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Głobińska A, van de Veen W and

Akdis M (2018) Regulatory Immune

Mechanisms in Tolerance to Food

Allergy. Front. Immunol. 9:2939.

doi: 10.3389/fimmu.2018.02939

Regulatory Immune Mechanisms in
Tolerance to Food Allergy
Pattraporn Satitsuksanoa, Kirstin Jansen, Anna Głobińska, Willem van de Veen and

Mübeccel Akdis*

Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland

Oral tolerance can develop after frequent exposure to food allergens. Upon ingestion,

food is digested into small protein fragments in the gastrointestinal tract. Small food

particles are later absorbed into the human body. Interestingly, some of these ingested

food proteins can cause allergic immune responses, which can lead to food allergy. So

far it has not been completely elucidated how these proteins become immunogenic and

cause food allergies. In contrast, oral tolerance helps to prevent the pathologic reactions

against different types of food antigens from animal or plant origin. Tolerance to food is

mainly acquired by dendritic cells, epithelial cells in the gut, and the gut microbiome. A

subset of CD103+ DCs is capable of inducing T regulatory cells (Treg cells) that express

anti-inflammatory cytokines. Anergic T cells also contribute to oral tolerance, by reducing

the number of effector cells. Similar to Treg cells, B regulatory cells (Breg cells) suppress

effector T cells and contribute to the immune tolerance to food allergens. Furthermore,

the human microbiome is an essential mediator in the induction of oral tolerance or

food allergy. In this review, we outline the current understanding of regulatory immune

mechanisms in oral tolerance. The biological changes reflecting early consequences

of immune stimulation with food allergens should provide useful information for the

development of novel therapeutic treatments.
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INTRODUCTION

Food allergy is defined as an adverse immune response to ingested food proteins. This
adverse immune response consists of IgE-mediated immediate hypersensitivity reactions,
non-IgE-mediated reactions, and disorders with mixed IgE-mediated and cell-mediated immune
reactions (Figure 1) (1–4). Food allergy has become an important public health burden in the
past few decades, particularly in developed countries (5–7). The prevalence of food allergies
is now estimated at 5–10% of the population in developed countries (8). The prevalence
of food-challenge-defined allergies for common food allergens was reported to be: 0.6% to
cow’s milk, 0.2% to egg, 0.1% to wheat, 0.3% to soy, 0.2% to peanut, 0.5% to tree nuts,
0.1% to fish, and 0.1% to shellfish (9). Besides, the World Allergy Organization provided
an extensive study using different approaches of food allergy such as oral food challenge,
history of the clinical reaction of food-specific IgE, and food allergy questionnaires in 89
member countries. This study revealed that children from Australia, Finland, and Canada
at the age of 5 or lower, have the highest prevalence of food allergy (10). The patterns of
food allergy were consistent in many regions showing egg and milk were among the most
common allergens in preschool children. In other developed countries, the estimation of
overall food allergy prevalence has also increased drastically in the past decades for uncertain
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FIGURE 1 | The classification of diseases that cause by food allergy. Classification of food-related diseases by three different immune responses; IgE-mediated

immediate disorders, non-IgE-mediated disorders, and disorders with the contributions from mixed IgE-mediated and cell-mediated immune pathways.

reasons (9, 11–14). Therefore, to be able to develop more precise
diagnostic approaches, prevention, and medical treatments, a
better understanding of the mechanisms in food allergy is
necessary (15).

INDUCTION OF ALLERGIC IMMUNE
RESPONSES

To know the mechanisms of food allergy, we must understand
the role of food allergens in the induction of allergic immune
response (16). Food allergens are derived from common
naturally-occurring food proteins of plant- and animal-origin
(17, 18). The proteins in the food are initially broken down
by hydrolytic enzymes in the gastrointestinal track during the
digestive process. It is hypothesized that food allergens can be
modified into different forms and different structures, which can
be processed by antigen presenting cells, exhibited on the major
histocompatibility complex class II molecules, and subsequently
recognized by antigen-specific T cells (19). The naïve antigen-
specific T helper (Th) cells differentiate into effector Th2 cells in
the presence of interleukin 4. A set of interleukins such as IL-4,
IL-5, IL-10, and IL-13 are massively produced by Th2 cells and

induce B cells to differentiate into IgE-producing plasma cells.
Antigen-specific IgE antibodies directly bind to high-affinity

Abbreviations: Breg, Regulatory B cell; DC, Dendritic cell; GAP, Goblet-

cell-associated antigen passages; LAP, Latency-activated peptide; OIT, Oral

immunotherapy; OVA, Ovalbumin; SCFA, Short chain fatty acids; Treg,

Regulatory T cell.

receptor FcεRI on mast cells and basophils. During the antigen

re-exposure, these specific IgE antibodies induce degranulation

of mast cells and release of mediators including cytokines,

histamine, and proteases which result in allergic symptoms.
There are several factors that influence the allergic responses.

For example, boiling or frying peanuts can alter the structure of

allergens and reduce their allergenicity. The term “allergenicity”
is the ability of allergens to initiate a clinical response through
an IgE-mediated mechanism (20). The relative amount of major
peanut allergen, Ara h 1 is significantly reduced in fried and
boiled food preparations, which results in a drastically decreased
IgE-binding intensity. Although Ara h 2 and Ara h 3 showed
similar relative amounts in fried, boiled, and roasted peanuts,
both allergens had lower IgE-binding capacity in boiled and fried
peanuts than in roasted peanuts (21). Similarly heating cow’s milk
and hen’s egg, tends to lower allergenicity (22–24).Cow’s milk
proteins are considered to be the most common food allergens
in IgE- and non-IgE-mediated food allergic disorders in children
(25). Most individuals with cow’s milk allergy are sensitized to
caseins and the whey proteins β-lactoglobulin and α-lactalbumin.
Caseins are more resistant to high temperatures compared to
whey proteins. Cow’s milk allergic children who have a high
level of casein IgE are less likely to tolerate a baked milk diet
compared to those who have a lower level of casein IgE. Specific
IgE-binding patterns to casein and β-lactoglobulin peptides could
predict the original cause of cow’s milk allergy and differentiate
subjects between the ones who are more likely to outgrow cow’s
milk allergy at a younger age vs. and the ones who are more likely
to develop allergic symptom at a younger age vs. those with a

Frontiers in Immunology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 2939

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Satitsuksanoa et al. Tolerance Mechanisms in Food Allergy

more persistent cow’s milk allergy (26–28). Besides milk proteins,

the two major egg allergens, ovalbumin (OVA), and ovomucoid
(Gal d1) are major causes of allergy in children. Bloom et al.
showed that Gal d1 has higher heat stability than OVA. OVA
showed signs of aggregation after 25min of heating while Gal d1
stayed stable up to 60min. However, both egg allergens showed
strongly reduced IgE-binding capacity after thermal processing.
Additionally the presence of wheat during the heating process
also affects the allergenicity and reduces the IgE binding further
(28). In contrast, the effect of heating shellfish results in increased
IgE reactivity to crustacean allergens. A recent study confirmed
that a higher level of IgE reactivity was observed in cooked
crustacean extracts compared to raw extracts (29).

To date, there is no clear answer to the question of “what
makes a dietary or digestible protein an allergen?” Besides,
the mechanisms of food allergy development have not been
comprehensively described. The allergic reactions to food
are expected to be enhanced by the imbalance of immune
suppression (30, 31). As a result of the lack of immune
suppression, the induction of immune tolerance to food is not
achieved in allergic individuals.

ORAL TOLERANCE

Oral tolerance is the physiological response to ingested
antigens. The development of oral tolerance takes place in the
gastrointestinal tract. The gut-associated lymphoid tissues play
a major role in limiting inflammatory responses to resident
bacteria and food proteins (32). To maintain oral tolerance,
the gut-associated lymphoid tissues continue to discriminate
self from non-self-antigens and recognize the pathogens that
can cause tissue inflammation or gut disease. A breakdown in
this process occurs when the gut-associated lymphoid tissues
fail to perform its functions. Continuously breaking down of
oral tolerance leads to the loss of oral tolerance and unwanted
allergic responses. (33).There is an enormous unmet need for
modern therapeutic treatments to treat patients with food allergy.
Therefore, studies dissecting themechanisms of oral tolerance are
very important (34). The possible mechanisms of oral tolerance
may involve recognition of food antigens by dendritic cells,
robust induction of Treg cells as well as Breg cells. Also,
the environment in human gut reinforces and enhances the
expansion of the presence of bacteria-derived metabolites and
biogenic amines, such as short-chain fatty acids and histamine
(35–38).

Dendritic Cells
Sensitization to food allergens starts with the uptake of antigens
in the gut. This occurs through special types of epithelial cells:
M cells (39, 40) and more importantly specialized Goblet-
cells, called goblet-cell-associated antigen passages (GAPs) (41).
Antigens, taken up by M cells or GAPs, can then be transferred
to dendritic cells (DCs). In the small intestine, there are
two major populations of DCs: CD103+CX3CR1− DCs and
CX3CR1+ DCs. CX3CR1+ DCs are able to directly uptake
antigens from the lumen and have more inflammatory potential
(42–44). CD103+CX3CR1− DCs on the other hand have

tolerogenic properties. GAPs exclusively deliver antigens to
CD103+CX3CR1− DCs and thus are related to the induction of
oral tolerance (41).

Besides GAPs, CXCR1+ macrophages can also present
antigens from the lumen to CD103+DCs and induce tolerogenic
effects and IL-10 production. (45, 46). After contact with
the antigen CD103+CX3CR- DCs can migrate to mesenteric
lympnodes in a CCR7 dependent manner (47). In the
lympnode CD103+CX3CR1− DCs promote the development of
T regulatory cells (Treg cells) through the production of TGF-
β and RALDH2, an enzyme that converts retinol into retinoic
acid (48).

T Regulatory Cells
T cells play an essential role in food allergies. Th2 cells drive the
allergic response by producing IL-4, IL-5, and IL-13. However,
other types of T cells play a role in developing tolerance: Treg
cells. There are different types of Treg cells, some are thymus-
derived and are called natural Treg cells (nTreg cells), and some
are induced in the periphery and are called iTreg cells. It was
shown by Mucida et al. that oral tolerance can be induced in
the absence of thymic-derived Treg cells in a mouse model (49).
Besides, Lafaille et al. showed that iTreg cells are essential for
establishing oral tolerance (50). The best-described tolerogenic
T cells are FOXP3+ Treg cells, which are characterized by the
expression of CD25 and the transcription factor FOXP3. Treg
cells regulate immune responses to allergens through several
mechanisms (51, 52). Treg cells can produce different types of
inhibitory cytokines, such as IL-10 and TGF-β. Furthermore,
they can inhibit antigen-presenting cells by the inhibitory co-
stimulators programmed cell dead protein 1 (PD-1) and cytotoxic
T-lymphocyte associated protein 4 (CTLA4). Additionally, Treg
cells can prevent the proliferation of effector T cells through
CD25, a high-affinity receptor of IL-2, by depriving the effector
cells of IL-2 (53). Lastly, Treg cells can produce granzyme A and
B, which can cause cytolysis of effector cells (54, 55).

Treg cells play a key role in induction and maintenance of
tolerance (53, 56). It was shown that FOXP3 knockout mice
developed multi-organ inflammatory responses associated with
allergic inflammation (57, 58). Adoptive transfer of Treg cells
was able to suppress anaphylaxis in a food allergy model in
mice and was able to control the Th2 immune response (59,
60). It was shown that children with IgE mediated food allergy
have significantly lower FOXP3 expression compared to healthy
controls (61, 62) and children with peanut or egg allergy showed
a decrease in Treg cell percentage after allergen exposure (63–
65). It was also revealed that children with egg allergy have
reduced neonatal regulatory T cell function (66). At last, oral
immunotherapy, the only known therapy for food allergies,
increases Treg cell function, hypomethylation of FOXP3 gene
(67) and the number of FOXP3 positive cells (68). In addition
to immunotherapy, low dose IL-2 treatment is also able to induce
Treg cells and prevent immune responses (69). A combination of
the two treatments has been performed by Smaldini et al. and was
effective in reversing IgE-mediated food allergy (70).

Besides conventional FOXP3+ Treg cells, another type of T-
cell that plays a role in oral tolerance is a Th3 cell. Th3 cells
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do not express FOXP3 or CD25 but express latency-activated
peptide (LAP) on their surface, and they are able to produce
the inhibitory cytokine TGF-β. It was shown in mice that
epicutaneous immunotherapy with OVA-induced Th3 cells that
protected against anaphylaxis by suppressing mast cell activation
through TGF-β production (71). In an OIT model of cow’s milk
allergy, fructo-oligosaccharides induced Th3 cells that coincided
with protection against anaphylaxis (72). Moreover, Th3 cells
were found capable of promoting the development of iTreg cells
(73).

TGF-β is not only produced by Th3 cells, but also by
conventional FOXP3+ Treg that express LAP and the surface
molecule GARP (74). Treg cell expression of GARP is essential
for optimal induction of oral tolerance (75). IL-6, IL-21, and IL-
35 can inhibit the expression of GARP on FOXP3+ Treg- cells
and thereby inhibit LAP and TGF-β. Blocking the IL-6 pathway
can enhance oral tolerance in mice (76). Excessive levels of IL-
4 also inhibited the induction of allergen-specific Treg cells and
caused intestinal inflammation in a mouse model (77).

As mentioned earlier CD103+DCs produce retinoic acid that
is able to amplify TGF-β production and induce FOXP3+ Treg
cells (48). Additionally, retinoic acid produced by DCs induces
the expression of receptors α4β7 and CCR9 on T cells. These
receptors are responsible for T cell homing to the gut (78). It
was demonstrated by Hadis et al. that gut-homing and expansion
of Treg cells in the lamina propria is necessary to achieve oral
tolerance (46). Furthermore, it was shown that homing of IL-10
producing Tregs is important for oral tolerance (79, 80).

Besides the functioning of Treg cells, T cell depletion and
anergy can also contribute to oral tolerance. During high dose
oral allergen desensitization in cow’s milk allergy, a reduction in
antigen-specific T cells was observed (81). Additionally, after it
was found that during peanut immunotherapy allergen-specific
CD4+ T cells can shift toward an anergic Th2 phenotype (82).

B Regulatory Cells
B cells that can differentiate into antibody-secreting plasma cells
are commonly considered to administer immune responses by
producing antigen-specific antibodies and help to induce optimal
CD4+ T cell activation (83). Immunosuppressive Breg cells play
a role in the regulation of immune responses by suppressing
effector T cells through the production of suppressor cytokines
(IL-10, TGF-β, and IL-35) (84). However, the role of Breg cells in
oral tolerance remains unclear.

Breg cells moderate immune responses in infection, allergic
inflammation, and tolerance, predominantly via IL-10 (85).
Van de Veen et al. found that inducible IL-10 secreting B
regulatory (Br1) cells contribute to peripheral allergen tolerance
in beekeepers. The increment of bee venom allergen-specific,
IL-10-producing B cells, has been observed in bee venom
allergic patients receiving AIT. Also, Br1 cells produce IgG4
when they switch to plasma cells, which is a non-inflammatory
immunoglobulin isotype that prevents IgE-mediated mast cell
and basophil degranulation (86). Allergen-specific IgG4 may
be involved in promoting immune tolerance in OIT. Santos
et al. demonstrated that the ratio of peanut-specific IgG4 to
peanut-specific IgE was higher in tolerant patients compared

to peanut-allergic patients (87). The essential mechanism of
tolerance induction via IL-10-producing B cells was examined
with IL-10-overexpressing B cells. IL-10-overexpressing B cells
were found to suppress the maturation of dendritic cells, T
effector cell proliferation, and IgE production. In addition, IL-
10-overexpressing B cells produced the anti-inflammatory IL-
1 receptor antagonist and vascular endothelial growth factor
and had lower production of pro-inflammatory cytokines (88).
Human type 3 innate lymphoid cells (ILC3s) support the
maintenance of mucosal tolerance. A recent study showed that
humanCD40L+ ILC3s provide innate B-cell help and are affected
in an innate immunoregulatory mechanism through induction
of immature translational Breg cell differentiation, which takes
place in palatine tonsils in vivo (89).

IL-10-producing CD5+ Breg cells in mesenteric lymph nodes
play a role in the regulation of IgE-mediated anaphylaxis
following challenge with cow’s milk allergens in a murine model
(90). Peanut-specific B cells were increased in the blood after
oral immunotherapy in peanut allergic patients (91, 92). A recent
study showed IL-10 producing B cells are able to induce and
maintain Treg cells in rheumatoid arthritis disease (93). The
down-regulation of IL-4, and upregulation of IL-10 production
result in an increase of IgG4 and a decrease of IgE levels. IL-
10 is known to promote heavy chain immunoglobulin isotype
switching to IgG4 while IL-4 induces switching to IgE (94).
Furthermore, mucosal IgA inhibits uptake of an antigen by
the epithelium and may protect against food allergy (95). The
proposed mechanisms of food tolerance are shown in Figure 2.

Gut Microbiome
The gut microbiome is being increasingly recognized as a major
factor in mediating health and disease (96, 97). There are
several studies describing the interrelation between microbiota
of the gastrointestinal tract, respiratory tract, and skin allergic
disorders (98–102). Additionally, it has been shown that the
microbiome is associated with oral tolerance (103–105). The
human microbiome is capable of inducing Treg cells that
suppress Th2-derived responses.

Certain bacterial strains such as Bifidobacterium longum
35624, Clostridia, and Bacteroides fragilis can induce intestinal
Treg cells that are able to suppress food allergy and colitis
(106, 107). Pattern-recognition receptor activation on DCs is a
potential mechanism by which intestinal microbes (Lactobacillus
rhamnosus JB-1) may promote Treg cell differentiation (108).
A study from the National Institutes of Health, Human
Microbiome Project revealed 14 important bacterial strains by
sequencing and analytical processing 380 whole-genome shotgun
samples (109). In addition, a 16S rDNA gene was sequenced
to characterize the oral bacterial composition in saliva samples
from healthy and allergic children up to 7 years of age. The
result affirmed that early changes in oral microbial composition
seem to influence immune maturation and allergy development
(110, 111).

The potential role of the gut microbiome in food allergy has
been studied in mouse models. Rodriguez et al. demonstrated
that intestinal colonization of Staphylococcus protects against
oral sensitization and allergic response in a mouse model.
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FIGURE 2 | Mechanisms of immune tolerance to food allergens. Induction of food tolerance takes place in the gut when the immune cells encounter food antigens.

Several cell types are involved in the antigen uptake: goblet cells, microfold (M) cells, intestinal epithelial cells, CX3CR1+ macrophages (MØ), and CX3CR1+dendritic

cells. CX3CR1+ DCs and CX3CR1+ MØ, are capable of extending dendrites to capture antigens on the apical layer of epithelium in the gut lumen. Antigens taken up

by CX3CR1+ MØ and goblet cells are transferred to CD103+CX3CR1− DCs, which subsequently migrate to draining lymph node in a CCR7 dependent manner.

Production of retinoic acid and TGF-β foster differentiation of naïve T cells into regulatory T cells (Tregs). Retinoid acid-dependent induction of integrin α4β7 expression

on Tregs is responsible for T cell homing to lamina propria. Tregs (Foxp3+), and Th3 cells inhibit Th2-dependent allergic inflammation and mast cell degranulation,

through the production of IL-10 and TGF-β. Suppression of Th2-responses also engages regulatory B cells (Bregs) that contribute to food tolerance by producing

IgG4.

This was the first study to describe a relationship between
alterations within the subdominant microbiota and severity of
food allergy (112). Another study showed that allergen-sensitized
(Il4raF709) mice had a different microbial composition compared
to wildtype mice with an increased abundance of different
bacterial families including Lachnospiraceae, Lactobacillaceae,
Rikenellaceae, and Porphyromonadaceae. This different
microbial composition increased OVA-specific responses and
anaphylaxis when reconstituted in wild-type germ-free mice,
which indicates that the microbial composition play a role in
food allergy (113).

Rivas et al. demonstrated that disease-susceptible (Il4raF709)
mice with an enhanced interleukin-4 receptor (IL-4R) signaling
exhibited STAT6-dependent impaired generation and function
of mucosal allergen-specific Treg cells. Their study showed
that the Treg cells failed to suppress mast cell activation and

expansion (114). Those Treg cells were reprogrammed into
Th2-like cells and participated in the development of food allergy
(115). Another study determined that microbiota regulates Th2
responses through the induction of RORγt Treg cells and Th17
cells (116).

Moreover, the bacterial metabolites, such as short-chain fatty
acids (SCFA’s) and biogenic amines produced in the human
gut play a role in host immune regulatory activity (117, 118).
SCFA’sare able to enhance dendritic cell regulatory activity,
leading to the induction of Treg cells and IL-10-secreting T cells
(119). SCFA’s can be produced by bacteria after digestion of
dietary fibers. It was shown that infants with a diet consisting
of high levels of fruits and vegetables is associated with less food
allergy by the age of 2 years, which could be due to an increased
amount of dietary fiber intake (120). It was shown in mice that
deficiency of dietary fiber intake increases the susceptibility to
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OVA induced allergic airway inflammation (121). Additionally, it
was shown that uptake of polyunsaturated fatty acids can increase
the production of SCFA’s by bacteria (122) and the dietary intake
of poly unsaturated fatty acids was inversely associated with atopy
in childhood (123).

The secretion of biogenic amines such as histamine has
extensive effects on many immune cell types (124, 125).
Histamine levels are increased in patients with irritable bowel
syndrome, inflammatory bowel disease and in adult asthma
patients (126, 127).

Food allergy could be related to changes in microbial
exposure in early life, which affect host microbiota composition,
modifies the development of host immunity, and causes
pathogenic immune responses to food allergens (96). How
the microbiome exactly affects food allergy should be further
investigated.

CONCLUSION

Loss of oral tolerance can lead to the development of food allergy
in children and adults. However, the development of food allergy
in terms of molecular and cellular mechanisms has not yet been
demonstrated. The induction or loss of oral tolerance is likely

modulated by the combination of DCs, Treg cells, Breg cells,
and microbiome. DCs are capable of inducing Treg cells, which
produce anti-inflammatory cytokines and are able to suppress
T effector cells. Additionally, Breg cells can produce anti-
inflammatory cytokines as well and can produce IgG4, which is
the anti-inflammatory Ig isotype. So far food allergies are mainly
managed by strict avoidance of the food allergens and can only
be treated with immunotherapy. How immunotherapy exactly
works is not entirely understood. Therefore, the underlying
mechanisms of induction and loss of oral tolerance need to be
more clearly identified so novel therapeutic treatments can be
developed.
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