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Petr Konečný 1,2*, Rodney Ehrlich 1, Mary Gulumian 3,4,5 and Muazzam Jacobs 2,5,6

1Centre for Environmental and Occupational Health, School of Public Health and Family Medicine, University of Cape Town,

Cape Town, South Africa, 2Division of Immunology, Department of Pathology and Institute of Infectious Disease and

Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 3National Health

Laboratory Service, Department of Toxicology and Biochemistry, National Institute for Occupational Health, Johannesburg,

South Africa, 4Division of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South

Africa, 5National Health Laboratory Service, Johannesburg, South Africa, 6 Immunology of Infectious Disease Research Unit,

South African Medical Research Council, Cape Town, South Africa

Exposure to silica and the consequent development of silicosis are well-known health

problems in countries with mining and other dust producing industries. Apart from

its direct fibrotic effect on lung tissue, chronic and immunomodulatory character of

silica causes susceptibility to tuberculosis (TB) leading to a significantly higher TB

incidence in silica-exposed populations. The presence of silica particles in the lung

and silicosis may facilitate initiation of tuberculous infection and progression to active

TB, and exacerbate the course and outcome of TB, including prognosis and survival.

However, the exact mechanisms of the involvement of silica in the pathological processes

during mycobacterial infection are not yet fully understood. In this review, we focus on

the host’s immunological response to both silica and Mycobacterium tuberculosis, on

agents of innate and adaptive immunity, and particularly on silica-induced immunological

modifications in co-exposure that influence disease pathogenesis. We review what is

known about the impact of silica and Mycobacterium tuberculosis or their co-exposure

on the host’s immune system, especially an impact that goes beyond an exclusive focus

on macrophages as the first line of the defense. In both silicosis and TB, acquired

immunity plays a major role in the restriction and/or elimination of pathogenic agents.

Further research is needed to determine the effects of silica in adaptive immunity and in

the pathogenesis of TB.

Keywords: tuberculosis, silica, immunity, macrophages, granulomas, T cell

INTRODUCTION

It has long been hypothesized that inhaled silica dust contributes to TB development and
progression via its physicochemical and biological properties (1–3). However, while recent research
has explored the role of silica in immune response impairment, the mechanisms of reaction to the
combination of silica particles and Mycobacterium tuberculosis (Mtb) are poorly understood (4).
In this review, the immunological responses to silica exposure and to Mtb are reviewed, either
as independent pathways, or where evidence is available, in the context of co-exposure and dual
disease.
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Silica and Silicosis
There are a number of pathologies associated with exposure to
silica, including silicosis, lung malignancy, autoimmune disease
and pulmonary infection, notably tuberculosis (5, 6).

Silicosis is a disease of the lower respiratory system caused
by high dose and/or long-term inhalation of silica particles in
mining and occupations involved in rock or sand processing,
manufacturing of stone based products and utilization of sand
as an abrasive agent (7–9). Silicosis results from the deposition of
respirable silica particles in the lower respiratory tract, causing
inflammation, collagen deposition, and fibrotic lesions. The
outcome may vary from subclinical pathological changes to
severe damage of lung tissue, diminished quality of life, and
decreased lifespan (10). The development of a specific type of
fibrotic granuloma the signal pathological lesion of silicosis is not
restricted to the lungs but has also been observed in the liver,
spleen, and bone marrow (11).

The prevalence of acute and severe silicosis due to very
high exposures has decreased in the modern era and silicosis
in general is uncommon in developed countries. However,
silicosis remains prevalent in countries with extensive mining
industries, such as China (6, 12, 13), South Africa (14, 15),
Mexico (16), Brazil (17), and India (18), and continues to
be recorded in the USA (19) and Australia (20). However,
many countries do not register occupational diseases accurately
and the enduring “residence time” of silica in the lungs after
exposure, with a long asymptomatic phase, prevents early
diagnosis (21).

The immune system response to silica particles has been
extensively studied. Research has focused mainly on the initial
interaction with cells residing in the lungs and the immunological
modification of innate immune cellular responses. Special
attention has been paid to the first encounters of silica with
alveolar macrophages (AMs). In general, silica particles enter the
alveolar space after inhalation and interact with macrophages,
resulting in the engulfment of inhaled particles into the
phagosome. The MARCO scavenger receptor has been described
as the main molecule responsible for silica recognition and
uptake (22), although other receptors from the group of Pattern
Recognition receptors (PRRs) can be involved. It has been
shown that CD204 may also interact with silica and inhibit
the activity of macrophages. Some of the PRRs, such as Toll-
like receptors (TLRs), are crucial in the response to bacterial
infection. Significant downregulation of Toll-like receptor 2
(TLR2) following silica exposure might be one of the reasons
contributing to higher TB susceptibility (23). Finally, the inability
of macrophages to digest and eliminate phagocytized particles
leads to persistent inflammation and modification of cellular
responses (24).

The toxicity and pathogenicity profile of silica and thus
the risk of silicosis vary with the size, physical and chemical
properties of the inhaled particles (1, 25). A number of studies
have focused on identification and characterization of specific
toxic parameters (25–33). For example, different admixtures in
dust can alter the biological activity of the silica particles (1,
34–38). While crystalline structure has long been accepted as
conferring toxicity on silica (39, 40), recent research suggests that

the number and distribution of silanol and siloxane groups rather
than crystallinity feature as the primary toxic factors (41).

Silica and Tuberculosis
Tuberculosis remains one of the most dangerous diseases of the
modern world, causing more than 1.3 million deaths, and with
over 10 million new (incident) TB cases worldwide, in 2017
(42). Many risk co-factors for TB have been identified, including
malnutrition, alcohol, diabetes and drug abuse (43–46). HIV
infection is a potent co-factor (42, 47), while a higher incidence of
TB has also been observed in individuals suffering from parasitic
infections such as malaria (48) and leishmaniasis (49). Inhalant
co-factors include smoking (50) and indoor air pollution (51, 52).
The co-occurrence of silica exposure, silicosis, and TB has long
been identified in populations exposed to silica-containing dust
(53, 54) and progression of TB associated with silica exposure
or silicosis has been of interest at least since the beginning of
twentieth century (55). The spectrum of effect after exposure to
the two agents is complex. It ranges from retained silica particles
in the lung and TB infection without active disease, to dual
disease, referred to as silicotuberculosis. The fibrotic phase of
silicosis may be sub-radiological and thus not clinically evident
(56), while significant host pathological changes may be observed
in the pre-fibrotic stages as a result of silica particle activity (57).

The protection of silica-exposed and silicotic individuals
against mycobacterial infection and TB in particular remains
an important clinical and public health issue in the twenty-
first century (58). Silica dust control, treatment of latent TB
infection, early detection and effective treatment of TB are the
main modalities of control. However, at the community level,
a recent trial of mass treatment of latent TB infection in gold
miners failed to show a reduction in TB incidence rates after
treatment courses had ended (59). With respect to vaccination,
the evidence does not support the use of Bacillus Calmette–
Guérin (BCG) in tuberculin negative silica exposed workers or
silicotics (60). For example, vaccination with BCG in guinea pigs
exposed to silica-containing dust has been reported as causing
an increase in fatal BCG infection, while an increased death rate
from silicosis and silicotuberculosis has been observed in BCG
vaccinated Bulgarian miners (61).

With the objective of understanding exposure-response
effects, the risk as well as the progression and severity of
mycobacterial infection in the presence of silica exposure
have been investigated, using variable dust composition
and concentrations of quartz (the most common crystalline
silica polymorph), and various inoculation sites of different
mycobacterial strains. While tracheal and, in particular,
intravenous infection produce extensive pulmonary lesions,
a subcutaneous introduction of bacilli did not show any
pathological changes. It has also been confirmed that quartz
represents the most toxic form and that there is a relationship
between increasing dust/silica concentration, number of bacilli
and development of tuberculous lesions (62). Co-exposure
in vivo in guinea pig models has also provided information
about the active role of Mtb in pneumoconio-tuberculous lesion
formation, with the introduction of the antituberculotic drug
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rifampicin resulting in decreased formation or its elimination
(63).

However, since activation of the immune system underlies
disease activation and its accelerated progression, the factors
targeting components of protective immune mechanisms
and leading to impairment of defense against mycobacterial
infections need to be understood. Exposure to silica decreases
cellular function, reduces the capacity of dendritic cell activation
and leads to a non-specific, impaired inflammatory response
which compromises antibacterial mechanisms (64). These
effects provide pathways for the promotion by silica exposure
of increased susceptibility to bacterial infections, particularly
Mycobacterium tuberculosis and other mycobacterial species
(63, 65, 66).

Detailed mechanisms leading to disease in the presence of
silica and Mtb are not yet understood, and multiple pathways
are likely to be involved. For example, genetic polymorphism
of tumor necrosis factor alpha (TNF-α), natural resistance-
associated macrophage protein 1 (NRAMP1), and inducible
nitric oxide synthase (iNOS) in macrophages have been shown
to influence the response to both silica exposure or silicosis
and TB in Chinese iron miners (67). Similar observations
have been made in silicotic South African gold miners (68).
Based on their specific single nucleotide polymorphism, different
genotypes of the above-mentioned proteins showed intricate
differential effects. These were either protective (variation of
iNOS Ser608Leu genotype in silicosis) or had deleterious effects
(G>C mutation of NRAMP1 intron 4 in silicosis, combined
NRAMP1 D543N G/G and INT4 G/C+C/C, polymorphic site
of G/A substitutions at positions−308 of TNF-α and TNF-a-308
G/G and NRAMP1 INT4 G/C+C/C genotype in TB) (67, 68).

Polymorphism of other genes related to the response to TB
and silica such as transforming growth factor-beta 1 (TGF-
β1) and cytokines interleukin 10 (IL-10) and interferon gamma
(IFNγ) have been investigated, but no association found (69).

The following sections review the innate and adaptive cellular
immune responses to silica and Mtb separately and with co-
exposure, according to the immune cells or processes involved.
The findings are summarized in Table 1, which also highlights
the gaps in knowledge.

INNATE CELLULAR IMMUNE RESPONSES
IN SILICOSIS AND TUBERCULOSIS

Alveolar Macrophages (AMs)
Alveolar macrophages represent the first line of defense against
many airborne pathogens and inhaled environmental particles.
The reaction of AMs after exposure to silica (70, 105–115) has
been extensively studied. The tissue remodeling and formation
of granulomas in response to exposure to both silica and Mtb
suggest that similar mechanisms are involved in the elimination
process in individuals exposed to silica or Mtb separately
(116–118). Results from several studies have confirmed a
noticeable difference in growth ofMtb inmacrophages preloaded
with silica particles; macrophages were more susceptible to
infection represented by an increase in the number of infected

macrophages and a higher number of bacilli present in each cell
(119). Thus, silica particles facilitate intracellular replication and
subsequent release from macrophages (61).

Using BCG vaccine inoculations, silicotic mice exhibited
a higher accumulation of BCG colonies in harvested organs
linearly correlating with the length of incubation than naïve
counterparts. After 12 weeks, more than 40 times more colonies
were observed in the spleen of silicotic mice, 70 times more in the
liver and more than 6,000 times more in the lungs. Presence of
silica particles significantly affects cellular response and bacterial
growth properties (71). Higher Mtb burdens have been observed
in murine lungs preloaded with silica compared to silica-free
control animals (73). Also, extracted AMs contained more
engulfed bacilli. The transplantation of AMs from silica-exposed
into control, silica-unexposed mice, resulted in an increase of
susceptibility to TB upon infection withMtb. Thus, macrophages
preloaded with silica particles exhibit a higher number of Mtb-
phagocyting cells as well as higher rates of Mtb phagocytosis,
leading to an increase in the number of bacteria engulfed in the
macrophage (120). Silica-containing macrophages also display
impaired capability to adhere and migrate compared to healthy
controls (72).

EnhancedMtb phagocytosis could be caused by an interaction
with intracellularly located surfactant-associated protein A (SP-
A) or its related proteins (121–123) A significantly higher release
of SP-A has been shown to follow exposure to silica (124) and
this increase was associated with reduced silica-related toxicity
to AMs (62, 125) analyzed the impact of various types of dust
particles on lung tissue after co-administration with inoculated
BCG and specifically on the development of fibrotic lesions. They
demonstrated that rats and guinea-pigs developed only mild
fibrotic lesions after exposure to mine dust, anthracite, kaolin,
and BCG alone but large destructive lesions with combined dust
and BCG.

Dendritic Cells (DCs)
The influence of silica exposure on DCs function has been
little investigated. Beamer and Holian (126) describe an increase
of DCs accompanying the decrease in numbers of AMs after
exposure to silica. It has been reported that viability of DCs
is compromised after exposure to silica particles (74). The role
of DCs in resistance is also not well-documented in cases of
silica potentiated TB. It has been shown that mycobacteria are
able to enter the intracellular spaces of DCs via the specific
surface protein DC-specific intercellular adhesion molecule-3
grabbing non-integrin (DC-SIGN) (127). Although the main
carriers of Mtb are macrophages, the most infected population
of cells in lymph nodes are DCs. The evidence is that antigen
presentation properties and migration of DCs play important
roles in the establishment of long-term infection (75). They
also increase their antigen-presenting properties after infection
with mycobacteria, facilitate immune system responses through
secretion of pro-inflammatory cytokines [tumor necrosis factor
alpha (TNFα), IL-1] and up-regulation of co-stimulatory (CD54,
CD40) molecules (76). DCs also specifically stimulate the
production of IFNγ by T cells after exposure to Mtb (128).
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TABLE 1 | Basic summary of acquired knowledge about specific components of the immune system after exposure to silica, Mtb, or both, highlighting the gaps and

opportunities for future research.

Silica Mtb Silica + Mtb

Macrophages Dose-dependent Induction of

apoptosis, fibrotic nodule

formation, chronic activation of

inflammatory and

anti-inflammatory pathways,

ROS, and RNI production (6)

Granuloma formation, chronic inflammation, survival

mechanisms: ROS and RNI detoxification, blockade of

phagosome maturation, granuloma formation (70)

Increase in Mtb uptake (71);

impairment of adhesion and

migration (72, 73)

Dendritic cells Lower viability (74) Cells with the highest bacterial burden in lymph nodes (75);

increase in antigen presentation and secretion of

pro-inflammatory cytokines (76); activation of adaptive

immunity (77)

Yet to be investigated

Neutrophils Decreased phagocytosis and

viability (78, 79)

Control of Mtb replication, prolonged activation—tissue

damage (80); trapping of bacilli (81); facilitation of disease

progression (82)

Yet be investigated

NKs Decrease in NKs (83, 84); silica

nanoparticles cause increase in

NKs (85)

Protective role of NKs—production of IFNγ (86) Yet to be investigated

Antigens Inconsistent evidence, increase

in antigen-presenting properties

of AMs (87)

CD1 mediated T cell activation (88, 89); signaling for APCs

(90)

Yet to be investigated

T cells CD4+, CD8+, γδ T cells Increase in FAS ligand—higher

rate of apoptosis (91); shift

between Th1/Th2 response

(92–96); Tregs and Tresps

activation (97); reduced inhibitory

activity of T cells (98)

Bacteriostatic and bactericidal effect (77); IFNγ

production—phagocytic properties of macrophages, Th2

response activation and Tregs production (99, 100)

Sporadic and contradictory

evidence

Antibody-mediated immunity (B cells) Increase and decrease in B cell

activity (101); increase in

autoantibodies (97)

B cells are the producers of antibodies, modulators of T cell

activity and T cell memory, influencing function of dendritic

cells (102); association with containment of Mtb (103); CD4+

T cell regulation (104)

Yet to be investigated

Neutrophils
Neutrophils rapidly respond to pathogen challenge and
contribute to control of Mtb replication. However, apart from
its protective properties, the cell’s prolonged oxidative and
proteolytic activity also lead to tissue damage (80). Neutrophils
possess the direct ability to restrict Mtb by engulfment of bacilli
(129, 130). Increased influx of neutrophils into Mtb-infected
tissue has been observed although in this study no bacteria were
found inside these cells. This might point to antibacterial activity
independent of phagocytosis (131). Their detailed role in disease
is thus not yet fully understood.

It has been found that low concentrations of neutrophils in the
peripheral blood cause incapability to restrict or kill introduced
Mtb (132). Its oxidative phagocytic properties may kill some
of the bacteria after phagocyting the dying macrophage (133).
Antimicrobial extracellular traps (NETs) formed by neutrophils
are also able to contribute to antimycobacterial activity by
trapping bacilli, but not often by killing them (81). Neutrophil-
related restriction of mycobacterial growth can also be caused by
their role in specific T helper 1 (Th1) and Th17 cell production
(134). In contrast, it has been argued that neutrophils possess
only poor direct antimycobacterial activity and that they instead
facilitate the progression of infection (82). Silica particles are
known to harm neutrophils in similar ways to that of their effect

on macrophages, by decreasing their viability and phagocytic
properties (78, 79).

Other Cells [Basophils, Eosinophils,
Natural Killer (NK) Cells]
Detailed information about other components of the innate
immune system in patients with silica-related TB is almost
non-existent. A protective role for NK cells has been observed
in mouse lung and splenic cultures infected with Mtb. In
this study, production of IFNγ by NK cells significantly
contributed to limiting mycobacterial infection, independently
of IFNγ produced by T cells. Higher mycobacterial burden
and granulocytic activity have been observed after depletion
of Interleukin 12 (IL-12), which generally promotes NK cell
cytotoxic activity (86). A decrease in NK cell number has
been observed after the introduction of silica particles (83, 84).
Detailed understanding of silica effects on NK cells is still lacking,
but it has been observed that silica particles inhibit Toxoplasma-
induced NK cell activity (135). By contrast, silica nanoparticles
induce a significant increase in NK cells in mouse spleen, which
may indicate a size-dependent effect of the particles on NK cells
(85).
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ADAPTIVE CELLULAR IMMUNE
RESPONSES IN SILICOSIS AND
TUBERCULOSIS

Antigen Presentation
Antigen presentation is generally described as the presentation
of lysed proteins on the surface of antigen-presenting cells
(APCs) via the Major Histocompatibility Complexes (MHC),
which is recognized by T cell receptors leading to their activation.
Mycobacterial phospholipids activate CD1-mediated T cells (88,
89), and it has been observed thatMtb provides signaling for both
T cells (lipid antigens) and APCs (polar lipids via TLR-2) (90).

Silica, as a pro-inflammatory agent, causes primarily
induction of apoptosis of AMs. Various studies indicate that
silica does not act as an antigen (136). Rather, silica particles
support the increase of antigen-presenting properties of
macrophages (87). Enhanced activation of AMs could also be
related to autoimmune disease as a result of silica exposure. No
significant differences were detected in the expression of MHC
II molecules on AMs between silicosis and other diseases, such
as sarcoidosis and allergic alveolitis (137). However, Pfau et al.
(138) observed that silica-related antigens presented by apoptotic
AMs are recognized by autoantibodies in mice. The question
of how silica particles modulate presentation of antigen in the
relationship with mycobacterial infection remains unanswered.

T Lymphocytes—CD4+, CD8+, γδ T Cells
T cells activation occurs on exposure to an antigen which
is presented by APCs. The major APCs responsible for
defense against mycobacterial infection and activators of
adaptive immunity are macrophages and dendritic cells. Broad
antimycobacterial activity is provided by different subsets of T
cells targeting a wide range of specific mycobacterial antigens.
It is known, for example, that CD4+, CD8+, γδ T cells, and
CD1 restricted T cells response to infection, contributing to
bacteriostatic and bactericidal effects (77). CD4+ and CD8+
T cells act as IFNγ producers and facilitate the phagocytic
properties of macrophages (Figure 1). The activity of these
subsets might be independent of each other, although their
combined activity shows the strongest anti-mycobacterial effects
(139). The onset of adaptive immunity is initiated with a
significant delay after initial exposure to the pathogen. The
restrictive activity of T cells is sufficient for bacterial arrest but
not sufficient to kill mycobacteria, which might contribute to
prolonged incubation and consequent re-activation of disease
(140). In case of T cells response, a number of studies have
confirmed thatmycobacterial infection triggers Th2 response and
T regulatory cells (Tregs) production rather than Th1 response.
Deficiency in Th1 response may contribute to poor elimination
and successful proliferation of Mtb in the host (99, 100).

The response of adaptive immunity components to silica
particles is related to the cascade of activities mediated by the
interaction with cells involved in innate immunity, particularly
macrophages. However, direct interaction of T cells with silica
cannot be excluded. It has been observed, that T cells acquire
higher expression of FAS receptor and its ligands in lymphocytes

obtained from bronchoalveolar lavage (BAL) fluid from silica-
exposed individuals. This includes an over 20% increase in
Fas receptor and more than 30% in Fas ligand on CD4+,
CD8+ CD56+, and CD45RO+ cells, corresponding to the
higher rate of apoptosis (30%) (91). Both inflammatory and
anti-inflammatory responses have been induced after exposure
to silica. However, conflicting results in specific cytokine
production have been reported, suggesting that there is a shift
between Th1/Th2 responses during disease progression. There
is noticeable inconsistency for another cytokine involved in Th1
response, IFN-γ. Its levels in lungs and lymph nodes have been
reported as both elevated and undetected in silica-exposed mice.
As a result of Th2 response, an increase in production of IL-12
mRNA and IgG1 has been reported in silicotic mice and in vitro
(92, 96).

More recently, attention has been paid to the role of silica
in autoimmune responses, in which autoimmune cells are
activated by signals from silica-induced apoptotic macrophages
(141). Following silica exposure, Tregs and Responder T cells
(Tresps) are chronically activated and infiltrate the peripheral
T cell population. By increased production of Fas ligand, Treg
cells induce apoptosis and impair the immune response (97).
Therefore, the overall number and inhibitory activity of T cells
are reduced, with Tresps surviving due to an expression of
apoptosis inhibitors (98). A closer look at cellular quantitative
evaluation shows a silica-induced reduction of a number of
macrophages and a consequential decrease of macrophage-
dependent activity of T- and NK cells (142).

Some of the features related to the leukocyte response
modulation after silica exposure entail inconsistent and
contradictory mechanistic effects regarding silica-TB co-
occurrence. For example, increased production of TGF-β as a
reaction to silica (143) should assist in the process of elimination
of Mtb, not its potentiation (144, 145). There is other evidence
for a protective effect of silica in its interaction with the immune
system, for example in protecting against the development of
diabetes (146, 147).

Antibody-Mediated Immunity
B lymphocytes mediate specific immunological responses against
pathogens via the production of specific antibodies. They can
modulate responses to infection independent of antibodies;
however, the mechanism(s) of such activity is not yet understood
(148). The proliferation of plasma cells in patients with silicosis
was discovered early (149, 150). Silica particles can cause
both an increase and inhibition of B cell activity. Reduced
and increased numbers of antibodies have been observed after
exposure to silica in animal models. Moseley et al. (101)
observed complete inhibition of immunoglobulin-secreting cells
(ISCs) after the addition of silica in low- and high-density
cultures depleted of monocytes. In contrast, in high-density
cultures of unfractionated mononuclear cells, silica caused
a significant increase in ISCs. It, therefore, seems that the
number of immunoglobulin secreting cells is dependent not
just on silica particles but also on other factors such as
density of culture and presence of monocytes. A significant
reduction in B cells was observed in mouse spleens treated
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FIGURE 1 | Response of macrophage to silica and Mycobacterium. CR, Complement receptors; MR, Mannose receptors; TLR, Toll like receptors; NOD, Nod-like

receptors; ROS, Reactive oxygen species; RNI, Reactive nitrogen intermediates; IL-1β, Interleukin 1 beta; MHC I, major histocompatibility complex 1; MHC II, major

histocompatibility complex 2; IFNγ, Interferon gamma; TCR, T-cell receptor; DCs, dendritic cells; CD4+/CD8+, effector T cells; Tregs, regulatory T cells; Tresps,

responder T cells; γδ cells, gamma delta T cells. Silica particles are usually recognized by scavenger receptors and engulfed by macrophages. Owing to the poor

capability of the cell in eliminating the particle by standard lysosomal proteolytic enzymes, silica particles remain in the cell and initiate a cascade of pro- and

anti-inflammatory processes, leading to a number of pathological modifications in the immune response. Mycobacterium is identified by a different set of cellular

receptors but undergoes a similar process upon its ingestion. The physiological response of the immune system consists of digestion of bacilli and its antigen

presentation on the cell surface leading to recruitment of effector cells such as CD4+ and CD8+ T cells. Mycobacterial evasive mechanisms frequently manage to

avoid elimination, leading to pathological.

with silica nanoparticles (85). The most common effect of silica
was an increase of autoantibodies such as rheumatoid factor
(anti IgG), and anti-nuclear antibodies related to autoimmune
diseases such as Caplan’s syndrome, scleroderma, (ANCA)-
related vasculitis/nephritis, and systemic lupus erythematosus
(97).

In response to mycobacterial infection, B cells do not simply
act as producers of antibodies but also as modulators of T
cell activity and development of T cell memory. They also
influence the function of other effector cells such as DCs. The
importance of B cells during mycobacterial infection is based
on the co-operation and co-stimulation with other components
of the immune system, suggesting more complex involvement
in the immunological response (102). Antibodies in lymphocyte
supernatants have been studied to obtain information about
its diagnostic potential in pediatric TB patients. The findings
indicated that antibodies were present at higher concentrations
only during acute disease in TB positive patients compared to
controls (151). Proliferating B cells are mostly present in sites of
granulomas actively secreting TB-specific antibodies (103, 152)
observed that abnormally located B cells in patients with TB are
associated with a containment of Mtb and with IL-17 and IL-
22 production. The same group also described inhibitory effect

of TB-related B cells on Th17 cell activation and therefore its
involvement in CD4+ T cell regulation (104). While the overall
role of B cells in the immune response to M. tuberculosis has
been studied extensively (153, 154), its relationship with silica
exposure has not yet been documented.

CONCLUSION

It is evident that the human immune system plays a central
role in pathophysiological processes initiated after silica exposure
and which have an impact on the development of TB. A
detailed description of silica’s involvement in TB infection,
course, progression, re-activation and outcome has yet to be
properly described. Existing research confirms the substantial
role of the innate immune system in both direct defense and in
the mobilization of other components of the immune system as a
response to TB infection. Such findings are likely to underlie the
higher susceptibility of silica-exposed and silicotic individuals to
TB. However, there remain a number of gaps in knowledge, as
summarized in Table 1.

Recent findings suggest a more complex involvement of
adaptive immunity in the containment and elimination of Mtb
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and its activation in latent infection. The effects of the immune
response to silica exposure are complex and do not always lead
to increased susceptibility to TB; some promote the elimination
of mycobacteria rather than their proliferation. For example,
silica-induced Th1 response activation, mediating TNFα and
IFNγ production, should in theory contribute to resistance to or
elimination of Mtb. An increase in Th2 response after exposure
to silica might be one of the contributing factors for successful
propagation of Mtb. Discrepancies in evidence of pro- and
anti-inflammatory pathway involvement, however, suggest more
intricate reactions promoting fibrogenesis which might make a
direct contribution to predisposition to TB.

The subject of this review has clinical relevance. The
pathological activity of silica is important in the susceptibility
to and prognosis of associated TB in silica-exposed populations
globally. The considerations in this review should inform studies
that aim to investigate outcomes of standard TB treatment
regimens as they apply to silicotuberculosis by providing insight
into mechanisms relevant to drug efficacy.

Finally, knowledge gained from the study of the silica-
TB interaction could provide information relevant to the
understanding of other pathological processes associated with
silica exposure.
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