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T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide

help to B cells for the formation and maintenance germinal centers, and the production

of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As

such, Tfh cells are essential for the generation of successful long-term humoral immunity

and memory responses to vaccination and infection. Conversely, overproduction of Tfh

cells has been associated with the generation of autoantibodies and autoimmunity.

Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human

and mice expressing activating mutants have revealed that PI3Kδ is a key regulator of

Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1,

repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute

LCMV infection, WT and activated-PI3Kδ mice (Pik3cdE1020K/+) show comparable ratios

of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+

mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an

oversimplification and PI3K-mediated pathways are likely to integrate multiple signals

to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell

generation will be discussed in the context of the human primary immunodeficiency

“Activated PI3K-delta Syndrome” (APDS), also known as “p110 delta-activating mutation

causing senescent T cells, lymphadenopathy and immunodeficiency” (PASLI). Overall,

these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte

responses.
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INTRODUCTION

Naïve CD4+ T helper (Th) cells play pivotal roles in adaptive immunity through the differentiation
into distinct cytokine-producing effector subsets that specifically fight a wide range of pathogens
and tumors (1). T follicular helper (Tfh) cells provide help to B cells for the formation of
germinal centers (GCs) (2–4), a specialized microenvironment where clonal expansion of B cells,
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immunoglobulin diversification, affinity maturation, and
development of memory B and long-lived plasma cells occur
in response to immune challenge (5). The outcome of GC
reactions requires proper help provided by Tfh cells (6–9).
Most successful human vaccines are based on the generation
of long-term protective humoral responses derived from the
interactions of Tfh and GC B cells; however, Tfh cells can also
promote dysregulated responses and autoimmunity (7, 10, 11). It
is, therefore, critical to understand factors that promote or limit
Tfh cells to elicit tightly controlled GC responses.

Recent data from gene-targeted mice, as well as mice and
humans expressing activating mutants of phosphatidylinositol 3-
kinase delta (PI3Kδ), suggest that PI3K activity is an essential
component of pathways driving Tfh cell and GC formation
(12–16). In this review, we discuss PI3Kδ-mediated pathways
involved in the generation, maintenance and function of Tfh
cells, including cellular receptors that activate PI3K within
T cells, molecular pathways activated, and implications for
autoimmunity, with a focus on the genetic disease APDS/PASLI.

PI3K SIGNALING IN IMMUNITY

PI3K Signaling
The PI3Ks are a family of heterodimeric lipid kinases that are
activated downstream of a variety of receptors, including growth
factor, antigen, costimulatory, cytokine, chemokine, and Toll-like
receptors (17, 18). Class IA PI3Ks consist of a p85 regulatory
and a p110 catalytic subunit that catalyzes the addition of a
phosphate to the membrane phospholipid PI(4,5)P2, to generate
phosphoinositide 3,4,5-triphosphate (PIP3). PIP3 helps recruit
signaling molecules containing pleckstrin homology and other
PIP3-binding domains to the plasma membrane to propagate
signaling cascades (Figure 1). Mammals express three class IA
catalytic isoforms: the broadly expressed p110α and p110β,
and p110δ, which is expressed primarily by immune cells (17).
Notably, PI3Kδ is activated by a variety of cell-surface receptors
that are critical for Tfh cell differentiation, localization and
function, including the T-cell receptor, CD28, and ICOS co-
receptors, and cytokine receptors (17).

Activated-PI3K coordinates the recruitment ofmolecules such
as PDK1 that phosphorylates and activates the serine/threonine
kinase AKT, which in turn phosphorylates multiple targets.
Among these are the FOXO transcription factors, which are
then sequestrated outside the nucleus by 14-3-3 proteins
and degraded. FOXOs regulate transcription of multiple
genes involved in lymphocyte development, differentiation and
function (17, 20). Another downstream effector of PI3K is
the mammalian Target of Rapamycin kinase (mTOR), which
forms two complexes, mTORC1 and mTORC2, with different
scaffolding partners (21). AKT activates mTORC1, an ancient
regulator of metabolism, protein synthesis, and cell growth.
mTORC2 is essential to fully phosphorylate and activate
AKT, thus contributing to downstream signaling, including
FOXO1 inactivation, and actin reorganization (21–23). PI3K
is counteracted by the lipid-phosphatases PTEN and SHIP-1/2
that convert PIP3 to PI(4,5)P2 and PI(3,4)P2, respectively, (17)
(Figure 1).

The importance of PI3Kδ in lymphocyte function is
highlighted by the human primary immunodeficiency
APDS/PASLI, in which patients are heterozygous for activating
mutations in PIK3CD, the gene encoding p110δ. These
patients show immunodeficiency and lymphopenia, as well as
lymphoproliferation and autoimmunity (14, 15, 24, 25). Four
independent groups, including us, have recently generatedmouse
models expressing the E1020K activating mutant of p110δ, which
recapitulate many features of APDS/PASLI (16, 26–28). Notably,
patients and Pik3cdE1020K/+ mice exhibit elevated circulating
Tfh cells and GCs associated with autoantibody production
(15, 16, 24, 29). Mice that express constitutively active p110α in
T cells (30) or have a T cell-specific deletion of PTEN (13) also
have elevated Tfh cell frequencies, supporting a more general
connection between PI3K activity and Tfh cells. Nonetheless,
the observation that p110δ-inactivation in T cells abrogates Tfh
cell generation, supports a non-redundant role of p110δ in this
process (12, 13). Together, these data provide strong evidence
that PI3Kδ is an important component of pathways driving Tfh
cell differentiation.

Tfh Cell Differentiation
The generation of Tfh cells is a multistage process that requires
the integration of signals from different cell types (31). In the
T cell zone of secondary lymphoid organs, antigen-presenting
dendritic cells (DCs) activate T cells to initiate the pre-Tfh cell
program, leading to induction of the costimulatory molecule
ICOS and chemokine receptor CXCR5, as well as downregulation
of CCR7, which together permit migration to the T-B cell border
zone (32–34). Here, activated B cells receive signals from pre-
Tfh cells to differentiate either along extra-follicular or GC
pathways (5, 35). Cognate interactions with activated B cells help
promote the differentiation into GC-Tfh cells (36), identified
as CXCR5hiPD-1hiFoxp3−CD4+ T cells that also express high
levels of ICOS, CD40L, and the Tfh-master transcription factor
BCL-6, which are all critical for Tfh cell differentiation (37, 38).
In turn, Tfh cells provide signals via costimulatory molecules
and cytokines that help establish and maintain GCs. Thus,
the generation of Tfh cells and GC reactions requires intimate
communication between T and B cells involving multiple
receptors that activate PI3K.

ICOS-PI3K Pathways in Tfh Cells
One of the key costimulatory receptors expressed by Tfh
cells is ICOS, a CD28 family member. CD28 and ICOS both
activate PI3Kδ and are required for Tfh cell development
and function. CD28-CD80/CD86 interactions are involved in
early T cell activation, including initial induction of ICOS,
BCL-6, and CXCR5 (39), which are necessary for Tfh cell
formation; Cd28−/− mice show a total absence of Tfh cells
and thymus-dependent (TD) germinal centers (40–42). ICOS is
upregulated on activated T cells shortly after TCR stimulation
and interacts with ICOS-ligand (ICOS-L) on antigen presenting
cells including DCs and B cells (43). Icos−/− and Icosl−/−

mice display severely reduced humoral response to TD-
antigens characterized by a lack of immunological memory
and defective GC formation (44–49). Patients lacking ICOS
display a common variable immunodeficiency (CVID) with
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FIGURE 1 | PI3K signaling pathways in Tfh cell differentiation. Class IA PI3Ks (PI3Kα, PI3Kβ, PI3Kδ) are lipid kinases composed by a regulatory (p85) and a catalytic

(p110) subunit. Multiple receptors activate PI3K in CD4+ T cells, including TCR, CD28, ICOS, OX-40 and IL-21R, leading to PI3K recruitment to the plasma

membrane and conversion of the membrane lipid PI(4,5)P2 to PI(3,4,5)P3. In T cells, chemokine receptors, including CXCR5, preferentially drive the activation of the

class IB PI3Kγ (19). PI3K activity is counteracted by the inhibitor receptor PD-1 that blocks CD28 signal transduction through SHP-2 recruitment and PTEN induction.

The phosphatases PTEN and SHIP-1/2 counteract PI3K signaling by converting PIP3 to PI(4,5)P2 and PI(3,4)P2, respectively. PIP3 recruits to the plasma membrane

proteins containing pleckstrin homology domains, such as AKT and PDK1. The serine/threonine kinase AKT gets activated by phosphorylation by PDK1 (at Thr308)

and mTORC2 (at Ser473). In turn, activated pAKT phosphorylates inhibitors of mTORC1 leading to its activation. mTORC1 phosphorylates several factors including

S6-kinase (S6K), that phosphorylates S6, driving protein synthesis and cell proliferation, important events for Tfh cell differentiation. pAKT also phosphorylates the

FOXO-1 transcription factor leading to its export outside the nucleus and degradation by binding 14-3-3 proteins. FOXO-1 represses Bcl6, essential for Tfh cells, and

promotes expression of multiple genes including Sell, Tcf7, Ccr7, and Klf2. While KLF-2 restrains Tfh cell program through multiple mechanisms, TCF-1 promotes Tfh

cell formation by inhibiting Il-2rα, Blimp1, Ifng. At the same time, it has been shown that mTORC2-pAKT may also support TCF-1 activity through the inactivation of

GSK3β, an inhibitor of β-catenin and TCF-1. Overall, PI3K pathways drive BCL-6+ Tfh cell differentiation that coordinates GC responses and humoral immunity after

infections and vaccination through the generation of memory B cells and long-lived plasma cells (LLPC).

reduced circulating Tfh cells (50, 51). Conversely, mutations
affecting Roquin, a negative post-transcriptional regulator of
ICOS mRNA, increase Tfh cells and drive autoimmunity
(52, 53).

ICOS helps drive multiple stages of Tfh cell differentiation,
including the early generation of CXCR5high T cells, modulation
of other chemokine and homing receptors through regulation of
the KLF2 transcription factor (39, 54), and T:B cell non-cognate
interactions that promote T cell motility at the T:B cell border
(55). ICOS-ICOS-L interactions are also critical for localization
and maintenance of GC-Tfh cells (9, 39, 54).

The essential role of PI3K in ICOS function was highlighted
by data showing that mutation of the p85-binding site, which
selectively abrogates PI3K recruitment, led to defects in Tfh
cell formation similar to ICOS-deficiency (56). Inhibition of
p110δ also prevented ICOS-mediated changes in cell migration
and morphology in vitro (55). Conversely, we found that
activated-PI3Kδ mice show T cell-intrinsic increases in Tfh cell
differentiation, even in the presence of blocking anti-ICOS-L
antibody, therefore bypassing the requirement for ICOS for Tfh
cell development (16). Thus, PI3K appears to be a major effector
of ICOS, required for Tfh cell formation and maintenance.
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PI3K Signaling Downstream of ICOS
After ICOS ligation, activated-PI3Kδ transduces its signals
through several intermediates, including pAKT-mediated
inactivation of FOXO1 (20). FOXO1 transcriptionally represses
Bcl6, a driver of Tfh cell differentiation (30, 57, 58); strong PI3K
activity relieves this repression. FOXO1 also transcriptionally
activates Klf2 (59), which restrains Tfh cells and promotes
alternative T helper subsets through at least four mechanisms:
(1) induction of S1pr1, downregulation of which is essential
for Tfh cell retention in GC and efficient polarization; (2)
induction of BLIMP1, which negatively regulates Bcl6 and Tfh
cell generation; (3) induction of T-bet and GATA3 which drives
Th1 and Th2 cell differentiation, respectively; and (4) repression
of Cxcr5 (39, 60). Accordingly, Foxo1−/− CD4+ T cells generate
increased percentages of pre-Tfh cells (CXCR5intBCL-6int)
early post-immunization, even in the presence of anti-ICOS-L
(57), similar to cells expressing activated-PI3Kδ (16). These
data support the ICOS-PI3Kδ-FOXO1 pathway as critical for
Tfh cell development; accordingly, Pik3cdE1020K/+ CD4+ T
cells exhibit elevated pFOXO1 upon TCR stimulation, even
without further ICOS re-stimulation (16). Furthermore, an
AKT-resistant mutant of FOXO1 prevents increased Tfh cells in
the presence of activated-PI3Kδ (16). It is also of note that ICOS
is a stronger inducer of PI3K than CD28, resulting in greater
inhibition of FOXO1; this may account for the inability of
CD28 to compensate for ICOS-deficiency in promoting Tfh cells
(39, 42, 56, 61, 62). However, Foxo1−/− T cells show defective
GC-Tfh (CXCR5highBCL-6high) cell formation (57) which is
not observed with activated-PI3Kδ (16). Thus, cells expressing
activated-PI3Kd likely still retain some FOXO1 activity. FOXO1
is required for sustained surface ICOS expression (57), providing
a possible explanation for this defect. Indeed, chromatin
immunoprecipitation and deep sequencing revealed FOXO1
binding sites in multiple genes that influence Tfh cell fate,
including Cxcr4, Batf, Irf4, Icos, and Prdm1 (57, 63).

Nonetheless, despite increased GC-Tfh cell differentiation,
Pik3cdE1020K/+ mice show disorganized GCs with increased
Tfh cell infiltration and impaired class-switched antigen-specific
responses to immunization (16, 27, 28). Multiple factors may
contribute to these poor responses, including impaired B cell
selection due to increased Tfh cells (7) and Tfh cell mis-
localization (16), or intrinsic B cell defects. Indeed, although
deletion of p110δ in B cells only minimally affected GC
formation and T cell-dependent humoral responses after protein
immunization (13), activated-PI3Kδ drove B cell-intrinsic
increases in GC B and plasma cells, as well as impaired class-
switched antibody production (16, 28). Increased GC B cells may
in turn further drive expanded Tfh cell numbers, contributing
to immune dysregulation. Additionally, increased GCs that fill
the follicular dendritic cell network at baseline, may prevent
new GC formation as mice age (16). Whether and how FOXO1
contributes to defects in antigen-specific responses or whether
additional downstream effectors of PI3K are involved remain
intriguing questions. It should also be noted that additional
receptors expressed by Tfh cells, including OX-40, and IL-21R
activate PI3K (64) and may contribute to expanded Tfh cell
populations in these mice; in contrast, PD-1, an inhibitory

receptor highly expressed by Tfh cells (65), counteracts PI3K
by blocking CD28 signaling and increasing PTEN expression
(66–69) (Figure 1).

CONTEXT-DEPENDENT ROLES FOR PI3K
IN T CELL DIFFERENTIATION

Viral Infection
Although the connection between ICOS and PI3Kδ provides
strong evidence for PI3Kδ driving Tfh cells, the view that PI3K
exclusively promotes Tfh cells may be a simplification; this
is particularly apparent when looking at the differentiation of
Tfh vs. Th1 cells during viral infection. In response to viral
or strong Th1 polarizing infections, CD4+ T cells undergo an
early bifurcation such that up to 50% of viral-specific T cells
express BCL-6 and become Tfh cells, while the rest express
BLIMP1 and SLAM, and become IFNγ-producing Th1 cells
(54). Although activated-PI3Kδ increased percentages of Tfh
cells at baseline and in response to immunization (16), as well
as polyclonal CXCR5+PD-1+ Tfh cells after LCMV infection
(Figure 2A), it did not alter Tfh cell percentages, nor Tfh/Th1
ratios, within viral-specific GP66-tetramer+ CD4+ T cells in
the same mice (Figures 2B,C). We also observed increased
percentages of circulating CXCR3+ Tfh1 cells in patients with
APDS/PASLI compared to controls (16), suggesting that PI3K
can drive both Tfh cells and Type 1 immunity. Thus, PI3K activity
may promote multiple effector T cell lineages and the effects
of PI3K on Tfh cells may depend on the activating stimuli and
microenvironment.

IL2 Signaling
Among potential PI3K-mediated signaling pathways that
influence Tfh and Th1 cell differentiation are those downstream
from the cytokine IL-2. Early data suggested that PI3K is
activated by the IL-2R signaling complex (71–73); PI3K
inhibitors arrest IL-2 induced CTL growth (74, 75). However,
recent reports question the direct connection between IL-2
and PI3K activation (76), as that: (1) certain PI3K inhibitors
(such as LY294002) have off-target effects (77); (2) many studies
evaluate pAKTS473 and pS6, rather than pAKTT308, which
more accurately reflects PI3K activity (78); and (3) IL-2 can
promote mTORC1 activation independent of PI3K (79). Indeed,
IL-2 potently inhibits Tfh cell generation via STAT5-mediated
induction of BLIMP1 (80–82); BLIMP1+ Th1 cells express high
levels of the high-affinity IL-2 receptor, CD25, and pSTAT5. As
that IL-2 activates multiple signaling pathways, the integration,
kinetics, and balance of these and other signals elicited in
response to multiple receptors, may ultimately help determine T
helper cell fates.

Metabolic Pathways in Tfh vs. Th1 Cells
Other PI3K-mediated signaling pathways that may influence
both Tfh and Th1 cells are those involving mTORC1 and
mTORC2. During acute LCMV infection, Th1 cells appear
more proliferative and bio-energetically demanding with greater
glucose metabolism and metabolic respiration than Tfh cells
(83). Data suggest that these Th1 cells were more dependent
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FIGURE 2 | LCMV infection promotes comparable Th1/Tfh cell differentiation within GP66-tetramer+ T cells, despite increased polyclonal Tfh cells in Pik3cdE1020K/+

mice. 2/3-month-old WT and Pik3cdE1020K/+ mice were infected i.v. with LCMV Arm and analyzed in the spleen 7/8 days post infection. Naïve WT and

Pik3cdE1020K/+ mice were analyzed as control. (A) Representative contour plots and summary histogram of polyclonal (GP66 tetramer negative)

PD-1+CXCR5+Foxp3− Tfh cells (percentage of CD4+B220−GP66− T cells). (B) Representative contour plot and summary histogram of Tfh cells (PD-1+CXCR5+),

gated on GP66-tetramer+ CD4+B220−Foxp3− T cells. (C) Representative contour plot and summary histogram of Th1 (SLAMhiCXCR5lo) and Tfh (SLAMloCXCR5hi)

cells (gated on GP66-tetramer+CD4+B220−Foxp3− T cells). We were unable to evaluate GP66+ Tfr cells due to the low numbers of GP66+ Foxp3+ cells (70).

However, polyclonal Tfr cells were increased after LCMV infection (data not shown), as we have previously reported in naïve mice (16). (A–C), n = 5–8. Data are

representative of three independent experiments and are expressed as mean ± SEM with each dot indicating one mouse. Significance analyzed by Mann-Whitney

U-test. ** p < 0.01; *** p < 0.001.

on the IL-2-PI3K-AKT-mTORC1 axis, which preferentially
promoted BLIMP1+ Th1 cells at the expense of BCL-6+ Tfh
cells and humoral immunity (83, 84). However, other studies
have demonstrated requirements for mTORC1 and mTORC2
in driving Tfh cells in Peyer’s Patches at steady state and in
the periphery after LCMV infection and immunization (30,
85). Mechanistically, Tfh cells were supported by mTORC1-
promotion of pS6, GLUT1 expression, glycolysis, lipogenesis and
overall proliferation; and by mTORC2-pAKT, which decreased
FOXO1 activity (30).

While these studies provide conflicting conclusions on the
requirements for PI3K and downstream effectors for Tfh cells,
this may result from different experimental systems (knockdown
vs. knockout) as well as bio-energetic demands during immune
challenges. However, there is also evidence that mTOR may be
activated independently of PI3K via pathways involving nutrient
sensing that may also affect T helper cell differentiation (22, 79,
86, 87).

PI3K-TCF-1 Cross-Talk
Several recent studies revealed that the transcription factor TCF-
1 is expressed at high levels in Tfh cells after viral infection
and plays an essential role in their generation and maintenance,
via repression of Il2ra, and Prdm1 (which encodes BLIMP1),
promotion of Bcl6 (55, 88–90), and possibly repression of Ifng
(91). Intriguingly, PI3K has been implicated both positively and
negatively in TCF-1 regulation (92, 93). In CD8+ T cells, Tcf7,
which encodes for TCF-1, is induced by FOXO1 (94), and both

are required for memory T cell formation (95–98). Strong PI3K
signaling would therefore be expected to decrease TCF-1 levels
(25), as observed in studies of asymmetric cell division (92, 93).
Conversely, a positive link between PI3K/AKT and TCF-1 has
been proposed via β-catenin (85), a coactivator of TCF-1 that is
negatively regulated by phosphorylation by Glycogen Synthase
Kinase 3β (GSK3β), which is inactivated by pAKT (Figure 1).
mTORC2-deficient T cells, which do not fully activate AKT,
show reduced β-catenin and TCF-1 (85). Nonetheless, most
studies implicating TCF-1 in Tfh cell generation have been done
in the context of strong Th1-inducing infections (88–90), and
how these findings relate to Tfh cells in other contexts remains
unknown. Thus, the relationship between PI3K and TCF-1, how
they affect Tfh cell differentiation, and involvement in possible
feedback loops remain intriguing questions.

PI3K PATHWAYS IN Tfr CELLS

A subset of thymic derived T regulatory cells, defined as T
follicular regulatory (Tfr) cells, are localized at the T-B cell
border and inside the GC area (99), and directly control
the activation and differentiation of Tfh and GC B cells,
including the development of autoimmunity (100). Tfr cells are
phenotypically similar to Tfh cells and express BCL-6 (101–
103), yet lack expression of B-cell-helper molecules, such as
CD40L, and express inhibitory molecules CTLA-4, GITR, IL-10,
and granzymes (104). Although excessive PI3K-mTOR activity
is detrimental for induced-Treg cell differentiation (105–107),
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Pik3cdE1020K/+ mice show increased Treg and Tfr cells at steady
state (16, 26). Indeed, although Tfr cells derive from Tregs, Tfr
have different requirements for their differentiation and function.
For example, IL-2 is necessary for Treg development and
suppressive capability (108), yet prevents Tfr cell differentiation
in a BLIMP1-dependent manner, similar to IL-2’s effects on
Tfh cells (109). Tfr cells also display high mTORC1 activity
that promotes differentiation and STAT3 phosphorylation, which
induces Tcf7 and Bcl6 (110); increased AKT-mTOR activity in
Roquin-deficient Treg cells upregulates Tfh cell gene signatures
that drive Tfr cell differentiation (111). How PI3K affects
ratios of Tfh:Tfr cells, which are important for regulating
humoral responses and autoimmunity (104), is less clear;
notably, Pik3cdE1020K/+ mice have parallel increases in both cell
populations (16).

DYSREGULATED PI3K PATHWAYS IN
AUTOIMMUNITY

In addition to helping antigen-specific humoral responses
to vaccination and infection, Tfh cells have been linked
to autoimmunity in both animals and humans (10, 112).
Correlations between circulating Tfh (cTfh) cells and disease
have been reported in systemic lupus erythematosus (SLE)
(113), rheumatoid arthritis (RA) and Sjögren’s syndrome
(112). Similarly, APDS/PASLI patients have high cTfh cells
(16), and autoimmune manifestations including autoantibodies,
cytopenias and glomerulonephritis (15, 29). In parallel, we
found that Pik3cdE1020K/+ mice develop autoantibodies against
a wide range of self-antigens. Indeed, PIDs caused by mutations
affecting PI3K signaling cascades, or “immune TOR-opathies,”
often display a combination of defective immune-responses
and autoimmunity (114); animal models demonstrate that PI3K
activity in B cells, T helper and regulatory T cells contributes
to autoimmune manifestations (16, 115–121). Additionally,
increased PI3K activity has been observed in several autoimmune
diseases (121), and inhibitors of PI3Kδ and PI3Kγ are
currently being explored in pre-clinical models of RA and
SLE, and clinically for psoriasis (NCT02303509) and Sjögren’s
(NCT02775916) (121, 122).

Recent data suggest that certain autoantibodies cross-react
with gut microbiota, supporting links between the microbiome
and autoimmunity (123). Interestingly, we found increased
local and systemic immune responses against gut commensals
in Pik3cdE1020K/+ mice, with evidence for cross-reactivity
between anti-self and anti-bacterial antibodies. Furthermore,
autoantibodies could be prevented by systemic antibiotic
treatment (16). Such data highlight roles for PI3Kδ in modulating
T and B lymphocyte activation, including that induced by the
microbiota, which can lead to autoimmunity.

CONCLUDING REMARKS

Together, a growing body of evidence supports a connection
between PI3Kδ and Tfh cell differentiation, raising the
possibility that altered PI3K pathways may contribute to

both immunodeficiency and autoimmunity. Nonetheless,
results during viral infection suggest that effects of PI3K on
Tfh cell differentiation may be context-dependent and that
PI3K may promote multiple effector cell lineages. A recent
report demonstrated that treatment of APDS/PASLI patients
with leniolisib, a selective PI3Kδ inhibitor, showed promising
improvements in cellular dysfunction and lympho-proliferation
(124) Notably, selective PI3Kδ inhibition reduced serum IgM
in vivo (124), while increasing IgG class-switching in vitro
(16, 27); however, effects on Tfh cells and autoantibodies have
not yet been reported. Our results further suggest that evaluation
of microbiota composition and systemic responses to gut
commensals in APDS/PASLI may provide new opportunities,
possibly in association with leniolisib, for managing this and
other conditions where Tfh cells and autoantibodies contribute
to pathogenesis. Such approaches may also be relevant for
autoimmunity induced by checkpoint-blockade therapy, where
PI3Kδ-inhibition may provide a selective control of immune
responses. Finally, PI3Kδ activation may help improve vaccine
responses, although this would have to be carefully assessed.
Thus, a more comprehensive understanding of PI3K regulation
and signaling in T and B cells is of crucial importance to
more effectively improve humoral immune responses while
minimizing autoimmunity.

METHODS

Animal Care and Ethics
Control (C57Bl/6J) and Pik3cdE1020K/+ mice (16) were
maintained and treated under specific pathogen-free (SPF)
conditions under protocols reviewed and approved by the
NINDS (protocol 1295-12) and NHGRI (protocol G98-3)
Animal Care and Use Committees at the NIH.

LCMV Infection and Flow-Cytometry
Mice were injected intravenously (i.v.) with 2∗105 plaque-
forming units (PFUs) of LCMV Armstrong, kindly provided
by Dorian McGavern Lab, grown as previously described (88).
Day+7/8 post infection, single cell suspensions were prepared
from spleen in MACS buffer (PBS with 2% FBS and 2µM
EDTA). GP66 tetramer [I-A(b) QVYSLIRPNENPAHK PE]
was obtained from NIH tetramer facility (Emory University);
staining was performed at 37◦C for 1 h in RPMI with 10% serum.
CXCR5 staining was performed using: CXCR5-purified (2G8,
BD Biosciences), followed by Biotin-SP AffiniPure Fab Fragment
Goat Anti-Rat IgG (H+L) (Jackson ImmunoResearch), and
Streptavidin (BioLegend) as previously described (88). The
following antibodies (obtained from BioLegend, BD Biosciences,
eBioscience) were incubated with spleen cells for 45/60min
on ice: CD4 (RM4-5), B220 (RA3-6B2), PD-1 (RMP1-30),
SLAM (TC15-12F12.2). Intracellular staining of Foxp3 (FJK-16s)
was performed using the Foxp3-staining buffer (eBioscience).
Cells were gated according to FSC-A/SSC-A, doublet exclusion
(SSC-H/SSC-W and FSC-H/FSC-W), live cells (negative
for LIVE/DEAD R© Fixable Aqua Dead Cell Stain Kit, Life
Technologies), followed by gating strategies indicated in
figure legend. Flow cytometry was performed on a LSRII (BD
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Biosciences) and data analyzed using FlowJo 9.9 software
(TreeStar).

Statistical Analysis
Data were analyzed via Prism 6 (GraphPad Software) using non-
parametric unpaired Mann-Whitney U-test. Graphs show the
mean ± SEM. ∗P < 0.05; ∗∗ P < 0.01; ∗∗∗ P < 0.001. If not
indicated, the P-values were not significant (>0.05).
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