid

homology was compared among different groups of Herpes viruses. HSV-1 has 85% homology with HSV-2, 66% homology with McHV-1, 34% homology with

BoHV-1, and 28% homology with VZV. Stars (*) indicate that the amino acids sequences are the same.

for gK-mediated cell fusion (54). It has also been demonstrated
that UL20 plays a critical role in virion envelopment, and virions
lacking either gK or UL20 fail to form an envelope. A similar role
has been assigned to HSV-1 UL37 protein in cytoplasmic virion
envelopment, and it was shown that UL37 interacts with gK-
UL20 protein complex in infected cells and facilitates in virion
cytoplasmic envelope (55).

Recently, we reported that HSV-1 UL20 binds to and
is palmitoylated by GODZ (also known as DHHC3), a
Golgi apparatus-specific Asp-His-His-Cys (DHHC) zinc finger
protein and an essential component of virus infectivity (56).
Palmitoylation of UL20 is critical for gK cell surface localization.
Thus, the use of GODZ dominant-negative mutant or GODZ
shRNA can be a potential way of inhibiting the binding of UL20
to GODZ, which can affect gK localization and viral replication.

We further showed the importance of GODZ in HSV-1 infection
using knockout mice. GODZ−/− mice ocularly infected with
HSV-1 had reduced ocular virus replication and reduced latency-
reactivation as compared with wild type control mice. Our study
also showed that the absence of GODZ resulted in blocking
of palmitoylation of UL20 and affected the localization of gK
along with the reduced expression levels of UL20, gK, and gB
transcripts in the corneas of HSV-1 infected GODZ−/− mice
(57).

Recently, it was shown that intramuscular injection with
HSV-1 (F) mutant virus, which lacks the expression of gK
conferred significant protection against either virulent HSV-1
strain McKrae or HSV-2 strain G intravaginal challenge in mice
(58). To test if disruption of gK/UL20 interactions with gB
would lead to reduced viral load, a recombinant virus (VC2) was
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constructed with specific mutations in gK and its binding protein
UL20. Intramuscular injection with VC2 indeed protected 100%
of mice against virulent HSV-1 strain McKrae or HSV-2 strain
G challenges by providing cross-reactive humoral and cellular
immunity (59).

Additionally, gK binds with different affinity in different cell
types (Figure 2) to signal peptide peptidase (SPP) also known
as minor histocompatibility antigen H13 (60). To illustrate
this binding, recombinant gKV5DI, gKV5DII, gKV5DIII, and
gKV5DIV viruses were constructed expressing V5 epitope tags in
frame within domains I, II, III, and IV of gK, respectively (52, 61).
We infected rabbit skin (RS), HeLa and Vero cells with each
virus and evaluated the co-localization of V5-gK and endogenous
SPP. There was a strong co-localization in all the cell lines (RS,
HeLa and Vero) when the V5 tag was expressed on cytoplasmic
domains (II and III) compared to when it was expressed on
extracellular domain (I and IV) (Figure 2). Binding of gK to
SPP can be blocked by SPP inhibitors like aspirin, ibuprofen,
L685, 458, (Z-LL)2 ketone, and DAPT (62). These inhibitors
significantly reduced viral replication in HSV-1 infected eye and
reduced pathology. Thus, blocking the binding of SPP to gK
can be one of the potential approaches toward treating HSV-1
induced CS (62).

gK AND VIRUS ENTRY

HSV-1 induced CS begins with the binding of viral glycoproteins
to the host cell entry receptors. There are at least seven known
receptors including herpes virus entry mediator (HVEM) as
well as nectin-1, nectin-2, 3-O-sulfated heparan sulfate (3-OS-
HS), paired immunoglobulin-like type 2 receptor (PILRα), non-
muscle myosin heavy chain IIA (NMHC-IIA), and myelin-
associated glycoprotein (MAG) (2, 63–72). For gK to potentiate
its disease severity, the amino terminal of gK binds to the
amino terminal of gB, which leads to the virus entry and disease
progression (73). gB binds to Akt-1 during virus entry and it
induces Akt phosphorylation and intracellular calcium release. A
recent study done by Kousoulas’ group showed that deletion of

amino acids 31–68 within the amino terminus of gK inhibits gB
binding to Akt-1 and thus blocks virus entry and its progression
(74). Studies by the same group showed that both gK and PlLRα

(paired immunoglobulin–like type 2 receptor α) bound gB in
infected cells and that the association between gB-PILRα protein
complex regulates membrane fusion of virus and the host cell
which aids in virus penetration (75). Along with the role of amino
terminus of gK in virus entry, a recent study described the role
of two conserved N-linked glycosylation sites (N48 and N58) of
gK in virus-induced cell fusion and replication (76). Mutation
at N58 to alanine (N58A) resulted in extensive virus-induced
cell fusion. The same group showed that mutation of cysteine
residues within the amino terminus of gK, C37, and C114, led
to significant reduction in virus production (76). In addition, gK
plays a vital part in the recruitment of other viral glycoproteins
into intracellular virus assembly. A recent study found that gM
plays a major role in synergy with gK/UL20 in the incorporation
of gD and gH/gL into mature virions (74).

ROLE OF gK-INDUCED CELLULAR
RESPONSES

Adaptive immune responses play a major role in HSV-1
pathogenesis. The role of CD8+ T cells in HSV-1 pathogenesis
is currently unclear and needs deeper investigation. There are
studies reporting that CD8+ T cells play a protective role,
whereas other studies show that CD8+ T cells exacerbate the
disease pathogenesis (77, 78). There is evidence supporting that
gK is the only HSV-1 glycoprotein responsible for exacerbation
of HSV-1 induced corneal scarring (CS). Research done by our
team shows that a virus construct of HSV-gK3 which is derived
from the virulent HSV-1 strain McKrae mediates critical effects
on HSV-1 pathogenicity in mice (79). Mice infected with HSV-
gK3 showed severe CS compared with control mice infected with
wild type virus. HSV-gK3 infected mice had elevated levels of
virus replication and also had significantly higher number of
CD8+ T cells (79). Depletion of CD8+ T cells and not CD4+ T
cells reduced CS in HSV-gK3 infected mice to the level of wild

FIGURE 2 | Co-localization of gK and SPP. gK is a highly hydrophobic protein with four transmembrane domains. Epitope-tagging of four different domains of gK is

shown with a strong co-localization of the two cytoplasmic domains (labeled D2 and D3 in the figure). Extracellular domains (D1 and D4), on the other hand, show

weak or no co-localization with SPP in RS, HeLa, and Vero cell lines.
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type infected mice. Overall, we have shown that exacerbation
of eye disease in response to gK immunization or following
ocular infection with recombinant viruses expressing additional
copies of gK is associated with CD8+T cell and not CD4+T
cell responses. Other studies have shown that CD4+ T cells are
involved in HSK (80–83). Thus, in the context of CD8+-induced
gK pathogenicity the role of CD4+ T cells to disease or protection
cannot be ruled out.

We previously looked into what region of gK participates in
T cell proliferation and subsequently IFN-γ production (84). To
this end, a panel of 33 overlapping peptides spanning all 338
amino acids of the gK polypeptide were produced. Splenocytes
from mice were stimulated with each peptide individually both
in vivo and in vitro. We found that out of 33 peptides, peptide
2 was involved in T cell proliferation and IFN-γ production
in vivo and in vitro and accounted for 52% of CTL activity in
vivo. The percentages of IFN-γ production by both CD4+ T
and CD8+T cells in vivo and the CTL responses are illustrated
in Table 1. In vitro results showed that CD8+ T cells produced
more IFN-γ compared to CD4+ T cells. Our study confirmed that
both CD4+ and CD8+T cells produced IFN-γ when stimulated
with peptide 2, but IFN-γ production by CD4+ T was CD8+

T cell-dependent. In connection with our mapping studies (3,
79), we identified a highly conserved gK epitope (ITAYGLVL)
within the peptide STVVLITAYGLVLVW, which served as an
immunodominant gK T cell stimulatory region both in vitro and
in vivo (84). This peptide is highly conserved between HSV-1
and HSV-2 strains. To investigate its role in HSV-1 infection,
the octamer (8mer) was administered as an eye drop an hour
before ocular infection. This resulted in a significant increase in
viral replication leading to enhancement of CS, along with strong
cytotoxic CD8+ T cell responses and IFN-γ production (85).
Mutations in the signal sequence of gK using recombinant viruses
that expressed two additional copies of the mutated (MgK) or
native (NgK) form of the gK blocked cell surface expression of
gK in RS cells resulting in reduced reactivation and hence, less
ocular disease when compared to RgK (revertant) virus. This
study confirms the role of octamer within the signal sequence of
gK in HSV-1 pathogenesis (86). Another study showed that the
amino terminus of gK was essential for neuroinvasiveness and
acute HSK using a recombinant HSV-1 (McK1gK31-68), which
was lacking the 38 amino acids from gK amino terminus. In
McK1gK31-68 mutant viral infection, there were no significant
disease symptoms (87).

Hendricks’s group looked at HSV-1-specific CD8+ T cell
repertoire in C57BL/6 mice that respond to 376 predicted HSV-1
CD8+ T cell epitopes in C57BL/6 mice (88). Out of 376 HSV-1
CD8+ T cell epitopes, only 19 (gB498−505 and 18 subdominant
epitopes) stimulated CD8+T cells in spleen and TG of HSV-
1 infected mice. The data in comparison to all these epitopes
demonstrated that majority of the CD8+T cells in spleen and
TG of HSV-1 infected mice responded to gB498−505 HSV-1
epitope and as expected the authors showed that gK peptide
corresponding to aa 54–62 was recognized by CD8+ effector
T cells in TG and spleen of infected mice (88). So, collectively
our study and Hendricks’s group showed that CD8+ T cells
in C57BL/6 mice recognize various HSV-1 epitopes, especially

TABLE 1 | IFN-γ production and CTL activity from both CD4+T and CD8+T cells

when stimulated with gK synthetic peptidesa.

Peptide gK aa CD4+IFNγ
+ CD8+IFNγ

+ CTL activity

1 MLAVRSLQHLSTVVL 2% 1% 9%

2 STVVLITAYGLVLVW 21% 8% 52%

3 LVLVWYTVFGASPLH 3% 2% –

4 ASPLHRCIYAVRPTG ND ND ND

5 VRPTGTNNDTALVWM ND ND ND

6 ALVWMKMNQTLLFLG ND ND ND

7 LLFLGAPTHPPNGGW ND ND ND

8 PNGGWRNHAHICYAN ND ND ND

9 ICYANLIAGRVVPFQ ND ND ND

10 VVPFQVPPDAMNRRI ND ND ND

11 MNRRIMNVHEAVNCL ND ND ND

12 AVNCLETLWYTRVRL ND ND ND

13 TRVRLVVVGWFLYLA ND ND ND

14 FLYLAFVALHQRRCM ND ND ND

15 QRRCMFGVVSPAHKM ND ND ND

16 PAHKMVAPATYLLNY ND ND ND

17 YLLNYAGRIVSSVFL ND ND ND

18 SSVFLQYPYTKITRL ND ND ND

19 KITRLLCELSVQRQN ND ND ND

20 VQRQNLVQLFETDPV ND ND ND

21 ETDPVTFLYHRPAIG ND ND ND

22 RPAIGVIVGCELMLR ND ND ND

23 ELMLRFVAVGLIVGT ND ND ND

24 LIVGTAFISRGACAI ND ND ND

25 GACAITYPLFLTITT ND ND ND

26 LTITTWCFVSTIGLT ND ND ND

27 TIGLTELYCILRRGP ND ND ND

28 LRRGPAPKNADKAAA ND ND ND

29 DKAAAPGRSKGLSGV ND ND ND

30 GLSGVCGRCCSIILS ND ND ND

31 SIILSGIAVRLCYIA ND ND ND

32 LCYIAVVAGVVLVAL ND ND ND

33 VLVALHYEQEIQRRL ND ND ND

aSplenocytes from naive BALB/c mice were prepared and tested for in vivo cytolytic

activity as was reported (84). Cells were pulsed with respective peptides for 18 h and

cytolytic activity was measured by FACS analysis. ND, Not detected.

gK but this is in contrast to human TG study in which it
was indicated that the human TG is an immunocompetent
environment for both CD4+ and CD8+ T cell recognition of
diverse HSV-1 proteins expressed during latent infection (89).
The infiltration of CD4+ and CD8+ T cells was measured in 15
TG of eight HSV-1 IgG seropositive donors by flow cytometry.
It was found that there were equivalent numbers of CD4+ and
CD8+ T cells, with a median ratio of CD4+ and CD8+ T cells
of 0.99 (range 0.01–9.32). Also, peptide-specific CD8+ T cell
responses were detected in two TG which recognized four HLA-
A∗0101-restricted peptides: gL66−74, gK201−209 and two VP16
peptides, VP1690−99, and VP16479−488. It was concluded that
human intra-TG HSV-1-specific CD8+ T cell responses were
directed to a relatively restricted number of viral proteins in
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each person (89). CD8+ T cell depletion in gK immunized mice
resulted in reduced severity of gK-induced CS in mice infected
with wild type HSV-1 strain McKrae (90). The underlying
mechanism of CD8+ T cell pathology in HSV-1 infected gK-
immunized mice was confirmed by the presence of CD8+CD25+

regulatory T cells in cornea of gK immunized mice (78). Thus,
similar to our results, the published studies confirmed our finding
that gK induces CD8+ T cell responses and this response is
contributing to enhancement of eye disease. This is probably
the reason why depletion of CD8+ T cell but not CD4+ T cells
reduced gK exacerbation of eye disease (79).

Previous studies revealed that gK sera caused antibody-
dependent enhancement (ADE) of HSV-1 infection, which may
explain the higher viral load in the corneas of gK-vaccinatedmice
(91). ADE differs from the usual process of virus entry where
virus enters the host cells by binding of the viral glycoproteins to
the cellular receptors. In ADE, IgG binds to a virus allowing the
virus-antibody complex to attach to the host cells containing Fc
receptors. A comparative study between HSK sera and non-HSK
sera indicated that about 75% of found neutralizing antibodies
were associated with gB, gC, gD, gE, and gI. It was shown by
ELISA that sera from HSK group had significantly higher anti-
gD and anti-gK antibodies than sera from non-HSK group.

Similarly, when mice were immunized with gD+gK, levels of
neutralizing antibody titers in immunized mice were reduced
by ∼30% in comparison to mice immunized with gD alone.
This is in agreement with data showing that mice immunized
with gD showed TH1 response whereas mice immunized with
gK exhibited a TH1 + TH2 response. TH1 + TH2 response in
gK-immunized mice enhances the eye pathology (79).

ROLE OF gK IN HSV-1 CHRONIC
INFECTION

One of the hallmarks of HSV-1 infection is the ability of the
virus to establish latency in sensory neurons of an infected host
(92–96). In neurons, expression of more than 80 genes of HSV-
1 that occurs during lytic infection is drastically modified. The
latency-associated transcript (LAT) is the only gene product
consistently detected in abundance during latency in infected
mice, rabbits, and humans (92–94, 97, 98). In mice, spontaneous
reactivation occurs at extremely low levels and infectious virus
is rarely detected. When mouse TGs are removed at autopsy
and explant co-cultivated in tissue culture with indicator cells,
latent virus reactivates and can be observed by the detection

FIGURE 3 | Schematic view of gK transportation and its role in virus egress. gK binds to SPP in the ER, which is necessary for virus replication, although the precise

binding domain between these two proteins has not been identified yet. gK has a signal sequence in its N-terminus, however, it is not clear if this gK signal peptide is

cleaved by SPP. gK is then transported to the Golgi via a UL20-dependent pathway. UL20 is palmitoylated by the host cis-Golgi protein GODZ, and this

post-translational modification by GODZ is necessary for transport of the gK, and UL20 complex to the plasma membrane and virus infectivity. The gK and UL20

complex is also required for gB transportation to the cell surface. The complex of three proteins, gB, gK, and UL20, is either assembled into virus capsid emerging

from the nucleus in a vesicle derived from TGN (Upper right) or transported directly to the plasma membrane (Upper left).
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of cytopathic effects (CPE) on the indicator cell monolayer.
Reactivation from latency is not immediate, and typically CPE is
not detected during the first 2–3 days of explant co-cultivation.
In contrast, when cell-free lysates of latently infected TG are
plated on indicator cells, CPE is not seen (20, 99). This indicates
that there was no infectious virus present in the TGs and
confirms that reactivation from latency by co-cultivation requires
explant of intact neurons (100, 101). We previously reported that
vaccination of BALB/c mice with the baculovirus-expressed gK
or passive transfer of anti-gK purified IgG to naïve BALB/c mice
causes severe exacerbation of HSV-1 induced CS following ocular
challenge (3, 19). In addition, a productive chronic infection,
rather than a latent infection, is found in most TGs (20). Similar
to gK immunization or anti-gK IgG transfer, ocular challenge

of naive A
−/−

β but not β2m
−/− mice with HSV-1 did not result

in chronic infections. Surprisingly, however, when A
O/O
β mice

were vaccinated even with media alone or adjuvant alone prior
to ocular challenge, a chronic, rather than a latent, infection was
seen (102). When SCID mice which lack both T and B cells,
are challenged ocularly with HSV-1, the surviving mice have a
chronic, rather than a latent infection in their TG, with significant
amounts of infectious virus (103). Thus, gK enhancement of eye
disease may be associated with suppression of a certain protective
arm of immune response, while enhancing the harmful arm.

From the studies done above, we can make an observation
that both gK and LAT plays an important role in pathogenesis of
CS. Where LAT is directly involved in reactivation of the virus
which leads to pathogenicity, gK follows an indirect approach
toward pathology by binding to SPP, which is known to cause
virus infectivity and activation of CD8+T cells which in turn
produce high amounts of IFN-γ and cytotoxic effects. We have
also studied that deletion of gK in neural cell cultures leads
to inhibition of virus to undergo transport in anterograde or
retrograde directions, in short inhibiting the reactivation of virus.
gK is known to cause severe immunopathology including cornea
scaring, its effect on nerve damage can be detrimental to the
host. A recent report shows that deletion of gK can significantly
attenuate nerve damage caused by HSV-1 infection (104).

POSSIBLE USE OF gK FOR CONTROL OF
HSV-1 INDUCED CS

Many steps have been evaluated in resolving the lesions caused
after HSV-1 infection such as administering anti-viral drugs
and using corticosteroids, which provide limited control of viral

replication and are also known to cause side effects (105). Drugs
like trifluridine and ganciclovir are being extensively used for
patients with HSV-1 infection along with topical acyclovir to
control active viral replication (106). Therefore, we need effective
measures to control virus reactivation. It would bemore clinically
beneficial if new means are developed to prevent the initiation of
pathogenesis. As discussed above, HSV-1 gK binds to SPP and
UL20, while UL20 binds to GODZ (56, 60). Therefore, blocking
the binding of gK to SPP, gK to UL20, or UL20 to GODZ
or their combinations could be used to block HSV infectivity
and pathogenesis. For example, previously we have shown that
blocking the binding of gK to SPP by using SPP inhibitors can
reduce CS in infected mice.

CONCLUSIONS

The journey of combating HSV-1 induced CS has started long
ago, although many areas of the path of virus pathogenesis still
remain unexplored (107). Seroprevalence studies have illustrated
that the majority of individuals in the United States are infected
with HSV-1 (108). This review focused on the role of HSV gK
in the progression of disease severity. Published studies have
clearly demonstrated the participation of gK in the exacerbation
of CS and the immune response to gK in this process as a major
pathogenic mechanism. A model of gK activity is illustrated in
Figure 3. gK interacts with SPP in the endoplasmic reticulum
(ER), and this interaction may be necessary for transport of gK
from the ER to the Golgi. In the Golgi, gK interacts with gB
and UL20. Palmitoylation of UL20 by GODZ either facilitates
transport of the gB- gK- UL20 complex to the plasma membrane
or viral packaging (Figure 3). Research is in progress to inhibit
the function of gK in causing HSV-1 induced CS but further
studies are required. Clearly, an exciting approach would be
inhibiting the binding of gK to SPP, gK to UL20, and UL20
interactions with GODZ supports the goal of controlling HSK
pathogenesis.
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