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Members of the PfEMP1 protein family are expressed on the surface of

P. falciparum-infected erythrocytes (IEs), where they contribute to the pathogenesis of

malaria and are important targets of acquired immunity. Although the PfEMP1-specific

antibody response is dominated by the opsonizing and complement-fixing subclasses

IgG1 and IgG3, activation of the classical complement pathway by antibody-opsonized

IEs does not appear to be a major immune effector mechanism. To study the molecular

background for this, we used ELISA and flow cytometry to assess activation of the

classical component pathway by recombinant and native PfEMP1 antigen opsonized

by polyclonal and monoclonal PfEMP1-specific human IgG. Polyclonal IgG specific

for VAR2CSA-type PfEMP1 purified from a pool of human immune plasma efficiently

activated the classical complement pathway when bound to recombinant PfEMP1 in

ELISA. In contrast, no activation of complement could be detected by flow cytometry

when the same IgG preparation was used to opsonize IEs expressing the corresponding

native PfEMP1 antigen. After engineering of a VAR2CSA-specific monoclonal antibody

to facilitate its on-target hexamerization, complement activation was detectable in an

ELISA optimized for uniform orientation of the immobilized antigen. In contrast, the

antibody remained unable to activate complement when bound to native VAR2CSA

on IEs. Our data suggest that the display of PfEMP1 proteins on IEs is optimized to

prevent activation of the classical complement pathway, and thus represents a hitherto

unappreciated parasite strategy to evade acquired immunity to malaria.
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INTRODUCTION

Malaria remains a major health problem with an estimated 219 million cases and 435,000 deaths
in 2017 alone (1). The human disease is caused by several protozoan parasites of the genus
Plasmodium, but P. falciparum is responsible for most severe cases and essentially all malaria
mortality (2).
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The particular virulence of P. falciparum is related to the
unique ability of this parasite to express members of a family of
clonally variant surface antigens called P. falciparum erythrocyte
membrane protein 1 (PfEMP1) on the surface of the infected
erythrocytes (IEs) (3). This enables sequestration of IEs in
the microvasculature, mediated by interaction of PfEMP1 with
vascular host receptors such as CD36, endothelial protein C
receptor (EPCR), and oncofetal chondroitin sulfate (4–7). The
ensuing accumulation of IEs in tissues can lead to severe
disease, precipitated by excessive inflammation and circulatory
dysfunction.

The PfEMP1 antigens are important targets of naturally
acquired immunity to P. falciparum malaria, and semi-immune
individuals living in areas of stable parasite transmission possess
a broad repertoire of PfEMP1-specific antibodies, dominated by
the opsonizing and complement-fixing subclasses IgG1 and IgG3
(8, 9). It is therefore noteworthy that activation of the classical
complement pathway does not appear to play a major role in
acquired immunity to IEs, although acquired immunity leads
to activation of complement by antibody-opsonized sporozoites
andmerozoites (10, 11). Indeed, P. falciparum has evolved several
mechanisms to evade activation of the alternative and classical
pathways by hijacking soluble complement regulators to these
developmental stages, emphasizing the clinical importance of
complement-mediated attack on malaria parasites (12–16). The
display of PfEMP1 on the IE surface is normally restricted to
electron-dense protrusions known as “knobs” (17). Although
knob-less variants can express PfEMP1 and thrive in vitro, knob
expression is generally thought to be required for P. falciparum
survival in vivo, and the protection from falciparum malaria
afforded by several hemoglobinopathies is thought related to
abnormal knob formation on IEs (18). Nevertheless, the role of
knobs in P. falciparum survival remains unclear. In this article, we
investigate the hypothesis that the knob restriction of PfEMP1 on
the IE surface may have evolved to prevent classical complement
activation by preventing on-target hexamerization of IgG (19).
We show that although polyclonal, and even monoclonal, IgG
can activate the classical complement pathway when bound to
surface-bound recombinant PfEMP1, such activation does not
occur when the IgG is bound to native PfEMP1 expressed on the
IE surface.

MATERIALS AND METHODS

Recombinant Protein Production
The full-length ectodomain of the VAR2CSA-type PfEMP1
IT4VAR04 (FV2) was produced in ExpiCHO-S cells as a
recombinant C-terminal histidine-tagged protein, as described
elsewhere (20).

A recombinant version of the human monoclonal
IgG1 antibody (mAb) PAM1.4 (21), which is specific

Abbreviations: AU, arbitrary units; BSA, bovine serum albumin; FV2, full-

length ectodomain of the VAR2CSA-type PfEMP1 IT4VAR04; HAS, human serum

albumin; IE, infected erythrocyte; mAb, monoclonal antibody; NHS, non-immune

human serum; PfEMP1, Plasmodium falciparum erythrocyte membrane protein-1;

TCC, terminal complement complex.

for a conformational epitope in VAR2CSA-type PfEMP1,
was produced as described elsewhere by cloning and inserting
the variable domains of the antibody into plasmids encoding
the constant regions of the γ1-chain and the κ-chain (22).
This antibody has previously been shown to bind both plastic-
immobilized FV2 in ELISA and the corresponding native antigen
on the IE surface (20).

We also produced two variants of this antibody
(PAM1.4-E345K and PAM1.4-E430G) by introducing
single-nucleotide substitutions in the γ1-chain, using
the QuickChange site-directed mutagenesis kit (Agilent)
according to manufacturer’s instructions. Briefly, mutations
were introduced by a PCR reaction of the entire plasmid
with a high-fidelity DNA-polymerase and a complementary
primer pair with the desired mutation (E345K forward: 5′-
CCAAAGGGCAGCCCCGAAAACCACAGGTGTA-3′; E430G
forward:5′-CCGTGATGCATGGGCTCTGCACAACCACT-3′;
substitutions are underlined). Plasmids were subsequently
sequenced to confirm the introduction of the substitutions. All
the recombinant antibodies were produced in human embryonic
kidney cells (293-F; Gibco) according to manufacturer’s
instructions. Briefly, the cells were grown to∼1.5× 106 cells/mL,
and adjusted to 1 × 106 cells/mL 1 h prior to transfection, and
co-transfected with heavy- and light chain plasmids (0.5 µg
DNA/plasmid/mL culture) and FreeStyle MAX reagent (1 µL/µg
DNA). Cultures were incubated for seven days before harvesting
the supernatant. The recombinant antibodies were purified using
Protein G-coupled agarose beads (Pierce).

IgG Purification From Human Plasma
Samples
Total IgG was purified from pools of plasma from ten
Ghanaian donors with natural exposure to P. falciparum parasites
expressing VAR2CSA-type PfEMP1. The samples were collected
in a previous study approved by the Institutional Review Board
of Noguchi Memorial Institute for Medical Research, University
of Ghana (study no. 038/10-11) (23). Samples were collected
only after consent had been obtained in writing from each
participant. One pool consisted of the ten available samples with
the highest reactivities toward FV2, while the other consisted
of the ten available samples with the lowest FV2 reactivities.
IgG was purified from each pool of plasma using Gammabind
G sepharose (GE Healthcare), using standard methodology.
Affinity purification on FV2 was not employed, to allow direct
comparison of the pools with high and low FV2 reactivity.
However, previous studies have shown that PfEMP1 is the
dominant IE target antigen of naturally acquired IgG (24).

Classical Complement Pathway Activation
ELISA
Flat-bottomed 96-well plates (Nunc) were coated (4◦C, overnight
in PBS) with FV2 (2µg/mL), mAbs (PAM1.4; PAM1.4 E345K;
PAM1.4 E430G), purified human IgG (Invitrogen), or human
serum albumin (HSA; 10µg/mL; Sigma Aldrich). Wells were
blocked with PBS supplemented with TWEEN (0.05%) and BSA
(1%) and subsequently incubated (1 h on shaker, as all subsequent

Frontiers in Immunology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 3088

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Larsen et al. Malaria Evasion of Complement Attack

FIGURE 1 | Classical complement pathway activation in ELISA, using IgG with high and low FV2-reactivity and FV2 coated directly to plastic. Binding of C1q (A),

deposition of C4 (B) and C3 (C), and formation of TCC (D) to IgG purified from plasma pools with high (•) and low (◦) FV2-reactivity and bound to FV2 immobilized

directly on plastic. All data were normalized relative to control wells coated with HSA and incubated with rabbit anti-HSA. Data points representing the means and

standard deviations (error bars) of three individual experiment are shown.

steps) with the above-mentioned VAR2CSA-specific mAbs or
with control reagents [mAb AB01, specific for a non-VAR2CSA-
type PfEMP1 (25) or polyclonal rabbit anti-HSA (Dako)]. In
some experiments, 96–well plates pre-coated with nickel, pre-
blocked with BSA and coated with FV2 (5µg/mL) in PBS
supplemented with TWEEN (0.05%) were used (Pierce).

After incubation with antibody reagents, the plates were

washed four times in Barbital-Tween buffer [sodium barbital
(4mM), NaCl (145mM), CaCl2 (2.64mM), MgCl2 (2.12mM),

Tween (0.05%)] and incubated (1 h, 37◦C) in the same buffer

supplemented with non-immune human serum (NHS; 1%) as
source of complement components. After washing as above,

bound complement components were detected with polyclonal
rabbit anti-human C1q (2µg/mL; Dako), rabbit anti-human C4c
(1µg/mL; Dako), rabbit anti-human C3c (1µg/mL; Dako), or

monoclonal mouse-anti human-terminal complement complex
(TCC; 1 µg/L; clone ae11). All the complement-specific antibody
reagents were biotinylated prior to the experiments. After the last
washing as above, bound antibody was detected by incubation
with streptavidin-conjugated horse radish peroxidase (1:2,000;
GE Healthcare), followed by TMB ONE (ECO-TEK). The color
reaction was terminated with H2SO4 (0.2M), and quantified
at 450 nm. Arbitrary units (AU) were calculated as (ODTest -
ODBlank) / (ODControl - ODBlank).

P. falciparum Culture in vitro and Selection
for Expression of PfEMP1 and Knobs
The P. falciparum laboratory isolate IT4/FCR3 was cultured in
serum-free medium as described elsewhere (26).

Frontiers in Immunology | www.frontiersin.org 3 January 2019 | Volume 9 | Article 3088

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Larsen et al. Malaria Evasion of Complement Attack

FIGURE 2 | Classical complement pathway activation on IEs, using IgG with

high and low FV2 reactivity. Binding of purified immune IgG (A) and C1q (B),

and deposition of C4 (C) to P. falciparum-infected erythrocytes selected in vitro

to express the VAR2CSA-type PfEMP1 IT4VAR04. Representative results of

two independent experiments using IgG with high (white) and low (gray)

FV2-reactivity are shown.

Parasites were selected by antibody panning and density
separation monthly to ensure expression of the VAR2CSA-type
PfEMP1 IT4VAR04 and IE surface knobs as described previously
(27). Briefly, cultures with primarily late trophozoite-stage IEs
were incubated (20min, 37◦C) in culture medium supplemented
with gelatin (0.75%) to separate late trophozoite-stage knobby
IEs from uninfected erythrocytes and ring-stage IEs. The late

trophozoite-stage IEs were then incubated with DynaBeads A
(DYNAL) that had been pre-incubated (30min) with saturating
amounts of PAM1.4 antibody. Bound IEs were isolated using a
DynaMag (DYNAL).

Classical Complement Activation on IEs
Late trophozoite-stage IEs were purified by magnet-activated cell
sorting (Miltenyi Biotec) in PBS supplemented with BSA (1%)
(28). The purified IEs (2× 106 cells/mL) were incubated (30min,
4◦C) with mAbs (10µg/mL) or purified pooled human IgG (1
mg/mL), followed by incubation (1 h, 37◦C) with NHS (1%) and
compstatin (6 nM; Tocris) (to inhibit cleavage of C3). As positive
and negative controls, type A and 0 erythrocytes were incubated
with type 0 NHS and compstatin.

Complement components were detected by incubation (4◦C,
30min) with the same antibodies as above, but at different
concentrations (anti-C1q: 30µg/mL; anti- C4c: 0.5µg/mL),
followed by incubation with FITC-conjugated goat anti-rabbit
IgG (1:150; Vector) and ethidium bromide (2µg/mL; to visualize
parasite DNA). Binding of human IgG to the IEs was detected
in a similar way, using FITC-conjugated goat anti-human
IgG (1:150; Jackson Immuno Research) (28). All incubations,
dilutions, and washes were done in PBS supplemented with
BSA (1%), except for the incubation with NHS and compstatin,
which was done in BSA-supplemented VBS++ buffer containing
Ca2+ and Mg2+ (Complement Technology). Samples were
run on a Cytomics FC500 flow cytometer (Beckman Coulter).
Single ethidium bromide-positive cells were analyzed for
complement components and antibody labeling by FlowLogic
(Inivai Technologies).

RESULTS

Human Specific IgG Bound to Immobilized
Recombinant PfEMP1 Activates the
Classical Complement Pathway
To our knowledge, the ability of PfEMP1-specific human IgG
to activate the classical complement pathway has not been
reported previously. Binding of C1q (Figure 1A), deposition of
C4 (Figure 1B) and C3 (Figure 1C), and formation of TCC
(Figure 1D) were detected in recombinant FV2-ELISA after
incubation with human IgG purified from a plasma pool with
known high FV2-reactivity, followed by NHS as a source of
complement components. When IgG from the pool of low-
reactive plasma was used instead of the highly FV2-reactive IgG,
no complement deposition was detected (Figure 1).We conclude
that naturally acquired PfEMP1-reactive IgG is able to activate
the classical complement pathway when bound to recombinant
FV2 that has been randomly immobilized on plastic.

Human Specific IgG Bound to Native
PfEMP1 on Infected Erythrocytes Does Not
Activate the Classical Complement
Pathway
We next assessed the ability of human IgG purified from the
same plasma pools to activate complement when bound to IEs
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FIGURE 3 | Classical complement pathway activation in ELISA, using FV2-specific monoclonal IgG with and without mutations enhancing on-target hexamerization,

coated directly to plastic. Binding of C1q (A), deposition of C4 (B) and C3 (C), and formation of TCC (D), using the FV2-specific mAbs PAM1.4 (•), PAM1.4-E345K (◦),

and PAM1.4-E430G (N) immobilized directly on plastic. Data representation as in Figure 1.

expressing the native PfEMP1 (IT4VAR04) represented by FV2.
IgG purified from the highly FV2-reactive pool efficiently labeled
the IEs, in contrast to the low FV2-reactivity IgG (Figure 2A).
However, essentially no binding of C1q (Figure 2B) or deposition
of C4 (Figure 2C) could be detected after incubation of IEs
with either IgG preparation. The functionality of the assay was
confirmed in experiments using uninfected type A and type
0 erythrocytes incubated with type 0 NHS (Figure S1). These
findings suggest that the distribution of PfEMP1 on IEs inhibits
classical complement activation, possibly due to the clustered,
knob-restricted distribution of the antigen.

Activation of Complement by Monoclonal
IgG Bound to Immobilized Recombinant
PfEMP1 Depends on Antigen Orientation
It was recently reported that complement activation by IgG
requires on-target, Fc-dependent hexamerization of the antibody
(19). We therefore proceeded to test whether the lack of
complement activation by PfEMP1-specific IgG bound to IEs
was due to an inability of the antibodies to form hexamers after
binding to native PfEMP1 on the IE surface. To do so, we used
IEs selected for surface expression of IT4VAR04, and a mAb

(PAM1.4) with specificity for VAR2CSA-type PfEMP1 (including
IT4VAR04). We also used two variants of this mAb (PAM1.4-
E345K and PAM1.4-E430G), where we had introducedmutations
in the Fc-region (E345K and E430G, respectively), known to
enhance on-target hexamerization of IgG (19, 29).

All three mAbs had similar ability to activate complement
when coated directly to ELISA plates, as binding of C1q
(Figure 3A), as well as deposition of C4 (Figure 3B), C3
(Figure 3C), and TCC (Figure 3D) could be detected
in a concentration-dependent manner. This agrees with
the observation that enhanced complement activation by
hexamerization-improved Fc mutants requires binding of
the antibodies to their cognate antigen (29). To confirm
this requirement directly, the mAbs were next applied
in a setup where the ELISA plates were first coated with
FV2 as in the experiments with purified immune IgG
above. However, neither PAM1.4 nor the Fc-mutated
variants of the mAb activated complement in this setup
(Figure S2).

In the studies first identifying the complement activation-
enhancing mutations, the assays involved cell lines over-
expressing the targeted antigen (19, 29). We therefore speculated
that the lack of complement activation in our setup with
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FIGURE 4 | Classical complement pathway activation in ELISA, using FV2-specific monoclonal IgG, bound to plastic coated with FV2 by His-tag::nickel interaction.

Binding of C1q (A), deposition of C4 (B) and C3 (C), and formation of TCC (D) on the FV2-specific mAbs PAM1.4 (•), PAM1.4-E345K (◦), and PAM1.4-E430G (N),

and the control mAb AB01 (1) in assays employing uniformly oriented FV2 immobilized by interaction between the C-terminal His-tag on FV2 and nickel-coated

plastic. Data representation as in Figure 1.

recombinant FV2 bound to plastic might be related to the
random orientation of the immobilized antigen, in contrast to
the usually uniform display of a given antigen on the surface
of cells. To approximate such an ordered display, we exploited
the fact that our FV2 protein has a C-terminal poly-histidine
tag, and immobilized the recombinant protein on ELISA plates
pre-coated with nickel. Because the nickel ions bind to the
FV2 poly-histidine tags, this should facilitate homogeneous
orientation of the antigen similar to the orientation of the native
protein on IEs, although the distribution of the FV2 would
remain more homogenous than the knob-restricted distribution
of native PfEMP1 proteins on IEs. In this setup, binding of C1q
(Figure 4A), and in particular deposition of C4 (Figure 4B) and
C3 (Figure 4C), could be detected in a concentration-dependent
manner for all three mAbs, whereas TCC formation was
minimal (Figure 4D). Although this might theoretically be due
to activation of the alternative pathway by binding of mannan-
binding lectin to glycosylation determinants on the recombinant

antibodies, this appears unlikely. Firstly, the glycosylation pattern
of the cells used to express the recombinant antibodies is very
similar to native human IgG (30). Secondly, the hexamerization-
enhanced Fc-region mutants, in particular PAM1.4-E430G, were
superior to PAM1.4 (if the binding of C4 and C3 were due to
activation of the lectin rather than the classical pathway, similar
activation by wildtype PAM1.4 and the two hexamerization-
enhanced mutants would be expected). When this improved
assay was used to test complement activation by purified immune
IgG, C4 deposition could be detected with both the high and the
low FV2-reactive preparation, although the highly FV2-reactive
IgG was superior (Figure S3).

Our data confirm that the E345K and E430G mutations in
the Fc-region enhance the ability of IgG to activate complement,
probably by facilitating on-target hexamerization. Furthermore,
the results highlight antigen orientation as an important
parameter in in vitro assays of classical complement pathway
activation.
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FIGURE 5 | Classical complement pathway activation on IEs, using

FV2-specific monoclonal IgG with and without mutations enhancing on-target

hexamerization. Binding of C1q (A) and deposition of C4 (B), using the

FV2-specific mAbs PAM1.4 (Top), PAM1.4-E345K (Second), and

PAM1.4-E430G (Third), or the control mAb AB01 (Bottom). Representative

results of two independent experiments are shown.

Hexamerization-Enhancing Fc Mutations
Do Not Lead to Activation of Complement
by Monoclonal PfEMP1-Specific IgG
Bound to Infected Erythrocytes
To investigate whether the lack of complement activation on
IEs (Figure 2) could be overcome by enhancing the antibody
capacity for on-target hexamerization, we tested the ability of
PAM1.4 and the two Fc mutants to activate complement when
bound to IEs. We did not detect C1q binding (Figure 5A) or
C4 deposition (Figure 5B) with any of the mAbs. It thus appears
that the distribution of native PfEMP1 prevents hexamerization

of monoclonal IgG in a way that could not be overcome by Fc
mutations enhancing the ability of PAM1.4 to form hexamers.
Although we cannot exclude that other mAbs might be able
to form hexamers when bound to PfEMP1 on the IE surface,
or that on-target hexamerization might occur with Fc-mutated
polyclonal IgG preparations, it seems most likely that PfEMP1
is distributed on the IE surface in a way that prevents the
interactions among Fc regions of adjacent IgG molecules that
would facilitate binding of C1q and activation of the classical
complement pathway.

DISCUSSION

IgG antibodies specific for the asexual parasites multiplying in
the blood are a key element in naturally acquired protective
immunity to P. falciparum malaria (31, 32). Antibodies to
antigens on the surface of the IEs – in particular PfEMP1 – are
of particular importance in this respect (3). This is probably due
to their ability to block the vascular sequestration of IEs, which
can otherwise cause inflammation and circulatory dysfunction
(33). Unsurprisingly, P. falciparum has evolved a range of
strategies to avoid PfEMP1-specific immunity, such as antigen
polymorphism, clonal antigenic variation, acquisition of soluble
host factors etc. (34).

The antibody response to P. falciparum asexual blood stage
antigens, including the VAR2CSA-type PfEMP1 studied here, is
dominated by IgG1 and IgG3 (35). It is therefore likely that
phagocytosis of merozoites and IEs opsonized by antibody and
complement also contribute significantly to parasite clearance.
Although the role of the complement system in P. falciparum
infections has been the focus of several recent studies, most
have focused on the alternative pathway. The ability of IEs (13),
merozoites (14), and gametocytes (12) to acquire the soluble
complement regulator Factor H to their surface thus clearly
suggests that this activation pathway is important in controlling
parasitemia, and likely has forced the parasites to evolve strategies
to evade this host defense. A very recent study indicates that
this host-parasite tug-of-war is even more complicated, and that
Factor H-related protein 1 may be involved in a host effort
to overcome malaria parasite evasion of complement attack by
acquisition of Factor H (36).

The clinical importance of classical complement pathway
activation following opsonization by IgG has been less studied,
although binding of C1q to IgG-coated merozoites and
sporozoites has been associated with protection of malaria in
patients from Oceania and Africa (10, 11). In addition, evasion
of such immunity by hijacking of C1-inhibitor by merozoites
was recently reported (15). The clinical relevance of antibody-
dependent complement attack on merozoites may be limited by
the fact that this free-living stage is only exposed to antibody and
complement for 1-2min before invading a new erythrocyte. It is
questionable whether this is long enough for antibody binding
and classical complement attack, as in vitro experiments required
>2.5min. before C3 deposition could be demonstrated (15).
By then, many merozoites would be expected to have safely
reinvaded (37). In the case of sporozoites, the parasite is exposed
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to antibody and complement for longer (38), and it therefore
seems more likely that complement plays a decisive role in the
immune response against this developmental stage. However,
the intra-erythrocytic parasites should theoretically be vulnerable
to classical complement attack for the ∼30 of the 48-h asexual
life cycle, where they express PfEMP1 on the IE surface to
facilitate tissue sequestration and avoidance of destruction in the
spleen (39). This notwithstanding, little is known about classical
complement attack on IEs, let alone parasite strategies to evade
this threat.

Here, we show that human IgG purified from plasma and
having high reactivity to PfEMP1 can activate the classical
complement pathway in ELISA. However, no complement
activation was seen when the same IgG was bound to the
corresponding native PfEMP1 on the surface of IEs. The
molecular dimensions of IgG and PfEMP1 molecules, combined
with estimates of the number of PfEMP1 molecules per IE
(40–46) suggest that on-target hexamerization [required for
efficient activation of the classical complement cascade by
IgG (19)] would occur if the PfEMP1 molecules were evenly
distributed over the IE surface. We therefore hypothesized
that the lack of activation is related to the knob-restricted
expression of PfEMP1 on the IE surface, which prevents on-
target hexamerization of IgG molecules bound to PfEMP1
molecules on neighboring knobs, as these are too far apart.
The clustered distribution might thus represent a hitherto
unidentified strategy by P. falciparum to evade acquired,
IgG-mediated protective immunity. However, the molecular
dimensions of knobs make on-target hexamerization of IgG
bound to different PfEMP1 molecules within a given knob
theoretically possible. We therefore produced two PfEMP1-
specific mAbs with substitutions in the Fc-region that enhance
their capacity for on-target hexamerization and complement
activation (19, 29). Although we could demonstrate enhanced
complement-activating capacity of Fc-mutated mAbs by ELISA,
the mutations did not suffice to activate complement following
binding of the mAbs to native PfEMP1 on the IE surface. Even
with polyclonal immune IgG containing IgG with specificity for
the many antibody epitopes that exist in VAR2CSA (21), we
did not find evidence of activation of the classical complement
cascade at the IE surface. Although the reason for the above
observations is not known, the simplest explanation is that
PfEMP1 molecules are not evenly distributed, even within the
confines of a single knob, but are instead clustered together.
Whether this is the case is not currently known, however.

Erythrocytes are inherently susceptible to complement attack,
and they therefore possess endogenous membrane-bound
complement regulators such as decay-accelerating factor (CD55)
and protectin (CD59) to prevent inadvertent phagocytosis and
lysis of complement-opsonized erythrocytes. Although CD59 has

been reported as the factor preventing complement-mediated
lysis of IEs (47), IE lysis is likely to be less important than
opsonization for phagocytosis. In this study, we decided to
focus on complement components upstream of the erythrocyte
membrane-bound complement regulators’ point of action, to
avoid complications imposed by the need to enzymatically
remove membrane-bound regulators.

To conclude, we report that although PfEMP1-specific IgG
can activate the classical complement pathway in a system where
the antigens are homogeneously distributed, this appears not to
happen at the IE surface, where PfEMP1 display is restricted
to well-defined knobs. The most parsimonious explanation for
this discrepancy is that the focal display of native PfEMP1
interferes with the on-target hexamerization of IgG, which is a
requirement for binding of C1q and activation of the classical
complement cascade. The knob-restricted display may thus
represent a hitherto unrealized strategy of P. falciparum to evade
acquired protective immunity.
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