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Neutrophils are abundant in the circulation and are one of the immune system’s first lines

of defense against infection. There has been substantial work carried out investigating

the role of neutrophils in malaria and it is clear that during infection neutrophils are

activated and are capable of clearing malaria parasites by a number of mechanisms.

This review focuses on neutrophil responses to human malarias, summarizing evidence

which helps us understand where neutrophils are, what they are doing, how they interact

with parasites as well as their potential role in vaccine mediated immunity. We also outline

future research priorities for these, the most abundant of leukocytes.
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INTRODUCTION

Neutrophils (also known as polymorphonuclear cells) are the most common white blood cell in the
body (1). They can clear pathogens by phagocytosis; by producing reactive oxygen species (ROS)
and other antimicrobial products; or by formation of neutrophil extracellular traps (NETs) (2).
Additionally, they also play a role in the activation and regulation of the immune response, by
cytokine and chemokine secretion (3), and possibly antigen presentation (4). Their importance
in controlling infection can be highlighted by the increased susceptibility to fungal and bacterial
infections seen in individuals suffering from neutrophil deficiencies (5). Malaria is a disease caused
by infection with Plasmodium spp. parasites. It causes severe morbidity and mortality, and young
children and pregnant women are especially susceptible to disease. Malaria is a large public
health burden with an estimated 216 million cases of malaria being reported in 2016, resulting
in an estimated 445,000 deaths (6). Globally most disease caused by infection with Plasmodium
spp. is caused by P. falciparum (6). Pathology is thought to be due to a combination of the
sequestration of infected red blood cells (iRBC) in the microvasculature, endothelial activation, as
well as pro-coagulant and importantly pro-inflammatory responses (7). In this review, we assess the
literature examining how neutrophils and Plasmodium spp. parasites interact, and the mechanisms
by which neutrophils can play an active role in parasite clearance.

NEUTROPHIL DYNAMICS AND RECRUITMENT TO SITES OF
PARASITE SEQUESTRATION

Changes in peripheral blood neutrophil levels have been described during Plasmodium spp.
infections. In controlled humanmalaria infections (CHMI) in non-immune individuals, neutrophil
numbers are stable during the asymptomatic liver stage (8). In naturally-infected individuals,
patterns of change in peripheral blood neutrophil numbers vary with the cohort studied. Using
hematological data from over 3,000 children, Olliaro et al. estimated that peripheral blood
neutrophil counts increase about 43% (95% CI 26–35%) during acute uncomplicated malaria, and
that the level of increase is positively associated with parasitaemia (9). In semi-immune travelers
neutrophil counts were higher in those with severe malaria compared to those with uncomplicated
malaria, while in non-immune travelers, though neutrophil counts increased with the presence
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of infection, neutrophil counts did not vary with disease severity
(10). A study in HIV-infected individuals showed no difference
in neutrophil numbers when comparing those with and without
asymptomatic P. falciparum infection (11), whereas pregnant
women with P. falciparum infection had lower numbers of
peripheral blood neutrophils than uninfected women (12).
Differences between cohorts are likely due to disease status
classification (clinical malaria or asymptomatic parasitemia),
immune status and/or age.

Neutrophils are a heterogenous population and this is
important because different neutrophil subsets can have varying
functional properties, for example CD177+ neutrophils are
also positive for Proteinase 3, and IL17+ neutrophils have
increased ROS production [reviewed in (13)]. We know
that neutrophils from individuals infected with Plasmodium
spp. behave differently compared to those from non-infected
individuals (14–18), and a subset of neutrophils with impaired
oxidative burst have been observed in individuals infected with
P. falciparum (18), suggesting that neutrophil subsets change
during the course of infection. In individuals challenged with
LPS, inflammation results in the release of a neutrophil subset
that suppresses T cell activation (19), whether this occurs during
P. falciparum infection is unclear but it is one example of
why work to identify neutrophil subsets in Plasmodium spp.
infections would likely yield valuable information into the role
of neutrophils in malaria.

Neutrophils are generally the first circulating cells to respond
to an invading pathogen. However, how and whether neutrophils
are recruited to the sites of iRBC sequestration is still unclear.
We know very little regarding neutrophil expression of receptors
involved in migration and adhesion. There is no evidence that
neutrophil adhesion molecule CD11a changes with infection
(18), and expression by neutrophils of other adhesion molecules
such as CD18, CD11b, and CD62L is still unstudied. There
is more information on the expression of neutrophil receptors
on endothelial cells. Expression of receptors on endothelial
cells involved in neutrophil adhesion and migration are likely
increased with infection. Intercellular adhesion molecule-1
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and the
endothelial leukocyte adhesion molecule E-selectin are increased
on endothelial cells after exposure to iRBC in vitro [reviewed in
(20)] and this is supported by observations showing increased
levels of soluble E-selectin and soluble ICAM-1 in the blood of
P. falciparum infected individuals (21). Regarding chemokines
involved in neutrophil recruitment, neutrophil chemoattractant
protein CXCL8 is increased in peripheral blood of patients
with severe malaria [reviewed in (22)] (23) as well as in the
cerebral spinal fluid (CSF) of children with cerebral malaria
and in the placentas of women with malaria in pregnancy
[reviewed in (22)]. In addition, P. falciparum antigen can
induce the production of neutrophil recruitment chemokines
CXCL1 and Interleukin 8 (IL8) production by endothelial
cells and the production of Interleukin 8 (IL8) by placental
syncytiotrophoblast [reviewed in (22)]. Interestingly, although
increased expression of neutrophil chemoattractants occurs,
studies of malaria pathology rarely show significant neutrophil
infiltration at sites of sequestration.

Low numbers of neutrophils were reported in the brain
microvasculature in autopsy samples from children in Malawi
(14), and neutrophil numbers were not significantly higher in
placentas infected with P. falciparum or P. vivax compared
to non-infected placentas (24, 25). An exception is chronic P.
falciparum placental malaria, which can be accompanied by
massive intervillous inflammation, with increased numbers of
CD15+ granulocytes (predominantly neutrophils) (26). When
the lungs were studied, one study from Thailand showed no
difference in neutrophil levels (measured by the presence of
elastase positive cells) between fatal P. falciparummalaria with or
without pulmonary oedema and controls who died from trauma
(27). By contrast, in fatal P. vivax infection, interstitial lung
infiltrates consisting of CD15+ cells were reported from Brazil.
Caveats are that some individuals suffered co-pathologies and
there was no non-infected control group for comparison (28).

The “snap shots” of pathogenesis provided by tissue samples,
together with neutrophils’ short half-life (29), mean that it is
hard to exclude neutrophil recruitment to sites of infection,
however the data to date suggest recruitment is not always
happening; why is this? One possible answer is that Plasmodium
spp. infection inhibits neutrophil chemotaxis. Neutrophils from
individuals with symptomatic P. falciparummalaria have reduced
chemotaxis compared to non-infected healthy controls (15)
and this is restored 7 days after treatment, suggesting the
involvement of parasite antigens. Neutrophils from individuals
with cerebral malaria have reduced chemotaxis to Interleukin 8
(IL8) and N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP)
(14), and this reduction in chemotaxis may be partly due
to increased free heme (14, 18) and/or decreased neutrophil
expression of IL8 receptor CXCR2 (as reported in P. vivax
malaria) (14, 30). Additionally, blood-stage parasite antigens
inhibit proinflammatory protein S100-calcium binding protein
(S100P) stimulated chemotaxis of the neutrophil cell line HL-
60 in vitro (31, 32). Whether the reduced chemotaxis observed
ex vivo explains the lack of neutrophil recruitment to the sites
of parasite sequestration is still uncertain and warrants further
investigation (20, 21, 33).

NEUTROPHILS AND PARASITE
CLEARANCE: PHAGOCYTOSIS, ROS AND
NETS

Neutrophil Phagocytosis of Plasmodium

spp.
Phagocytosis is one way that neutrophils play a role in
the clearance of malaria parasites. Neutrophils express
immunoglobulin (Ig) binding receptors Fcγ receptor I (FcγRI)
(after activation), FcγRII and FcγRIII as well as complement
receptors complement receptor 1 (CR1) and CR3. Together
these can facilitate phagocytic uptake of antigen opsonised with
components such as IgG or C3b [reviewed in (34)] (Figure 1A).
Neutrophils are known to phagocytose iRBC in vivo as observed
in blood films from children (35) and in bone marrow aspirates
which show phagocytosis of merozoites and occasionally
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FIGURE 1 | Proposed mechanisms of parasite clearance by neutrophils during Plasmodium spp. infection. (A) Neutrophils can phagocytose blood stage parasites

after opsonization with antibodies and possibly opsonization with complement. (B) Neutrophils exposed to merozoite antigen opsonized with antibody produce

reactive oxygen species (ROS) which can inhibit intraerythrocytic parasite growth. (C) Components associated with Plasmodium spp. infection including inflammatory

cytokines TNF and IL-8 produced by leukocytes and crystal uric acid released upon infected red blood cell (iRBC) rupture may induce neutrophils to produce

neutrophil extracellular traps (NETs).

trophozoites by neutrophils and neutrophil metamyelocytes
(neutrophil precursors undergoing granulopoiesis) (36).

Neutrophil phagocytosis of merozoites is influenced by
several factors. Phagocytosis of merozoites opsonised with
non-immune serum has been observed in vitro (37) and
has possibly been observed ex vivo in the blood of ex-
service men who had returned from Vietnam infected with
P. falciparum (38). Neutrophil phagocytosis of merozoites
opsonised with non-immune serum is possibly dependent
on complement, as heat inactivation decreases phagocytosis,
and can be increased if the neutrophils are pre-treated with
factors such as tumor necrosis factor (TNF), interferon γ

(IFNγ), IL1β or granulocyte-macrophage colony-stimulating
factor (GM-CSF) (37). Antibody toward merozoite antigens also
promotes phagocytosis, which is much higher if merozoites are
opsonised with immune serum compared to non-immune serum
(37).

Unlike phagocytosis of merozoites, which may involve
complement, phagocytosis of iRBC is largely dependent
on the presence of Ig. Neutrophils isolated from malaria
infected children can phagocytose schizonts in vitro (16),
but neutrophils from American service men infected with
P. falciparum (38) (with limited previous exposure to P.
falciparum and therefore little Ig toward the iRBC) did not.
In addition, sera from individuals living in endemic areas
promote phagocytosis of iRBC and this activity is dependent
on IgG in the serum (39) and independent of complement
(40, 41). It is not known if Ig mediated phagocytosis of
parasites by neutrophils is associated with protection from
disease.

Intra-erythrocytic gametocytes are not very susceptible
to neutrophil phagocytosis (40). However, it is possible
that neutrophil phagocytosis of extracellular gametes while
in the mosquito gut could play a role in transmission-
blocking immunity. Neutrophils phagocytose gametes in vitro in

conditions similar to those of the mosquito gut when immune
sera is present and this phagocytosis is dependent on gametocyte
antibodies, especially IgG (40). In vivo it has been shown that
neutrophils also phagocytose gametes inside mosquito midguts,
and that this phagocytosis is enhanced by the presence of
immune serum in the blood meal (40). However, although the
presence of neutrophils and individual sera in the blood meal
decreases infectivity (42), there is no evidence of an association
between levels of neutrophil phagocytosis, promoted by serum
in vitro, and the ability of that serum to affect mosquito infectivity
in experimental settings (40).

In rat models, neutrophils phagocytose exoerythrocytic
parasites (43), however ex-vivo evidence of a role of neutrophil
phagocytosis and immunity toward this parasite stage in humans
(both in vitro and ex vivo) is lacking.

Key unanswered questions include the importance of
neutrophil phagocytosis in protection from infection or disease
and in blocking of transmission. Studies examining associations
between antibody induction of neutrophil phagocytosis of
different parasite life cycle stages and patient outcomes could
help determine the importance of neutrophil phagocytosis in
protection from disease.

Reactive Oxygen Species and Plasmodium

spp. Infection
Neutrophils can clear pathogens by respiratory burst, the
conversion of oxygen to superoxide by nicotinamide adenine
dinucleotide phosphate oxidase (NAPDH) oxidase (NOX). This
superoxide is converted into hydrogen peroxide and hydroxyl
radicals, together referred to as ROS. NOX is located on both
the neutrophils plasma and phagosomal membranes and the ROS
it produces can diffuse across membranes. This means that ROS
are present in the phagosome, intracellular and also extracellular
spaces [reviewed in (44)] and can therefore play a role in killing
both phagocytosed intracellular as well as extracellular parasites.
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ROS from activated neutrophils are capable of inhibiting
parasite growth in vitro, and studies using various ROS inhibitors
or scavengers suggest singlet oxygen, rather than hydrogen
peroxide or superoxide, is responsible for this inhibition (45, 46).
Growth inhibition by ROS occurs during the intra-erythrocytic
development stage of the parasite (45, 46) (Figure 1B), rather
than during merozoite invasion of erythrocytes, which is not
inhibited by ROS production from stimulated neutrophils in vitro
(47). Ex vivo data suggests that during malaria infection
neutrophils are activated to produce ROS and that ROS may
have a role in parasite clearance. Neutrophils from children with
malaria inhibit parasite growth in vitro better than neutrophils
from uninfected children or adults (16) and oxygen consumption
is higher [indicating activation and production of ROS (48)]
in neutrophils from people with symptomatic acute malaria
compared to controls (17). In addition, children with faster
parasite clearance times have neutrophils which produce more
ROS (49).

ROS production by neutrophils is influenced by a number
of factors, including the host’s genetic background (50). In the
presence of antigen neutrophils produce higher amounts of
ROS with immune serum compared to non-immune serum
(51) or compared to IgG depleted serum (52), supporting
a role for IgG-Fc interactions in ROS production (52)
(Figure 1B). Regarding complement, one study suggests serum
heat inactivation reduces ROS production (51) and another
showed that heat inactivation changes the dynamics of ROS
production (53). However, the activation of neutrophils to
produce ROS by heat-inactivated serum (52) and by purified
IgG (52, 53) suggests that the full complement cascade is not
necessary.

The ability of Ig to induce ROS has been called antibody
dependent respiratory burst (ADRB), and assays measure
different components of this process. In solid-phase assays
(where the antigen is bound on a plate), ROS are secreted
from the neutrophil and this process is largely dependent
on FcγRIIa. By contrast, when neutrophils phagocytose whole
merozoites the resulting ADRB and associated ROS production
occur within the neutrophil are only partially dependent on
FcγRIIa (53). Antibodies capable of inducing respiratory burst
are acquired with exposure to Plasmodium spp. In a small
cohort study, sera taken after an immune episode and incubated
with merozoites induced more neutrophil ROS production than
sera taken during the malaria episode, and sera from adults
induced more neutrophil ROS production than sera from young
children (54). ADRB toward merozoite antigens was higher in
a holo-endemic area compared to a meso-endemic area (52)
and increased with age (55), and antibodies capable of inducing
respiratory burst have been associated with protection from
malaria. Individuals whose serum induced a high ADRB toward
merozoites were less likely to experience clinical malaria when
compared to those whose serum induced a low ADRB (52, 55),
and a combined measure of ability of an individual’s serum
sample to induce both ADRB and growth inhibition has been
associated with protection from severe malaria (56). Supporting
a role for ADRB in protection from disease, polymorphisms of
FcγRIIIb [a neutrophil receptor that is involved in IgG dependent

ROS production (57)] that improve neutrophil Fc-Ig binding are
associated with protection from febrile malaria (58, 59).

Antibodies opsonising merozoites or merozoite antigens can
induce ROS production by neutrophils, whereas there is no
evidence that antibodies opsonising iRBCs result in a major ROS
response (17, 51, 52, 54, 60). The reasons for this difference
are unclear as IgG are known to recognize the surface of iRBC
(61). The merozoite antigens which are targets for ADRB include
Plasmodium falciparum merozoite surface protein-5 (PfMSP5),
MSP1-19 and MSP1, as indicated by correlations between IgG
antibodies to these antigens and ADRB (55, 62, 63), and by
antigen/antibody depletion assays with MSP1 or its C terminal
domain MSP1-19 (62, 63). See Figure 1B for diagram for ROS
production.

Antibodies which induce ROS may be similar to those
which promote merozoite phagocytosis, as the functions are
correlated in neutrophils responding to opsonised merozoites
(54). Antibody subclass may be important: mouse-human
chimeric IgG toward MSP1-19 is sufficient to induce NADPH-
mediated oxidative burst (and degranulation) from neutrophils,
but mouse-human chimeric IgG3 toward the same antigen is
not (64). Multiple antibody isotypes may be involved ROS
production. Recombinant human IgA toward merozoite antigen
is a potent inducer of ROS (65), but IgA’s importance in
ROS production in malaria is unclear as IgG depletion from
serum appears to be sufficient to eliminate most ADRB toward
merozoite antigen (52). Further research is needed to identify
the characteristics of antibody responses to malaria antigens that
effectively elicit neutrophil ADRB.

Evidence for NETS in Malaria
Neutrophil extracellular trap (NET) formation has evolved
as an important innate strategy for killing extracellular
pathogens, and occurs when activated neutrophils degranulate
and release neutrophil antimicrobial factors into the extracellular
environment. NETs are mesh-like extracellular structures made
up of decondensed chromatin and histones decorated with
different antimicrobial granular proteins that can capture,
neutralize and kill a diversity of microbes (66). There are
several factors which might induce NET formation during
Plasmodium infections (Figure 1C). Crystal uric acid [a potent
inducer of NETosis (67)] and its precursor hypoxanthine are
released upon iRBC rupture [reviewed in (68)]. In addition,
cytokines such as TNF and IL8 which are increased during
Plasmodium infections [reviewed in (69)], and H2O2 secreted by
immune cells stimulated by Plasmodium spp. antigen [reviewed
in (70)] have been shown to induce NETosis in vitro [reviewed
in (67)] (Figure 1C). NET-like structures which stain positive
for DNA with 4′,6-Diamidino-2-Phenylindole, Dihydrochloride
(DAPI) have been found in peripheral blood of children
with uncomplicated P. falciparum infections (71), however it
is unclear if these structures were produced in response to
Plasmodium antigen (as opposed to another stimulus) and/or if
they are derived from neutrophils (as opposed to monocytes)
(72). There is some qualitative evidence that neutrophils can
produce NETs in response to P. falciparum antigen in vitro
(73) however, quantitative evidence that neutrophils produce
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NETs in response to P. falciparum and evidence that NETs are
present in tissues and contribute to pathology of Plasmodium
infection in humans is still lacking. When brain tissue sections
from 4 children with fatal cerebral malaria (CM) and associated
retinopathy and 5 with CM without retinopathy (indicating
an alternative diagnosis) were stained with antibodies toward
NET markers neutrophil elastase and citrillinated histones, no
NETs were seen (14). There are no published studies looking
for NETS in other human tissues. Possible explanations for
the lack of evidence of NETs in ex-vivo brain tissue include
neutrophils making NETs that the parasites break down. P.
falciparum asexual blood stage parasites expresses a DNase
virulence factor which may be able to break down NETs, as they
are made of DNA (74) (Figure 1C). Alternatively, it may be that
NETs are simply not being formed. If neutrophils phagocytose
bulky antigens via opsonisation and/or phosphatidylserine (PS)
exposure sometimes they cannot make NETs [reviewed in (75)]
(Figure 1C) and we know during malaria infection neutrophils
do phagocytose bulky antigens (such as merozoites and iRBC)
by these mechanisms (Figure 2) (37, 39, 76). Further, research
is needed to clarify whether NETs do play an active role in
Plasmodium spp. infections.

Neutrophils, Severe Malaria and Parasite
Adhesion
As well as playing a role in parasite clearance, neutrophils may
contribute to the pathology of severe malaria syndromes, but
there is limited supporting data from human studies on this topic.
In CM, neutrophil proteins in plasma [including neutrophil
primary granule proteins, neutrophil elastase, myeloperoxidase
and proteinase 3 (PRTN3)] are associated with disease (14) and
it has been hypothesized that neutrophil products contribute
to CM pathology, with elastase damaging the endothelium (77,
78), and inflammatory factors such as TNF [reviewed in (79)]
and ROS [reviewed in (80)] increasing expression of the iRBC
adhesion receptor, ICAM-1 (81) on endothelial cells to promote
parasite adhesion. Also, PRTN3 can cleave endothelial protein
C receptor (EPCR) from endothelial cells and contribute to the
procoagulant state observed in severe malaria [reviewed in (14)].
On the other hand neutrophil products may also reduce parasite
adhesion, for example by PRTN cleavage of EPCR (82) as it is a
receptor for parasites associated with severe malaria (83). Also,
neutrophil elastase, released by activated neutrophils, can cleave
iRBC antigens involved in P. falciparum iRBC cytoadherence to
C32 melanoma cells (84).

It has also been suggested that neutrophils play a role in
the pathology of the liver during Plasmodium spp. infections
(85). Neutrophil activation by type I Interferon is associated
with increased serum levels of transaminases in P. vivax malaria
and together with murine data showing type I IFN modulates
neutrophil migration to the liver in mice, suggests type I IFN are
responsible for neutrophil mediated liver pathology in malaria
(85). Human evidence showing that neutrophils are present in
the liver during infection and could cause damage is lacking.
Further studies using human samples to identify the role of
neutrophils in severe malaria are needed.

Factors Inhibiting Neutrophil Responses
Although neutrophils can clear parasites in a variety of ways,
several mosquito and parasite antigens can modify neutrophil
responses to the parasite’s advantage (Figure 2). For example,
mosquito salivary proteins can alter neutrophil function.
Secretion of the protein agaphelin in the mosquito’s salivary
glands is increased upon infection with P. falciparum, and
agaphelin can inhibit neutrophil elastase activity, neutrophil
chemotaxis and NET formation in response to phorbol myristate
acetate (PMA) (31) (Figure 2). Other salivary proteins that may
also alter neutrophil function include the antigen-5 salivary
proteins, which scavenge superoxide and inhibit neutrophil ROS
(86) (Figure 2A).

Parasite antigens which can inhibit neutrophil function
include histamine-releasing factor (an ortholog of mammalian
histamine-releasing factor), which was shown to inhibit
neutrophil IL6 production in the liver in a murine malaria
model, and subsequently promoted liver stage parasite
development (87). Also, P. falciparum protein MSP1-19 can
block neutrophil responses to proinflammatory protein S100P,
inhibiting neutrophil chemotaxis in vitro (32) (Figure 2B).
There is clearly an interesting dynamic between neutrophils and
Plasmodium, with each trying to take advantage and control the
other. Identification and understanding of neutrophil parasite
interactions may result in the identification of novel therapeutic
targets and warrants further investigation.

Parasite-neutrophil interactions may also result in
susceptibility to other diseases. Malaria infection (especially
with severe anemia) has been associated with susceptibility
to non-typhoidal salmonella (NTS) bacteraemia (88, 89) and
this is thought to occur due to impaired neutrophil function.
In vitro observations suggest that neutrophil phagocytosis
of parasite products results in them being less capable of
phagocytosing bacteria (47). Ex vivo observations show reduced
ability for neutrophils to generate ROS during malaria (18),
and this reduced function was associated with increased
haemolysis and heme oxygenase-1 (HO-1) expression in
infected individuals (18) (Figure 2A); similar findings have been
reported in asymptomatic infection (90). Mouse data suggests
that haemolysis during infection induces HO-1 and results in
impaired maturation of neutrophils (91). In addition mouse
data shows that IL10 [which is also associated with infection in
children (90)] inhibits neutrophil migration resulting in altered
clinical presentation of NTS (92).

Pigmented Neutrophils as a Marker of
Disease Severity
Neutrophils with malaria pigment can be seen in the peripheral
blood during Plasmodium infection. In children, the percentage
of neutrophils with pigment in the peripheral blood increases
with disease severity (93, 94) and is positively correlated with
parasitaemia (93, 95). The percentage of neutrophils with
pigment has also been positively associated with mortality due to
severemalaria in adults and children (94, 96), and in parasitaemic
pregnant women high numbers of pigmented neutrophils in
the peripheral blood during gestation were associated with
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FIGURE 2 | Proposed mechanisms neutrophil inhibition during Plasmodium spp. infection. (A) Neutrophil ROS may be inhibited due to excess free heme and HO-1 or

due to mosquito salivary protein antigen 5/cap. (B) reduced neutrophil chemotaxis may be due to exposure to free heme, merozoite protein MSP133 or mosquito

salivary protein agaphelin. (C) It is possible that phagocytosis of bulky parasite antigens inhibits neutrophils from producing NETs during Plasmodium spp. infections

and that any NETs produced are degraded by parasite DNase.

lower birth weights at delivery (97). The predictive value of
pigmented neutrophils (94, 96, 97) suggest that they could
indicate sequestered biomass, and because pigment-containing
neutrophils are cleared from the circulation after about 72 h (29)
it is likely they are a marker of recent pigment phagocytosis.
Pigment containing neutrophils have also been associated with
disease severity in P. knowlesimalaria (98).

Neutrophils and Antimalarials
A number of in vitro studies have investigated whether
neutrophil activity may be affected by antimalarial drugs. At
non-physiological levels chloroquine, quinine, proguanil, and
mefloquine all inhibit neutrophil oxidative burst (99) however at
lower physiological plasma levels they, as well as sulphadoxine,
cycloguanil, pyrimethamine and tetracycline, have no depressive
effects on oxidative burst nor markers of oxidative metabolism
(99). Likewise at high concentrations, chloroquine decreases the
phagocytic activity of neutrophils and quinine, chloroquine and
quinacrine inhibit neutrophil chemotaxis but at physiological
concentrations they do not (100, 101). There is however
some evidence that neutrophil chemotaxis and neutrophil
iodination (a measure associated with phagocytosis and oxidative
burst) are inhibited at physiologically relevant concentrations
by pyrimethamine and by mefloquine or pyrimethamine
respectively, (101). Mefloquine inhibits oxidative burst by
interacting with cellular phospholipid-dependent protein kinase
C (102). Amodiaquine and pyronaridine have been shown to
cause neutrophil glutathione depletion in in vitro systems where
pyronaridine is oxidized to a quinonimine metabolite, raising
concerns they could be cytotoxic to neutrophils at physiological
concentrations (103). However, in vivo studies in rats did not find
any quinoneimine metabolites after receipt of pyronaridine nor
is there is clinical evidence of significant toxicity associated with
pyronaridine use in humans [reviewed in (104)].

As well as effects on neutrophil function, studies have
raised the possibility that neutrophil numbers may be
affected by antimalarials (105–107). In an analysis of data
from 7 randomized trials across 13 sites in 9 countries
comparing artesunate-amodiaquine to single and combination

treatments (including amodiaquine mono-therapy, artesunate
mono-therapy, artemether-lumefantrine, artesunate and
sulphadoxine-pyrimethamine, and dihydroartemisinin) the
treatment-emergent adverse event incidence of neutropenia was
11% (107). However, when neutrophil counts were compared
between treatment groups there was no apparent differences
(107). Interestingly, in the case of artesunate, an effect on
neutrophil numbers may be dose dependent. In a clinical study
conducted among Cambodian patients with uncomplicated
malaria, those who received 6 mg/kg/day had lower neutrophil
counts than those who received 2 or 4 mg/kg/day, also 5 of 26
patients who received 6 mg/kg artesunate developed neutropenia
<1000/mm3, while only 1 of 38 patients receiving 2 or 4
mg/kg/day did (105).

A Brief Overview of Neutrophils in Animal
Models of Malaria
Murine models have been used to study the role of neutrophils in
malaria complications including lung injury, CM and liver injury.
Accumulation of neutrophils in the lungs has been associated
with lung injury in multiple murine malaria models (73, 108–
114) and lung injury is associated with increased TNF (108, 109),
parasite sequestration in the pulmonary vasculature (113), the
presence of NETs (73), neutrophil adhesion to endothelial walls,
and with increased vascular permeability (110, 111) but not
ICAM-1 expression (114).

In murine models of CM, neutrophils have been shown to
express cytokines IL2, IL12p40, IL18, IFNγ, and TNF as well
as chemoattractive-chemokines monokine-induced by gamma
(MIG), macrophage inflammatory protein-1α (MIP1α) and
IFNγ induced- protein 10 (IP10) (115) suggesting a role for
neutrophils in cytokine and chemokine secretion. In murine
CM neutrophils are detected in the microvasculature (116), and
neutrophil depletion results in decreasedmonocyte sequestration
and microhaemorrhages in the brain and prevents development
of CM (117). Other neutrophil factors associated with CM
include neutrophil secretion of CXCL10 which may contribute
to high parasitemia and disease (118), and neutrophil expression
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of FcεRI (a high affinity IgE receptor) which may result in the
production of proinflammatory cytokines (119).

Studies have identified a possible role for neutrophils in
liver damage in murine models with neutrophil dependent
liver damage being associated with free heme, NFkB activation
and neutrophil infiltration (120). Neutrophil infiltration and
subsequent liver damage may also be dependent on type I IFN
signaling (85).

Murine models can play a valuable role in dissecting the role
of neutrophils in disease, but whether the roles of neutrophils in
humans and murine malaria are similar is still unclear and more
work needs to be done to validate findings in humans.

A Role for Neutrophils in Vaccine Mediated
Immunity
Neutrophil-antibody interactions can play an active role in
parasite clearance and should be considered when evaluating
vaccine mediated immunity. ADRB toward merozoite antigens
is associated with protection (52, 56), but whether other
antigens such as those on the asexual iRBC, gametocytes or
sporozoites can trigger ADRB, or whether such responses could
be associated with protection, is unknown. Likewise, although
it is clear that neutrophil phagocytosis of parasite antigen,
merozoites, iRBC and possibly gametocytes occurs in vivo (35,
36, 40, 121), it is unknown whether antibodies promoting
neutrophil phagocytosis are protective. Studies examining
antibody mediated neutrophil functions to a variety of antigens
and their associations with protection will help elucidate the
role neutrophils have in antibody mediated immunity and their
potential in vaccine mediated immunity.

A few studies have used animal models to investigate the
role of antibody-dependent neutrophil responses in the context
of protection from disease and also vaccination. In one study,
murine IgG1 toward MSP1-19 was effective at inducing human
neutrophil ADRB and degranulation, but these same antibodies
did not protect against P. berghei expressing MSP1 in vivo (122).
In another study, serum from previously challenged mice and
both murine IgG1 and IgG2 could elicit ADRB from murine
neutrophils in response to murine antigens in vitro, however
vaccination of mice with MSP1-42 resulted in antibodies which
did not elicit neutrophil ADRB toward merozoites and ADRB
did not contribute to vaccine mediated protection (123). On the
other hand, when non-human primates were immunized with
MSP-1, antibodies were produced which opsonised merozoites
and elicited ADRB by neutrophils (63), suggesting that
vaccination can result in generation of antibodies which activate
neutrophils.

As well as their role in parasite clearance by antibody
dependent mechanisms, neutrophils may also play a role in
immune responses to vaccines. There is growing evidence that
neutrophils have the capacity to present antigen to T-cells. Whilst
they may not be as effective at antigen presentation as typical
antigen presenting cells their overall impact may be significant
due to their sheer numbers [reviewed in (4)]. At least in the case
of irradiated sporozoites, data from murine models suggests that
neutrophils are available to take up the vaccine as intradermal
injection of both irradiated and wild type sporozoites result in
recruitment of neutrophils (and inflammatory monocytes) to the

injection site, however there was no evidence that neutrophil
depletion in this model affected the establishment of a protective
immune response (124). The occurrence and significance of
antigen presentation by neutrophils during both natural malaria
infections and vaccination is yet to be investigated.

FUTURE DIRECTIONS

Neutrophils in malaria remains understudied, undertaking the
future research priorities listed below will go a long way
in helping us to understand the role of neutrophils during
Plasmodium spp. infections.

1. Identify the presence (or absence) of neutrophils at sites of
parasite sequestration using ex vivo samples from humans.

2. Identify neutrophil subsets during infection in humans using
ex vivo samples from humans.

3. Identify and quantify neutrophils products (including NETs)
at sites of parasite sequestration and in the periphery using ex
vivo samples from humans.

4. Investigate possible roles of neutrophils in asymptomatic
Plasmodium spp. infection, clinical malaria and severe malaria
by comparing neutrophil counts and indicators of neutrophil
activation and/or inhibition between different clinical groups.

5. Using in vitro models investigate the role of parasite products
(such as DNAse) on neutrophil function.

6. Measure antibody mediated functions of neutrophils (such as
ADRB & phagocytosis) and investigate their associations with
protection from disease.

7. Using in vitro models clarify the role of complement in
neutrophil parasite interactions.

8. Identify whether neutrophils should they be considered in
evaluation of antibody mediated immunity provided by
vaccines.

9. Investigate the role of neutrophils in antigen presentation in
the context of both natural infection and vaccination.

CONCLUSION

The role of neutrophils in protection and disease during
Plasmodium spp. infections has been little studied, and important
questions remain. Further research with a focus on neutrophil
responses toward the parasite and how neutrophils play a role
in parasite clearance will likely aid in the development and
evaluation of vaccines for malaria.
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