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In high burden settings, the risk of infection with Mycobacterium tuberculosis increases

throughout childhood due to cumulative exposure. However, the risk of progressing from

tuberculosis (TB) infection to disease varies by age. Young children (<5 years) have high

risk of disease progression following infection. The risk falls in primary school children

(5 to <10 years), but rises again during puberty. TB disease phenotype also varies by

age: generally, young children have intrathoracic lymph node disease or disseminated

disease, while adolescents (10 to <20 years) have adult-type pulmonary disease. TB risk

also exhibits a gender difference: compared to adolescent boys, adolescent girls have

an earlier rise in disease progression risk and higher TB incidence until early adulthood.

Understanding why primary school children, during what we term the “Wonder Years,”

have low TB risk has implications for vaccine development, therapeutic interventions, and

diagnostics. To understand why this group is at low risk, we need a better comprehension

of why younger children and adolescents have higher risks, and why risk varies by gender.

Immunological response to M. tuberculosis is central to these issues. Host response

at key stages in the immunopathological interaction with M. tuberculosis influences

risk and disease phenotype. Cell numbers and function change dramatically with age

and sexual maturation. Young children have poorly functioning innate cells and a Th2

skew. During the “Wonder Years,” there is a lymphocyte predominance and a Th1

skew. During puberty, neutrophils become more central to host response, and CD4+ T

cells increase in number. Sex hormones (dehydroepiandrosterone, adiponectin, leptin,

oestradiol, progesterone, and testosterone) profoundly affect immunity. Compared to

girls, boys have a stronger Th1 profile and increased numbers of CD8+ T cells and

NK cells. Girls are more Th2-skewed and elicit more enhanced inflammatory responses.

Non-immunological factors (including exposure intensity, behavior, and co-infections)
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may impact disease. However, given the consistent patterns seen across time and

geography, these factors likely are less central. Strategies to protect children and

adolescents from TB may need to differ by age and sex. Further work is required to

better understand the contribution of age and sex to M. tuberculosis immunity.

Keywords: tuberculosis, children, adolescence, Mycobacterium tuberculosis, vaccination, infection, immunity,

protection

INTRODUCTION

About a quarter of the global population (1), including nearly 70
million children and adolescents <15 years of age (2), is infected
with Mycobacterium tuberculosis. Many infected individuals are
able to containM. tuberculosiswithout the organism ever causing
pathology. However, in a subset, the intricate immunological
response necessary to contain bacterial proliferation is lost. Of
the nearly 70 million children and adolescents <15 years of age
with TB infection, about 1 million develop TB disease each year
(3). Young children, especially those <2 years of age, have an
extremely high risk of developing TB disease after becoming
infected. The risk then falls to a nadir in primary school children
before rising during adolescence (4). In fact, the primary school
years could be considered the “Wonder Years” of TB protective
immunity: even when infected with M. tuberculosis, primary
school children have the lowest risk, of any age throughout life,
of progressing to TB disease.

Primary school children also have the most benign clinical
manifestations of TB disease: classically, this age group has
paucibacillary, intra-thoracic disease with greater involvement of
the mediastinal lymph nodes than the lung parenchyma. Young
children (<5 years of age) also have this type of intrathoracic
disease but are additionally at high risk of disseminated TB,
which has a high mortality. Largely for this reason, of the
nearly 250,000 individuals <15 years of age who die from TB
each year, most are <5 years of age (5). Around the time
of puberty, mediastinal lymph node disease and disseminated
TB become uncommon. Pulmonary TB begins to present as
destructive lesions of the lung parenchyma, frequently in the
upper lobes and with cavitation (6–9); TB-related mortality rises
again. Taken together, these observations suggest that primary
school children are protected from the two extremes of TB
disease: the disseminated pathology commoner in young children
and the destructive pulmonary disease commoner in adolescents
and adults (Figure 1). The first might be considered a failure of
control of infection and the latter a failure to control disease,
with primary school children possessing a balanced inflammatory
response capable of both.

In this article, we present the data on age-related variations in
TB progression risk and disease forms. Although no studies have
directly examined the reasons for these age-based differences,
we discuss possible underlying immunological mechanisms,
in an attempt to garner a greater understanding of the
immunological correlates of protective immunity which exist
during the Wonder Years of childhood protection immunity.
We will make the case that young children <5 years have
deficiencies in the initial response to M. tuberculosis infection,

which reduce the chance of successful containment of the
organism. These deficiencies increase the risk of progression
to disseminated disease. In contrast, adolescents develop an
excessively inflammatory response in the early stages of disease,
which leads to tissue damage and favors localized replication
of M. tuberculosis. We will also highlight divergences in disease
risk between adolescent boys and girls, and explore the possible
impact of sex hormones on host response to M. tuberculosis.
Finally, we discuss other potential factors underlying these age-
and gender-associated differences in TB risk. Understanding why
TB risk changes with age may provide insight into correlates of
protection—which, in turn, may lead to the development of TB
vaccines, immunomodulatory therapies, and diagnostic assays
that utilize host immunological profiles.

DEFINITIONS

It is important to define key terms that will appear throughout
this article. We use “infants” to refer to children <12 months of
age. For the purposes of this article, “young children” refers to
those who are <5 years of age and includes infants (<1 year);
“early childhood” is the corresponding time period. “Primary
school children” are 5- to <10-year-olds, and “adolescents” are
10- to <20-year-olds. Early adulthood refers to the third decade
of life (10). Although stages of childhood encapsulate muchmore
than chronological age, we use these definitions because most
epidemiologic data are available in 5-year age bands. As puberty
varies in age of onset, these definitions do not fully capture
differences in physiological stages of development. Therefore, we
also employ the terms “pre-pubescent,” “pubescent,” and “post-
pubescent” to differentiate children and adolescents with respect
to their physical features.

Second, we apply the terms “sex” and “gender” according
to their standard definitions. “Sex” refers to the physiological
distinction associated with sex chromosomes, sex steroids, and
reproductive organs. In contrast, “gender” comprises the social
and cultural constructs of males and females, as well as one’s
self-identity (11). We do not consider intersex or transgender
individuals in this article due to the lack of data on these groups.
We have elected to use “gender” when reporting epidemiological
data because of the influence of both physiology and social
behavior on such measures.

Next, we differentiate “TB infection” and “TB disease.”
“TB infection,” or “M. tuberculosis infection,” refers to an
asymptomatic state evidenced only by immune sensitization to
M. tuberculosis, as diagnosed by a tuberculin skin test (TST) or
interferon gamma release assay (IGRA). These tests are limited
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FIGURE 1 | Conceptual framework to demonstrate the pattern of change in tuberculosis incidence with age. This represents a composite of risk of infection and risk of

subsequent disease progression. The presentation of disease is demonstrated by a representative X-ray in a box colored according to the disease phenotype legend.

in not being able to distinguish the timing, nor current state,
of infection. The most commonly used term for this state is
“latent TB infection (LTBI),” but “LTBI” is a suboptimal term
because it inaccurately implies both the metabolic dormancy
of the mycobacteria and its persistence in the host (12). “TB
disease” refers to the wide continuum of radiologically and/or
clinically apparent abnormalities caused by the host response to
M. tuberculosis. Just as “TB infection” often is called “LTBI,” “TB
disease” commonly is referred to as “active TB.”

Finally, we define pathologically distinct clinical phenotypes
of TB disease (Figure 1). “Intrathoracic lymph node TB” is
generally paucibacillary and results due to spread from the
site of the initial mycobacterial infection (the Ghon focus) to
the regional lymph nodes. This manifestation historically was
encompassed within “primary TB,” a term now less commonly
used. The “Ghon complex” is the name for the triad of the Ghon
focus, surrounding lymphangitis, and regional intrathoracic
lymphadenopathy. “Adult-type pulmonary TB” refers to disease
that spreads bronchogenically within the lungs and may occur
following prolonged initial control of infection. It typically
initiates within the apico-posterior segments of the upper lobes
or superior segment of the lower lobes; it appears as parenchymal
infiltrates, often with cavitation, which facilitates contained
expansion of bacillary numbers accompanying extracellular
replication. Other terms for this clinical phenotype are “post-
primary TB” and “reactivation TB,” now less commonly in use.
While 60% of adult TB is pulmonary, localized disease can
occur in other organs and is termed “extra-pulmonary” TB.

“Disseminated TB,” also known as “miliary TB,” refers to the
clinical manifestations of unrestrained haematogenous spread of
mycobacteria (13, 14).

CHANGES IN TUBERCULOSIS DISEASE
PRESENTATION BY AGE

As described above, age impacts the clinical phenotype of
TB disease during childhood and adolescence (Figure 1). Pre-
pubertal children, including both young children and primary
school children, generally develop intrathoracic lymph node
TB (15), which can have complications. If regional lymph
nodes enlarge substantially, they can compress airways. If the
node ulcerates into the bronchi and deposits caseous material
into the airway, then inhalation will lead to dispersal of the
mycobacteria throughout the portion of the lung supplied by that
airway. This dispersal can lead to inflammation caused by acute
hypersensitivity or segmental/lobar bronchopneumonic disease.

Young children, particularly those <2 years of age, also
have a high risk of disseminated TB and/or TB meningitis.
Disseminated TB can present with lung pathology (including
the classic miliary picture seen on chest radiograph) and/or
disseminated lesions throughout the body, including liver, spleen,
gut, bone, and kidney. TB meningitis usually starts with an
insidious clinical picture that rapidly progresses to neurological
deficit. If untreated, both disseminated TB and TB meningitis
almost universally lead to death (16, 17). During the primary
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school years, the risk of these disease forms is minimal. As
children become older and approach puberty, they increasingly
tend to develop adult-type pulmonary TB (6, 9, 18–20). This
clinical phenotype also leads to disease transmission (21).

AGE-RELATED RISK OF TUBERCULOSIS
PROGRESSION AND MORTALITY

Our understanding of the impact of age on risk of progression
from TB infection to disease comes from observational
studies from the pre-chemotherapy era, many of which were
summarized in a review by Marais et al. (4). This review included
seven studies, which were conducted in Europe and North
America after the advent of the TST and chest radiography, but
prior to the discovery of anti-TB drugs and the HIV epidemic.
The studies, which had a combined sample size of over 10,000
children and adolescents, evaluated the risk of progression to
TB disease for TB-infected individuals of different ages. Table 1
summarizes these studies, as well as other relevant reports,
including a trial of the Bacillus Calmette-Guérin (BCG) vaccine
with over 82,000 TB-infected children and adolescents in the
control arm (18).

The risks of disease progression described in these studies
should be interpreted with caution. First, to define the age of
acquisition of TB infection, some studies used baseline TST
positivity and/or identification of the child or adolescent as a
contact of a TB case (Table 1). Using these methods, it is difficult
to establish when an individual was infected. Even if a source case
is identified in the household and the child or adolescent screened
soon thereafter, it is often unclear how long he or she had been
exposed. It may also be unclear if the child or adolescent had
prior exposure to another infectious TB case. Second, the TST
has limited sensitivity and specificity to diagnose TB infection in
young children. Third, the diagnosis of TB disease in children
can be challenging. A clinical diagnosis can lack specificity due
to the overlap in symptoms between TB and other conditions
in children. Microbiological confirmation lacks sensitivity due to
the paucibacillary nature of most forms of childhood TB disease,
as well as the challenges in obtaining respiratory specimens
from children. Finally, these studies were conducted in different
settings, including wartime conditions, which likely impacted
rates of progression to TB disease.

The widely varying risks of TB disease progression described
in these studies reflect the limitations described above. Other
reasons for the wide variation include the different quantities and
varieties of tuberculin used across studies, as well as inconsistent
definitions of TST positivity and TB disease. Additionally, the
studies calculate risk of disease progression over different follow-
up periods. Because risk of disease progression is greatest in
the first year after acquisition of M. tuberculosis infection and
then declines over time (36, 37), risks that are given per person-
year inversely correlate with the length of follow-up. Not all the
studies cited in Table 1 include risk of disease progression over
the full spectrum of ages from infancy through late adolescence,
and the studies use different age groupings. Nonetheless, as
Table 1 illustrates, there is a general pattern of high risk during

early childhood (particularly the first 2 years of life), a nadir
during the primary school years or early adolescence (most likely
occurring right before the onset of puberty), and a second peak
during late adolescence. This overall picture reflects the different
types of childhood TB, with falling rates of disseminated and
lymph node TB in early childhood, superimposed on a rise in
adult-type TB coinciding with puberty onset. Given that, in high
burden settings, the risk of being infected with M. tuberculosis
increases throughout childhood due to cumulative exposure (38),
the resulting TB disease incidence seen in a community is a
composite of risk of infection combined with risk of disease
progression following infection. The TB incidence in high burden
settings reflects the risk of disease progression, namely a U-
shaped pattern, only shifted a few years older so that the nadir
is at about the age of 10 years (Figure 1).

The data in Table 1 show that mortality from TB disease
follows the same pattern of age-related risk. Again, despite
this consistent pattern, the rates themselves vary considerably,
reflecting the different conditions in which the studies were
conducted and the different denominators (e.g., whole
populations of geographic areas vs. children and adolescents
hospitalized for TB). A recent systematic review and meta-
analysis that evaluated the risk of death in children and
adolescents <15 years of age with TB disease found that
mortality from untreated TB disease (in the pre-chemotherapy
era) was 44% in children <5 years but only 15% in 5 to <15-
year-olds. Mortality in individuals with TB who were diagnosed
and treated was <1% (39).

DIFFERENCES IN TUBERCULOSIS RISK
BY GENDER

Although this article focuses on age-related differences in TB
risk, it is worth noting that multiple studies have documented
gender-based differences in TB risk, emerging coincident with
the adolescent rise in TB risk and persists during adulthood.
Overall, more males globally develop TB each year; compared
to males, females tend to have higher risks of progression from
TB infection to disease during adolescence. In a cohort of
over 400,000 school children aged 6–19 years in Massachusetts,
U.S.A., the incidence of TB disease among female TST reactors
was approximately double that of male reactors (25). A TB
vaccine trial that followed over 54,000 14- and 15-year-olds
reported a 20% higher incidence of TB disease for girls than
for boys (40). In a cohort of TB-infected children treated at
Bellevue Hospital in New York City, twice as many girls as boys
developed pulmonary infiltrates, and in more than a quarter
of cases, adult-type pulmonary TB developed within a year of
menarche (41). A study of over 82,000 children and adolescents
in Puerto Rico, a trial of isoniazid prophylaxis in Alaskan Inuits,
and an observational cohort in Ontario, Canada, all found that
compared to males, females had higher rates of progression to
TB disease in adolescence and early adulthood (18, 42, 43).

Similar patterns have been observed with respect to mortality.
From 1880 to 1930 in Massachusetts, girls between the ages of
10 and 20 years had nearly twice the risk of death from TB
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compared to boys in the same age range (32).More recent surveys
conducted in India and China also showed that females during
adolescence had higher rates of mortality due to TB than males
(44).

It is difficult to establish whether these data reflect a greater
risk of disease progression in post-pubertal females compared to
post-pubertal males on an individual level, or whether females
as a group have a greater risk of disease progression because they
enter puberty sooner and, thus, have longer post-pubertal periods
during adolescence.

KEY STAGES IN THE
IMMUNOPATHOLOGY OF TUBERCULOSIS

There are a number of key stages in the host response to M.
tuberculosis in humans, each governed by particular immune

mechanisms, many of which remain incompletely understood.
Age-related differences in risk and presentationmay be explained
by differences in the immune response at each of these key stages
(Figure 2).

Exposure to infectious cases of TB can lead to inhalation of
droplet nuclei containing viableM. tuberculosis. These infectious
droplets may be cleared by the physical structures of the lung
or by the innate immune system, but if they overcome these
primary barriers and sensitize the adaptive component of the
immune system without effective killing, the individual becomes
infected with M. tuberculosis. Upon initial inhalation, bacilli
are phagocytosed by the alveolar macrophage, which recruits
neutrophils and other innate responders as a first line of defense.
However, the ability of the innate immune response to control
infection may be inhibited by bacterial-mediated mechanisms,
particularly inhibition of phagolysosome fusion (the key bacterial
killing mechanism of these phagocytes), resulting in persistence

FIGURE 2 | The Immunopathology of tuberculosis, demonstrating the host response at key stages in the host pathogen interaction and how age influences risk and

disease phenotype. Transmission from an infectious case can lead to infection, which in turn encounters the innate immune response, the adaptive immune response,

and, if not controlled, progresses to early and then late stage disease. The organism can be eliminated by either the innate or adaptive immune response. Young

children are at increased risk of pathological lymph node enlargement and disseminated disease, whereas adolescents/adults are at increased risk of

immunopathology. Pre-pubertal children are the most likely to contain M. tuberculosis.
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of bacilli intracellularly. It is during this period that initial
antigen trafficking to the lymph nodes by dendritic cells
(DCs) is felt to occur. The acquired immune response to M.
tuberculosis usually develops 1–3months after initial infection (as
evidenced by TST or IGRA immune sensitization), with antigen-
specific lymphocytes trafficking back into the lung, facilitating
activation of macrophages and granuloma formation (45). At
the center of the granuloma, macrophages may fuse together,
forming multinucleated giant cells or differentiating into lipid-
rich foam cells (46, 47). Meanwhile, the neutrophils, which are
short lived, undergo necrosis, contributing to a caseous center.
This granulomatous response, if able to activate macrophages
sufficiently to control bacterial replication, is thought to aid in
containment of bacterial spread and reduce bacillary numbers,
hence controlling or potentially eliminatingM. tuberculosis.

Deficiencies in the antigen-specific Th1 immune response,
which have been well-described in children <2 years-old,
likely contribute to the presentation of locally progressive and
disseminated TB in this age group (48, 49). BCG vaccination
boosts mycobacterium-specific cell mediated immunity, which is
associated with a reduced incidence of disseminated disease (50).
Following early childhood, the initial granulomatous control of
infection likely is effective (51). If infection is not eliminated
by this stage, there is a risk of reactivation. Factors impeding
effective T-cell-macrophage interaction within the granuloma
increase the likelihood of disease progression. Some of these
factors are well-known causes of systemic immunosuppression,
such as HIV, malnutrition, and anti-tumor necrosis factor
(TNF) therapy (12). While many of the factors that precipitate
reactivation are poorly understood, seasonal changes in vitamin
D levels or concurrent viral infection (e.g., influenza) may
be involved (52, 53). Following failure of granulomatous
control of M. tuberculosis, a pathologically distinct phase
ensues in the lung. During this phase, which typically is
characterized by a pneumonic process with bronchogenic spread,
the number of organisms initially is low, although abundant
antigen may be detected in uninfected cells and tissue (54).
Progression of this early stage of reactivation TB is not linear;
regression and self-healing of lesions are common (55). A
critical event during this phase appears to be lung necrosis,
which is likely caused by a number of pro-inflammatory
mechanisms. Following lung necrosis, an increase in bacillary
number is observed (55). Recently, necrotic cells themselves
have been shown to be a niche for bacillary replication
(56). Contributors to this inflammatory pathology may include
immune complex deposition; complement activation; neutrophil
recruitment; cell-mediated cytotoxicity directed against infected
and uninfected antigen-containing cells; and tissue-degrading
enzymes, which have the role of facilitating cell recruitment
and vascularization, but result in the breakdown of tissue
architecture (57–59). The late stage of adult-type disease is then
characterized by lung destruction, cavitation, and a localized
exponential growth of extracellular organisms that is most
commonly seen in immunocompetent adults, who are the
main contributors to TB transmission (21). The lower rate
of disease seen in primary school children may relate to
increased likelihood of a favorable outcome during the early

stage of reactivation TB, resulting in its resolution (Figure 2).
It is possible that changes in the immune response that occur
during puberty increase the likelihood of necrosis and disease
progression.

IMPACT OF AGE ON THE HOST
RESPONSE TO M. tuberculosis

To understand the potential mediators of protective immunity
which exists during the pre-pubertal “Wonder Years,” this
unique age needs to be studied relative to the changes that
occur as the immune system develops in infants and young
children, and the further changes that occur during puberty. The
primary driver of these developmental changes are sex hormones.
Whilst the primary role of these hormones is development of
reproductive organ function, they have wide-ranging effects on
the immune system [for a detailed review see (60–62)]. Sex
steroid receptors are found in the cytoplasm of the majority of
immune cells, including T cells, B cells, DCs, natural killer (NK)
cells, neutrophils, and macrophages (63). Once internalized in
the cell, sex hormones bind their respective steroid receptors,
inducing translocation to the nucleus and regulation of gene
transcription via a variety of mechanisms. These mechanisms
include direct binding to hormone response elements in DNA
promoters to activate transcription; complexing with other
transcription factors, such as AP-1, SP1, C/EBPβ, and NFκB; or
indirectly binding DNA via chromatin-modifying co-regulators
(64, 65).

Multiple fluctuations in hormonal exposure occur throughout
life, but the greatest changes occur during in utero development,
puberty, and menopause (Figure 3). In utero, maintenance of
foeto-maternal immune tolerance is critical to enable full term
pregnancy. Fetal and maternal Th1 responses are harmful to the
pregnancy and associated with pre-term labor and spontaneous
abortion (66). High progesterone levels contribute to polarizing
maternal and fetal immunity toward a more tolerant Th2
response (67, 68). The progesterone receptor (PR) is expressed
by NK, DC, macrophages, and T cells (69). Activation of PR
(a) downregulates TNF, IL-1β, IL-6, and IL-23 from DC (70–
72); (b) decreases microbial activity of macrophages as well as
downregulating inducible nitric oxide synthase (iNOS) and nitric
oxide (NO) production and polarizing macrophages to an M2
alternative-type (73); (c) decreases cytotoxicity and interferon-
gamma (IFNγ) production from NK and CD8 cells (62, 74);
and (d) increases expression of anti-inflammatory transcription
factor FOXP3 in regulatory T cells (Tregs) and reducing IL-17
production (75). The high number of Tregs in the fetal circulation
contribute to fetal tolerance of maternal alloantigen. This Th2
bias and increased number of peripheral Tregs persist into the
neonatal period and affect responses to foreign antigen (49). This
tolerant phenotype, along with the reduced antimicrobial activity
and poor antigen presentation of innate immune cells, would
be expected to contribute to impaired granulomatous control of
intracellularM. tuberculosis infection in infants, resulting in high
risks of disease progression and extrapulmonary dissemination
(Figures 1, 2).
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FIGURE 3 | Change in tuberculosis risk throughout life stages compared to fluctuations in hormone levels, circulating cell populations (“Cells”), immune functions

(“Immunity”), co-infections (“Infections”), and social interactions and behaviors (“Behavior”). TB risk is indicated by the gray shading with peaks of risk indicated

underneath various life course stages. Images represent infections: mosquito, malaria; worm, helminths; virus, EBV, CMV, influenza; and behaviors: infant exposures to

adult TB, children playing outdoors, smoking, drinking, sexual activity, pregnancy, Diabetes Mellites and old age. B, B cells; DC, dendritic cells; IFN, interferon; MN,

monocytes; N, neutrophils; NK, natural killer cells; T, T lymphocytes; Th, T helper; Treg, regulatory T cells; WBC, white blood cells.

Whilst babies are born with an “underdeveloped” immune
system due to low antigen exposure in utero, they experience
rapid antigen exposure immediately following birth. During this
period, both arms of the innate and adaptive immune system
mature. Monocyte and DCmaturation occurs during the 1st year
of life (76), whilst NK cell function normalizes around the age of 5
years (77). NK cell function also changes as children progress into
adolescence, switching from IFNγ-producing to more cytotoxic
(77, 78). Infants have impaired type I IFN and Th1 (TNF, IFNγ,
IL-12) responses and higher Th2/Th17 and IL-10 production
(79). Early monocytes and DCs also show less polyfunctionality
in cytokine production (80). This underdeveloped innate and
adaptive immune system, with suboptimal innate cell-mediated
killing and suppressed effector cell responses, is hypothesized
to lead to poor outcome following M. tuberculosis infection,
including widespread dissemination.

Puberty is defined by adrenarche and gonadarche, two
temporally correlated but physiologically distinct events.
Adrenarche, which begins around age 6, is marked by the

onset of production of dehydroepiandrosterone (DHEA), the
primary adrenarche hormone, and its storage form, DHEA-
sulfate (DHEAS), hereafter collectively referred to as DHEA(S).
DHEA(S), which leads to the development of axillary and pubic
hair and sweat glands, is the most abundant steroid hormone
in the body (81). In gonadarche, production of oestradiol or
testosterone signals the maturation of reproductive organs and
secondary sex characteristics. In addition, leptin—an adipocyte-
produced hormone that regulates energy expenditure and signals
the body is prepared for sexual maturation—increases at the
onset of puberty (82).

In both sexes, the number of circulating leukocytes changes
during the ages of 12–18 years, predominated by a drop in the
high number of B cells found in young and primary school
children and a rise in helper T lymphocytes (83). The functional
requirement of these T cells for TB immunity was demonstrated
in a recent study investigating the whole blood transcriptional
signature of children and adolescents with pulmonary and extra-
pulmonary TB. It identified a decline in T cell transcripts with
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increasing disease severity, with lower transcript levels found in
those with TBmeningitis compared to those with pulmonary TB.
Moreover, this decline was associated with a functional defect in
T cell proliferation following broad T cell receptor stimulation,
which recovered after treatment (84).

The lymphocyte predominance seen in pre-pubertal years is
overtaken by a predominance of neutrophils during adolescence
and into adulthood (83), with neutrophils being considered a
driver of cavitation and immunopathology in adult pulmonary
TB (85). Early studies also show that the phagocytic capacity
of neutrophils, at least to Staphylococcus aureus, decreases
significantly during adolescence, with maximal kill peaking at
14 years of age (86). A decline in neutrophil phagocytic ability
after the age of 14 would thereafter correspond to the rise in
TB risk observed in late adolescence. The decreased phagocytic
activity may be hypothesized to lead to increased necrosis and
more tissue damage synonymous with adult pulmonary TB.

IMPACT OF SEX ON THE HOST
RESPONSE TO M. tuberculosis

Sex Differences in Inflammatory
Responses
In general, it is considered that of the sex hormones,
oestrogens have immune-enhancing effects, such that the level
of inflammatory response is generally higher in females, whilst
progesterone and androgens, such as testosterone, exert mainly
immunosuppressive properties (Table 2) (87). Moreover, males
generally have a Th1 skewed response, and females, Th2 (63).
Thus, females are thought to have a stronger innate and adaptive
immune response, although overall skewed to a Th2 state
(Figure 4) (89).

Androgens, including dihydrotestosterone (DHT) and
testosterone, suppress Th2/Th17 responses and decrease
antibody responses and B cell proliferation (87, 88, 129, 138).
With regard to innate cells, testosterone treatment increases
IL-12, and IL-1β production in monocytes, whilst reducing IL-6
(99, 100). In DCs it reduces Th2 responses including suppressing
IL-4, IL-10, and IL-13 production (129). Conversely, following
TLR stimulation, estrogen induces the genes TLR7, MYD88,
RIG1, IRF7, IFNB, AJK2, STAT3, NFKB, IFNG, and TNF—many
of which have estrogen response elements in their promoters
(62, 139). Consequently, these genes have higher expression
in females after vaccination (139). Estrogens also elicit rapid
non-nuclear responses via binding estrogen receptors associated
with the inner plasma membrane. This activates NO and cyclic
AMP production, the mobilization of intracellular calcium and
the stimulation of protein kinase pathways, such as PI3K/AKT
and ERK (112).

With respect to changes in lymphocyte populations as
children progress into adolescence, as sex hormones begin
to exert their effects on cell development, differences in the
frequency of different cell populations begin to emerge. Males
have been shown to have a higher number of circulating
CD8 and NK cells, indicating a higher frequency of cytotoxic
cells (62, 133). Males develop a more robust innate immune

response early in development (140), which may contribute to
early infection control and slower disease progression. However,
once disease develops, these features may contribute to greater
immunopathology and severity of disease in males. Conversely,
females develop higher circulating levels of immunoglobulins
(Igs) and B cell receptor expression (136); a lower number
of B cells; a higher number of CD4+ T cells; and a
higher CD4:CD8 ratio (86, 141, 142). Given the recent
support of Fc-mediated antibody protection in latently infected
individuals, including enhanced phagolysosomal maturation
and antimycobacterial activity of macrophages (143), the
decreased antibody production and B cell proliferation in males
may contribute to gender differences in TB prevalence and
presentation.

The difference in TB case prevalence between genders begins
to appear in mid-adolescence (144). This timing corresponds
to the steep rise in production of adrenarchal and gonadarchal
hormones, which decline in the fourth or fifth decade of life
(Figure 3) (81, 145–147). Levels of leptin, also follow the same
pattern (148). These hormonal declines correspond temporally to
the fall in TB rates, which occurs earlier and faster in women and
corresponds to the transition into menopause, which generally
begins in the late 30s or early 40s (62, 144). The association
of a rise and decline in TB risk with the rise and decline in
sex hormones supports a potential role for these hormones in
controlling the inflammatory imbalance that leads to TB disease
progression.

Sex differences in immune responses have been identified for
the “type” of inflammatory response produced, i.e., Th1 vs. Th2;
the level of regulation governed by transcriptional and post-
transcriptional modifications; and differences in the absolute
number of different circulating cell populations (Table 2 and
Figure 4). These differences can be due to differential exposure
to sex hormones, as well as genetic and epigenetic differences
impacting gene expression.

As the outcome of infection depends on the immune pathways
activated by the pathogen and the pre-existing environment and
propensity of the host to respond to those stimuli (140, 149),
the sexually distinct activation pathways likely impact infection
outcome. It has been hypothesized that even though females
elicit more immune-enhancing effects, due to their inherent Th2
skewing, they have a more controlled response to Th1-inducing
pathogens (140). Males, although generally immune-suppressive,
are Th1-skewed, and thus are likely to elicit an exaggerated
response to Th1-inducing pathogens, such a M. tuberculosis
(140). Conversely, the strong Th2 and humoral response of
females is hypothesized to be the underlying cause of higher rates
of autoimmune diseases experienced by females (89, 150).

This gender difference in inflammatory response may explain
the difference inMtb lineages identified in TB patients due to an
interaction between the inherent host inflammatory response and
inflammatory pathways activated by differentMtb lineages (151).
A recent large population study in Vietnam tracing 1635 Mtb
strains by whole genome sequencing found that young people
and females in particular are more susceptible to TB caused by
the Beijing 2.2 lineage whilst males and the elderly are more
susceptible to Lineage 1 strains (152).
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TABLE 2 | Impact of hormones on components of the immune system implicated in the immune response to Mycobacterium tuberculosis, as reported in humans,

animals, and in vitro models.

General response DHEA(S) Adiponectin Leptin Oestradiol Progesterone Testosterone

Immune phenotype (87, 88) Enhancing Suppressive Enhancing Enhancing Suppressive Suppressive

T cell polarization (63, 67, 68, 87, 89) Th1 Th1 Th2 Th2 Th1

MACROPHAGE ACTIVITY

TNF expression§ (64, 70–72, 90–97) at low levels,

at high levels#

IL-12 expression§ (63, 64, 90, 91, 97, 98)

IL-1β, IL-6 expression (70, 71, 99–101) at low levels,

at high levels#

IFNα expression (102)

Foam cell differentiation (103–109)

Phagocytic activity (97, 110, 111)

Microbial activity (iNOS, NO) (73, 112–115)

Autophagy of Mtb-infected macrophages (116)

Lung granuloma formation§ (97, 114, 117)

DENDRITIC CELL ACTIVITY

MHC expression (70, 90, 91, 118)

CD1a+ expression (119)

NEUTROPHIL ACTIVITY

Numbers (62, 120)

Degranulation (62)

Apoptosis (121)

Phagocytosis (122–124)

LYMPHOCYTE ACTIVITY

IFNγ expression

(63, 64, 90, 91, 97, 117, 125, 126)

Th1 differentiation (87, 91, 127, 128) at low levels,

at high levels#

Th2 (63, 67, 68, 87, 89, 129)

Th17 (75, 87, 130)

FOXP3, Treg (49, 131, 132)

Cytotoxicity of NK and CD8

(62, 74, 98, 133, 134)

IFNγ expression from NK and CD8

(124, 126, 135)

B cell proliferation, Antibody production

(87, 89, 134, 136, 137)

DHEA(S), dehydroepiandrosterone (sulfate); IFN, interferon; IL, interleukin; MHC, major histocompatibility complex; Mtb, Mycobacterium tuberculosis; NK, natural killer; NOS, nitric oxide

synthase; Th, T helper; TNF, tumor necrosis factor; Treg, regulatory T cell. Red arrow indicates higher and blue arrow indicates lower, a blank box indicates no reported significant

difference.
§Also expressed by or involves dendritic cells and Th1 cells.
#High levels of estrogen occur during the follicular phase of the menstrual cycle and during pregnancy.

Genetic and Epigenetic Causes of
Differential Sexual Responses to Infection
Differential expression of genes on the X and Y chromosomes
defines sexual development. Male development is mediated by
the SRY gene on the Y chromosome, whilst females regulate
X chromosome expression via X-linked gene inactivation. The
differential level of X inactivation that occurs between males
and females can impact the level of expression of X-linked
genes between sexes [reviewed in Markle and Fish (60)]. The X

chromosome also contains∼10% of all 800 microRNA produced
by humans, whilst the Y chromosome accounts for only 2% (153).
Incomplete X-inactivation in females therefore increases the
expression of regulatorymiRNA, the expression of which can also
be under hormone control, further increasing gene regulation
differences between sexes. Toll-like receptor 7 (TLR7) which is
activated by viral cytosolic nucleic acids, has higher expression in
females than males (102). Subsequently, plasmacytoid dendritic
cells (pDC) of females make double the amount of IFNα to
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FIGURE 4 | Immunological differences observed between males and females,

post-puberty. TB disease risk increases as the immune response more heavily

favors either Th2 or Th1 skewing, with a more balanced Th1/Th2 response

having the lowest risk of disease progression. In general, males are Th1 skews

and females Th2 skewed, although females have a higher inflammatory

response to an exogenous stimulus, partly mediated by variable X-inactivation

and the presence of estrogen response elements in many immune response

genes, leading to higher responses once activated. BCR, B cell receptor; Ig,

immunoglobulin; IL, interleukin; NK, natural killer; iNOS, inducible nitric oxide

synthase; Th, T helper; TGFß, transforming growth factor-beta; TNF, tumor

necrosis factor; #, number.

TLR7 ligands, such as HIV (154). Type 1 interferons, IFNα and
IFNβ, have recently been shown to have detrimental effects on
M. tuberculosis control depending on their context of activation
(155, 156); this finding suggests this difference in females may
contribute to exacerbating an inflammatory imbalance, skewed
to M. tuberculosis survival and proliferation. Conversely, in
response to TLR8 and TLR9 agonists, male androgens suppress
macrophage phagocytic activity, and correlate to higher IL-10
secretion (157). In addition, males have higher pro-inflammatory
production following LPS stimulation of TLR4, including higher
TNF production from neutrophils (158). Thus, viral and bacterial
responses in males and females may also differ according
to TLR expression and activation in each sex. Of particular
relevance to TB pathology, compared to monocytes and T
cells, neutrophils have greater differences in global methylation
and gene expression profiles between males and females (159).
Twenty-one genes expressed from neutrophils were identified to
be differentially expressed between sexes. Meanwhile, one of the
top two differentially expressed genes between male and female
neutrophils, SEPT4, is often found in the neutrophil-driven
whole blood signatures of TB (160–162).

Sex Hormone Impact on Response to M.

tuberculosis
As shown in Table 2, hormones may impact adolescent TB
through multiple plausible mechanisms and potentially in a
multifactorial manner. Increased DHEA(S) and leptin levels
may promote foam cell differentiation (103–106), leading to
disease progression and lung cavitation. DHEA(S), estradiol,
and leptin may contribute to disease severity by promoting
aggressive Th1 responses (63, 90, 91, 118, 127, 128). A study
comparing TST response after Bacillus Calmette-Guérin (BCG)

vaccination gives clinical support to the association between
DHEA(S) and Th1 responses; in this study, pubertal subjects
had higher DHEAS levels and larger TST reactions than pre-
pubertal subjects (163). Likewise, the link between gonadarche
and disease severity is strengthened by a guinea pig model
that demonstrated associations between increased exposure to
oestradiol and testosterone and greater mortality and more
extensive, caseous lung lesions (164). Suppression of TNF by
DHEA(S) may also contribute to disease progression (92–96).

The greater resistance of female mice to mycobacterium
species has been demonstrated in a number of studies (113,
114, 165, 166). In a C57BL/6 mouse model of TB, male mice
have accelerated disease and increased mortality compared to
females. The male mice had increased lung bacterial loads,
increased iNOS, IFNγ, IL-1α/β, and IL-6 production early and
late in infection, and higher levels of various inflammatory
chemokines, all of which correlated with increased bacterial
burden (114). Castration of male BALB/c mice reduced mortality
and increased levels of inflammation to those seen in female
mice (113). However, converse to what was seen in C57BL/6
mice, during early infection, female and castrated BALB/c
expressed higher lungs levels of TNF, IFNG, IL12, iNOS, and
IL17 than non-castrated males. Moreover, castration 60 days
after infection increased the survival of male mice, decreasing
bacterial load and increasing TNF, IFNG, and IL12. Interestingly,
whilst female castration resulted in declines in bacterial numbers
early during infection, they rose at day 60 compared to non-
castrated females. Testosterone treatment of female mice also
increases susceptibility to M. marinum (165), whilst oestradiol
treatment of ovariectomisedmice increasesmycobacterial killing,
synergistically with IFNγ (167). Testosterone treatment of rats
increased recruitment of inefficient neutrophils following LPS
treatment, with impaired bacterial activity decreased MPO
activity and increased IL-10 and TGFβ expression (168).
Together, these studies suggest that high levels of testosterone
can contribute to disease progression in males, whilst estrogen
elicits a more protective response. However, the difference in
genetic backgrounds of the animals infected also creates different
inflammatory processes correlated to disease. Thus, the effect of
hormones will be governed by the overall inflammatory state
of the individual, which may be further governed genetically,
epigenetically or environmentally by other co-morbidities,
including co-infections.

BEYOND AGE- AND SEX-RELATED
IMMUNOLOGICAL CHANGES IN
CHILDREN AND ADOLESCENTS

Although age- and sex-related changes in the immune response
to M. tuberculosis are a critical factor in the relative reduction in
TB disease prevalence in primary school children and increase
in adolescence, it is important to consider other contributing
factors (Figure 3). The degree of TB exposure is one alternative
explanation for and/or contributing factor to different risks of
disease progression. A study from Canada found that among
recently infected individuals, those who developed TB disease
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had exposure to a higher number of infectious TB cases than
those who did not (169). At the same time, a recent animal study
suggested that repetitive aerosol exposure with M. tuberculosis
drives greater lung tissue destruction, including cavitation,
than a single exposure (170). This explanation fits with the
increased socialization in adolescence that is assumed to occur
in many societies, and may contribute to increased risk of TB
progression (171). This generalization about adolescent social
mixing is supported by data from various settings, including
eight European countries, rural Andean communities in Peru,
a South African township, and a city in Siberia, Russia. These
cross-sectional surveys all found that on a daily basis, adolescents
come into contact with 1.5- to 3-times as many individuals
as young children do (172–176). However, the hypothesis that
a higher number of TB exposures increases the probability of
TB disease progression does not account for the higher risks
observed in young children vis-à-vis primary school children, or
adolescent girls vis-à-vis adolescent boys. Young children come
into contact with fewer individuals on a daily basis than primary
school children (172–176), and to our knowledge, there are no
data to suggest that adolescent girls have more frequent exposure
to infectious TB cases compared to adolescent boys. The social
mixing studies showed no difference in mean number of contacts
for females vs. males, but these data were not age-disaggregated
(172, 175).

On the other hand, if one of the drivers of risk of disease
progression is the intensity of exposure (i.e., the size of the
bacillary load), then the increased risk during early childhood
makes more sense. Data from various settings support the idea
that young children, particularly those <2 years of age, spend
more time with household contacts than primary school children
and adolescents (173, 175, 176); thus, they are exposed to a
larger inoculum of M. tuberculosis from caregivers with TB
disease. For this reason, young children are more likely than
older children and adolescents to become TB-infected from
a household exposure (177, 178). However, when comparing
primary school children and adolescents, social mixing studies
did not find significant differences in the amount of time spent
with individual contacts (173–175).

Initiation of substance use and sexual activity also may
contribute to the increase in TB disease progression andmortality
in adolescents. Recreational drugs, alcohol, and smoking all
are associated with increased risk of TB disease (179–182).
Sexual activity may lead to pregnancy, which can predispose
a woman to TB disease progression due to a wide range of
immunosuppressive effects (183, 184). Moreover, sexual activity
increases the risk of acquiring transmissible infections, including
HIV.

Among co-infections that may contribute to the age- and sex-
related changes seen in TB risk, HIV is likely the most significant.
As individuals enter adolescence and commence sexual activity,
girls are more likely than boys to acquire HIV (185). Globally,
adolescent females have higher HIV seroprevalence than
adolescent males (186). Because HIV dramatically increases the
risk of TB disease progression following infection (187, 188), this
difference in seroprevalence may contribute to the higher TB
disease risk in adolescent girls. It is possible that HIV prevalence

is lower in the primary school years compared to both early
childhood and adolescence, since untreated vertically transmitted
HIV leads to death in ∼60% of children before age 2 years (189)
and primary school children have minimal risk of horizontal
transmission. However, this possibility is difficult to confirm
because, to our knowledge, global childhood HIV prevalence has
not been disaggregated into 5-year age bands (190). The data
on age-based differences in risk of TB disease progression were
collected prior to the HIV epidemic and exist in regions with little
HIV; thus, HIV epidemiology cannot be the sole reason for age-
and sex-based discrepancies in TB risk.

Other pathogens also may alter an individual’s susceptibility
to TB disease. Cytomegalovirus (CMV) has been implicated
in TB disease pathogenesis (191); it exerts profound
immunodysfunction on infants, and has been associated
with increased TB risk in this age group (192, 193). Moreover,
increases in CMV seroprevalence are highest during infancy
and adolescence, and the acceleration of CMV seroprevalence is
steeper in adolescent girls than boys (191).

TB epidemics demonstrate a seasonal pattern and follow
influenza outbreaks (194–196). A study conducted in a Danish
TB sanatorium in the mid-twentieth century found that a strong
association between influenza and clinical exacerbation of TB
(197). Other studies have found associations between influenza
and excess TB mortality (198–200). It is possible that influenza—
and perhaps other viruses affecting the lower respiratory tract—
may predispose to TB disease progression and mortality by
disrupting mucosal integrity and altering host immunology. This
link could partially explain the increased TB risks experienced by
young children, who are vulnerable to severe lower respiratory
disease due to influenza and other respiratory viruses. As children
reach primary school age, they become less vulnerable to lung
disease from common respiratory viruses (201). With the notable
exception of the 1918–1919 influenza pandemic, adolescents
do not experience increased morbidity and mortality from
respiratory viruses (200). Therefore, this hypothesis does not
explain the rise in TB risk during adolescence.

Finally, helminths and malaria infections are both common in
young children in high TB-burden settings and cause immune
dysregulation that could impact TB risk (202–205). However,
the incidence of these infections do not rise again during
adolescence, so they do not explain the adolescents’ elevated TB
risk. It is therefore possible that different etiologies contribute
to the elevated risk in young children and adolescents. Further
research is needed to disentangle the contribution of exposure
intensity and frequency, substance use, and co-infections to the
U-shaped pattern of TB risk during childhood and adolescence.

IMPLICATIONS

TheWonder Years offer a unique insight into the immunological
protection against TB disease progression. We have made the
case that if infected during this period the host response is
effective in containing M. tuberculosis within granuloma in
contrast to younger children, who more commonly progress
to disseminated disease. In addition, primary school children
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are also less likely to mount a tissue damaging, inflammatory
response toM. tuberculosis. They frequently experience localized
bacillary replication within the lung and are less likely than post-
pubescent adolescents and young adults to develop cavitation.
Thus, comparing age-related immunological changes that occur
before, during, and after puberty may reveal immunological
pathways that could be targeted to promote balanced protective
immunity.

Development of an effective TB vaccine has been hampered
by insufficient understanding of protective immunity. Given
that the presentation of disease and underlying immunological
responses change during different risk periods, the approach
to inducing an optimal vaccine response in young children
may differ to the approach needed in adolescents and adults.
Strategies in infants or young children could be aimed at
either preventing the establishment of infection by priming the
innate immune system or promoting cell-mediated immunity
that provides superior protection from dissemination than BCG.
Strategies for adolescents could aim to: clear mycobacteria before
the stage of increased progression risk; enhance containment
within the granuloma; or attenuate the excessive inflammatory
response should containment break down. It may be appropriate
to revaccinate children prior to adolescence (potentially with
a vaccine of different mechanism) or provide host-directed
therapies following exposure. Furthermore, the difference in host
response of adolescent boys and girls may need to be modulated
by vaccines and immunotherapies in different ways. This is
supported by the first successful outcome of the new M72TB
vaccine, which demonstrated 57% efficacy in the population,
but 75% efficacy in males and 84% efficacy in those ≤25
years, although this secondary analysis is confounded by the
enrolled population being skewed toward young males (206).
Future vaccine studies must be designed with sufficient power to
rigorously test the effect of age and gender on trial outcomes.

In addition, approaches to diagnostics may have to factor in
age and sex. Recently, there has been great interest in whole
blood transcriptional signatures as potential diagnostics and
prognostics for TB infection and disease. These biomarkers
identify a characteristic host response to a particular disease
process; however, in TB, pathogenesis of disease may vary by
age and, to a lesser extent, by sex. As a result, a transcriptional
signature that performs well in diagnosing adult-type pulmonary
disease may not capture disease in children, and vice versa.

Ultimately, more research is required to better understand
how immunological responses toM. tuberculosis change with age
and sex. Animal studies, including the use of juvenile animals,
could assist in delineating the impact of age and sex on host
response to M. tuberculosis, as well as the changing disease
phenotypes that result. It would also be possible to evaluate
different vaccination strategies and host-directed therapies to

prevent infection and/or disease progression in these animal
models. Longitudinal cohorts of young children either prior to
TB exposure, or following known exposure, could contribute
vital information. In these cohorts, blood samples could be taken
at regular intervals to document cell phenotypes and functions
and to understand immunological risk factors for disseminated
disease. For adolescents, longitudinal cohorts would also be
informative, with children identified prior to puberty and with
an evaluation of how host immunological responses change with
age, puberty, and with sex. Specific attention to methylation
profiles of boys and girls at different ages may identify the
changes induced by puberty which could impact disease risk
and protective immunity. Impact of co-infections in both young
children and adolescents would be important to consider.
Although longitudinal cohorts are expensive to conduct, it is
often strategic and efficient to undertake such studies within the
framework of therapeutic clinical trials or vaccine trials.

CONCLUSIONS

Primary school children teach us that there is still much about
TB that we do not understand. They sit within the flexion
point where TB pathology and risk changes; the immunological
changes that occur during early childhood and puberty are likely
to impact the response to infection and risk of disease. The
difference in TB risk that emerges after puberty also indicates that
diagnostics and strategies for prevention and treatment may need
to be targeted according age and sex.
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