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The complement system, an evolutionarily ancient component of innate immunity,

is capable of protecting hosts from invading pathogens, either directly, by lysis of

target cells, or indirectly, by mobilization of host immune mechanisms. However, this

potentially cytotoxic cascade must be tightly regulated, since improperly controlled

complement can damage healthy cells and tissues. The practical importance of this axis

is highlighted when impairment of complement regulators or bacterial mechanisms of

complement evasion result in pathogenic conditions. Recognition of complement as a

“double-edged sword” is widely acknowledged, but another, currently underappreciated

aspect of complement function has emerged as an important player in homeostatic

balance—the dual outcome of complement-mediated inflammation. In most cases,

the proinflammatory properties of complement are beneficial to the host. However,

certain pathogens have developed the ability to utilize local inflammation as a source

of nutrients and as a way to establish a niche for further colonization. Such a strategy

can be illustrated in the example of periodontitis. Interestingly, certain tumors also seem

to benefit from complement activation products, which promote a proangiogenic and

immunosuppressive microenvironment.

Keywords: inflamation, periodontits, cancer, Porphyromonas gingivalis, complement activation

INTRODUCTION

The term “inflammo-philic” (=loving or attracting inflammation) was introduced in 2014 by
George Hajishengallis to describe dysbiotic microbiome on the tooth surface below the gum line,
which thrive in the inflammatory environment of periodontal pockets (1). Remarkably, as described
in details later in this review, bacteria responsible for initiation and progression of periodontitis
(periodontopathogens) have the unique ability to manipulate the complement system to disengage
bacterial clearance from inflammation.

In general, the local inflammatory response to bacterial and fungal pathogens triggered by
complement activation is absolutely essential to eliminate invaders (2, 3). Therefore, all successful
pathogens developed a large variety of means to interfere with complement activation and/or
hinder complement-dependent bacterial clearance mechanisms (2–6) (Table 1). Unfortunately, if
inflammatory reaction triggered by pathogens escape the control it becomes highly detrimental
to the host as illustrated by invasive candidiasis [Candida albicans (7)], meningitis [Neisseria
meningitidis (8)], and sepsis [N. meningitidis (8), Staphylococcus aureus (9), and Streptococcus
pyogenes (10)]. It needs to be kept in mind that an overwhelming inflammatory response and
a dysregulated immune response to these infections is by no means the manifestation of an
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TABLE 1 | Exemplary complement evasion strategies used by microbes.

Mechanism Organism Protein or molecule/Host target

Recruitment of host soluble complement inhibitors: ->

support of proteolytic cleavage of C3b and C4b, acceleration

of convertases’ decay

Streptococcus pyogenes M protein family (b)

Factor H

C4BP

FH-binding proteins: fibronectin-binding protein (FbaA) (b) and

streptococcal collagen-like protein 1 (Scl1)(b)

Factor H

FH-related protein 1

Escherichia coli OmpA: Outer membrane protein (b) C4BP

Moraxella catarrhalisis Usp1, 2: Ubiquitous surface protein 1 and 2 (b)

C4BP

Borrelia burgdorferi BbCRASP-1 (b)

Factor H

Candida albicans Gpm1p (b)

C4BP

Streptococcus pneumoniae PspC (b)

Factor H

Physical barrier preventing Fc receptors on phagocytes to

contact complement-derived opsonins on bacteria

Streptococcus pyogenes hyaluronic acid capsule (b)

Blocking of receptor of complement components on immune

cells

Staphylococcus aureus Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS)

(s)

C5aR

Proteolytic inactivation of complement components Streptococcus pyogenes ScpA (s)

C3a, C5a

SpeB (s)

C1 inhibitor, C2, C3, C4, C5a C6, C7, C8, C9

Pseudomonas aeruginosa Pseudomonas elastase (PaE) (s)

C3

Staphylococcus aureus Staphylokinase (s)

C3b

Serratia marcescens 56kDa protease (s)

C5a

Porphyromonas gingivalis gingipains (s)

C3,C4,C5

Tannerella forsythia Mirolysin (s)

Mannan binding lectin (MBL), ficolins, C4, C5

Blocking of classical pathway initiation Streptococcus pyogenes endopeptidase O (PepO) (s)

IgG-C1q interaction

IdeS/Mac-1 (s)

IgG (degradation)

Staphylococcus aureus Staphylococcal protein A (SpA) (b)

Ig (binding)

Streptococcus sp. gr. G Protein G (b)

Ig (binding)

Interference/function-blocking of complement components Streptococcus pyogenes streptococcal inhibitor of complement (SIC) (s)

C5b-7

Vitronectin binding proteins (VnBPs) (b)

Vitronectin – C9 polymerization

(Continued)
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TABLE 1 | Continued

Mechanism Organism Protein or molecule/Host target

Staphylococcus aureus extracellular fibrinogen-binding protein (Efb) (s)

C3

staphylococcal superantigen-like protein 7 (SSL-7) (s)

C5

Staphylococcal complement inhibitor (SCIN) (s)

blocking of AP and CP/LP C3 convertases

Borrelia burgdorferi CD59-like protein (b)

C8, C9

Moonlighting proteins Streptococcus pyogenes GAPDH (b),(s)

binds and sequesters C5a

Filifactor alocis Acetylornithine transaminase (FACIN) (b)

binding to C3 and activated C3 in complex with factor B

(s), soluble protein/molecule.

(b), surface—bound protein/molecule. For original references see the review articles with reference numbers 2–6.

inflammophilic character of these pathogens since the controlled,
local inflammation is protective against these pathogens (9).
Therefore, the pathogenic strategy to endure inflammation but
in the same time to take advantage of it, seems to be limited to
periodontopathogens. It is fascinating that the apparently similar
strategy is employed by cancer and in both cases exploitation of
the complement system underlines pathology.

COMPLEMENT SYSTEM

The complement system is one of the oldest mechanisms of
immunity. Its essential components, such as the C3 molecule,
have existed through more than 500 million years of evolution
(11). A primitive complement system probably appeared in
the common ancestor of eumetazoa, and its original role was
limited to opsonization and the induction of inflammation.
Genetic events like the duplication-based appearance of pathway
specific components (e.g., factor B and C2) and the gain of
terminal pathway constituents (C5–C9) allowed the primodal
complement system to evolve into a an advanced and complex
defense system capable not only of promoting osmotic lysis of
target cells, anaphylaxis, and phagocytosis, but also of crosstalk
with other systems (e.g., coagulation) and signaling pathways
(e.g., Toll-like receptors) involved in the maintenance of bodily
homeostasis (12, 13). There are three independent complement
cascades, the evolutionarily older alternative and lectin pathway
(with basic elements like C3, MASPs, and factor B existing
in invertebrates) and the relatively younger classical pathway
developed in jawed vertebrates (11). The alternative complement
pathway is constitutively active at a low level due to the
spontaneous breakdown of C3 into anaphylatoxin C3a and the
active C3b fragment, which activate downstream steps in the
cascade. Therefore, propagation of the alternative pathway does
not depend on specific activation but relies on the lack of
inhibition by numerous endogenous regulators that differentiate

self and non-self surfaces. This mechanism ensures constant
monitoring of the body. In contrast to the alternative pathway,
the classical and lectin pathways require specific stimuli, such
as antibodies, C-reactive protein, phosphatydylserine, or certain
sugar moieties, to be present on the surface of target cells (14–
16). The upstream components of both pathways, including
C1q, mannan binding protein (MBL), and the ficolins, act as
sensors and thus can be considered soluble pattern recognition
molecules (PRMs) (17, 18). All pathways converge at the level
of the central complement molecule C3. C3 is processed by
enzymatic complexes called complement convertases into C3a
anaphylatoxin and the C3b fragment, which in turn forms
C5 convertases. C5 convertases cleave the C5 molecule into
C5a anaphylatoxin and the C5b fragment, which initiates the
common terminal pathway. Binding of C6, C7, C8, and C9
leads to formation of the membrane attack complex (MAC),
which targets the cell membrane and causes osmotic lysis. A
schematic representation of the complement system is shown
in Figure 1.

The binding of antibodies as a stimulus for the initiation
of the complement cascade bridges the innate and adaptive
immune systems. Moreover, opsonins like C3b and their
degradation products act as natural adjuvants, contributing to
proper presentation of antigens to lymphocytes and providing
a co-stimulatory and anti-apoptotic signal for B cells (19).
Deficiencies of complement, while relatively rare, emphasize
the importance of this multifunctional protein cascade (20).
The exact symptoms that develop depend on precisely which
complement components are lacking or impaired. Deficiencies
in essential components of the alternative pathway and the
terminal pathway result in higher susceptibility to recurrent
bacterial infections, especially these caused by Neisseriae
and incidence peak up in early childhood (20). The lack
of early components of the classical pathway predisposes
to systemic lupus erythematosus (SLE), a disease in which

Frontiers in Immunology | www.frontiersin.org 3 January 2019 | Volume 9 | Article 3125

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Okrój and Potempa Complement Subversion by Pathogens and Cancer

FIGURE 1 | A simplified representation of the complement system, divided into pattern recognition molecules (PRMs), pathway specific and common components as

well as inhibitors.

the scavenging function of complement is impaired, and
thus debris from dying cells persists and can act as a
source of autoantigens (21). Autoimmune diseases that stem
from direct damage of cells and tissues typically arise from
deficiencies in complement inhibitors that normally protect the
host from excessive or misguided complement attacks (22).
These include C3 glomerulopathies, atypical hemolytic uremic
syndrome (aHUS), age-related macular degeneration (AMD),
paroxysmal nocturnal hemoglobinuria (PHN), and many more
(20). Paradoxically, a deficiency of functional complement
inhibitors such as factor H (the main soluble inhibitor of
the alternative pathway) can also result in a deficiency of
complement activation. Factor H is the main soluble inhibitor
of alternative pathway, which prevents propagation of cascade
beyond the spontaneous breakdown of C3 and formation of C3
convertase (Figure 1). The lack of such inhibitor fuels a positive
feedback mechanism that unproductively depletes complement
and leaves the host without an important line of defense (23).
On the other hand, unwanted complement activation is an
effector mechanism in many inflammatory diseases, including
rheumatoid arthritis (24), diabetic nephropathy (25), and
ischemia/reperfusion injury (26). All these examples support a
perception of the complement system as a “double-edged sword,”
where a proper balance is pivotal for maintaining protection

while avoiding autoimmunity. Both microbial infections and
tumors influence this physiological equilibrium and employ
two main strategies for survival in a complement-saturated
microenvironment.

STRATEGY #1: TO COUNTERACT
COMPLEMENT

Innate immunity relies on recognition of a spectrum of
pathogen-associated molecular patterns (PAMPs), invariable
molecular determinants typical for the most common invaders,
including lipopolysaccharide (LPS), lipoteichoic acid, flagellin,
double-stranded RNA, β1-3 glucan, N-formylmethionine
peptides, and many more. The constant region of the antibody
heavy chain (Fc) also falls into this category of molecules.
Pathogen-associated molecular patterns (PAMPs) bind to
specific receptors on innate immune cells and activate effector
mechanisms such as complement or antibody-dependent
cell cytotoxicity (ADCC). Molecules that sense PAMPs and
trigger immune system activation are called pattern recognition
receptors (PRRs) and include Toll-like receptors (TLRs), C-type
lectins, and NOD-like receptors. Soluble molecules, which exert
an analogical role are termed as PRMs and the most upstream
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components of the classical and lectin pathways (C1 complex,
MBL, and ficolins) belong to this group (18). Complement is
therefore a multispecific and powerful defense system against
pathogens that is theoretically capable of eliminating every
cell unless constrained by endogenous complement inhibitors.
In practice, since complement co-evolved with pathogens
over millions of years, pathogens have developed various
mechanisms to evade complement attack. Pathogens employ
a variety of tactics for this purpose, including proteolytic
cleavage of complement components, mimicking and hijacking
host complement inhibitors, inactivation of the C3 molecule,
preventing of complement-mediated activation of immune
cells, depletion of antibodies, and unproductive exhaustion
of early complement components [reviewed in (2, 4, 27–29)].
Selected examples of abovementioned strategies are given in
Table 1.

Similarly to bacterial, fungal, or viral pathogens expressing
PAMPs, tumor cells are visible to the immune system due
to changes in their mutational or metabolic status, which
is reflected by changes in the expression of cell surface
molecules. The presentation of epitopes derived from mutated
proteins (so-called neoantigens) within MHC I molecules (30)

as well as the peroxidation of membrane lipids or changed
patterns of glycosylation distinguish tumor cells from normal
cells.

Spontaneous fixation of complement onto the surface of
tumor cells is of low physiological relevance due to the low titer
of naturally occurring antitumor antibodies and the expression
of complement inhibitors by tumor cells (31). The introduction
of antitumor monoclonal antibodies, which is considered a
breakthrough in tumor immunology, enabled researchers to
use the cytotoxic potential of the complement system to
combat cancer (32). Complement-activating therapeutics like
the anti-CD20 antibodies rituximab and ofatumumab are first-
line therapies in the treatment of B cell malignancies. However,
certain patients fail to respond or only partially respond to
antitumor antibodies, and one possible explanation is the
unfavorable ratio of the molecular target (e.g., CD20) to
membrane-bound complement inhibitors on the surface of
tumor cells (33, 34). Successful experiments in which bispecific
antibodies against CD20 and CD55 were used (35) or in which
complement inhibitors were silenced (36) support the theory
that inhibition of complement by tumor cells is an important
mechanism of cancer resistance. Expression of membrane-bound

FIGURE 2 | A schematic drawing of strategies utilized by tumor cells and inflammophilic bacteria to subvert complement activation.
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complement inhibitors like CD35 (Complement receptor 1,
CR1), CD46, CD55, and CD59 is typical for nucleated cells,
and the majority of cell types express at least one of these
molecules. In contrast, the production of soluble complement
inhibitors such as factor I, factor H, C4b-binding protein (C4BP)
is usually the domain of liver hepatocytes, and there are only
few extrahepatic sources of fluid-phase complement regulators
(37). However, the expression of soluble complement inhibitors
by tumor cells has been described, and it seems to provide an
additional level of protection, as shown in an in vitro model
of non-small lung cancer cell (NSCLC) lines expressing factor
I, C4BP, and factor H (38). The tumor-supporting effect of
endogenous factor H expressed by NSCLC cells was shown in
vivo in a mouse xenograft model (39, 40). Further evidence
for the pro-tumor effect of soluble complement inhibitors
comes from analysis of tissue microarrays of breast cancer
specimens. Expression of factor I was positively correlated with
tumor size, de-differentiation score (Nottingham scale), and poor
prognosis (cancer-specific survival and recurrence-free survival)
(41). Other investigators reported a correlation between factor I
expression and tumor aggressiveness in cutaneous squamous cell
carcinoma (42). In addition to expressing soluble complement
inhibitors, tumor cells can also hijack these proteins from the
plasma. Horl et al. showed that blocking factor H binding
to the surface of leukemia cells increased the cytotoxicity of
rituximab (43) and ofatumumab (44). Although factor H is
an inhibitor of the alternative complement pathway, it plays a
role in enhancing the complement cascade when it is initiated
via the classical pathway (such as by antitumor antibodies) at
the level of C3b formation. C3b gives rise to an amplification
loop (Figure 1) due to the formation of alternative convertases,
which are targets for factor H. Points of action of particular
complement inhibitors are indicated in Figure 1. Another
possible way to increase tumor cell resistance to complement
attack is removal of the MAC from the surface, a process
dependent on endocytosis or active rearrangement of the cell
membrane mediated by phosphorylation of essential signaling
proteins (45).

The logical consequence of complement inhibition by
microbes and tumor cells at various stages of the cascade
is a more aggressive and more drug-resistant phenotype,
as discussed above. However, the picture is not as simple
as it may originally seem, and another strategy used by
pathogens and tumor cells to evade complement has been
described.

STRATEGY #2: TO EXPLOIT THE
COMPLEMENT SYSTEM

Low oxygen concentration is a feature of rapidly growing solid
tumors, which cannot develop the vasculature necessary for
the efficient supply of nutrients to proliferating neoplastic cells.
Therefore, the expanding tumor mass sooner or later develops
hypoxic cores. Normal cells are equipped with a sensor of
oxygen concentration that works at the transcriptional level.
Hypoxia-inducible factor Iα (HIF-1α) can stabilize the p53 tumor

suppressor, triggering either apoptotic signaling or metabolic
reprogramming of the cell (46). Both of these processes lead to
changes in the molecules expressed at the cell surface, which
has the effect of making the tumor cell visible to the immune
system. Previous studies with human umbilical vein endothelial
cells (HUVECs) revealed that these cells activate the classical
complement pathway in response to hypoxia and as well as
during subsequent reoxygenation. At the same time, HUVECs
increased their surface expression of two membrane-bound
complement inhibitors, CD46 and CD55 (47), which induce the
proteolytic cleavage of activated complement components C3b
and C4b, respectively, and the dissociation of the corresponding
complement convertases. Another study showed a 3.6-fold
increase in HUVEC expression of complement receptor 1 (CR1
or CD35) after 48 h of hypoxia (48). These results suggest
that endothelial cells actively counteract complement activation
under hypoxic conditions, and therefore the expression of
complement inhibitors in hypoxic NSCLC cells was studied (49).
These cells not only expressed membrane-bound complement
inhibitors but also produced soluble inhibitors of complement,
including C4BP and factors I andH (38). In contrast to HUVECs,
NSCLCs significantly downregulated the mRNA expression of all
complement inhibitors tested except CD59 after 24 h of hypoxia,
but a drop in the mRNA expression of soluble complement
inhibitors was detected as early as 6 h after hypoxic challenge.
Importantly, this rapid decrease did not correspond to the
number of dying cells, which did not significantly increase in first
24 h (49). The conclusion is that unlike endothelial cells, NSCLCs
do not utilize protection mechanisms that prevent the deposition
of early complement components during hypoxia, but they do
maintain expression of CD59, which protects from the terminal
stages of complement attack (the insertion of the MAC into the
membrane) (47–49).

From the research reviewed above, it has become apparent
that lung cancer cells may benefit from the propagation of
local inflammation mediated by C3a and C5a. Possible scenarios
include the production of proangiogenic and growth factors
by tumor-infiltrating lymphocytes and macrophages as well as
the mobilization of immune suppressor cells that impair tumor
antigen presentation (50–53). Indirect support for this hypothesis
comes from studies done by Ajona et al. who reported elevated
C4d deposition in lung tumors and its correlation with decreased
survival (54). Moreover, high levels of soluble C4d in the plasma
could discriminate between patients with benign pulmonary
nodules and lung cancer (55), and were associated with reduced
survival of individuals with early and advanced lung cancer. C4d
levels in the plasma were also reduced after surgical removal
of the tumor (54). C4d is an end degradation product of the
activated C4b molecule, a hallmark of classical complement
pathway activation. For that reason, one can assume that the
survival and malignant potential of NSCLC cells is based on
stimulation of complement. Indeed, anaphylatoxin C5a is one
of the key players in complement-mediated support of lung
cancer growth. Corrales et al. found that C5 deposition and
subsequent C5a generation in NSCLC cells was much higher than
in non-malignant bronchial epithelial cells in the presence of
serum (56). Interestingly, tumor cells but not non-transformed
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cells produced endogenous C5, and C5a generation took place
even in the absence of serum. C5a levels in the plasma of lung
cancer patients were also found to be elevated, similarly to
C4d levels. C5a also stimulated migration and tube formation
by HUVECs in vitro. Finally, the impact of C5a was tested
in a syngenic mouse model of 3LL lung cancer. Microvessel
density was compared in 3LL tumors in mice treated with a C5a
receptor (C5aR) antagonist. Tumors in the mice treated with the
C5aR antagonist showed significantly fewer microvessels (56).
Additionally, C5a signaling positively influenced the recruitment
of myeloid-derived suppressor cells (MDSCs; CD11b+, Ly6c+),
as blockade of C5aR reduced the number of MDSCs in tumor-
bearing mice. The authors also found decreased expression
of molecules associated with an immunosuppressive state and
silencing of the immune response (ARG1, CTLA-4, IL-10, LAG3,
and PD-L1) in C5aR antagonist-treated mice (57–59).

Importantly, the first evidence for the impact of C5a on the
mobilization of MDSCs into the tumor mass was shown by
Markiewski et al. in the TC-1 tumor model, a lung epithelial cell
line expressing human papilloma virus (HPV) E6 and E7 antigens
(60). The authors found that C5aR-deficient mice developed
smaller tumors than wild-type littermates, and the same effect
was observed when a C5aR antagonist was administered.
However, in this model, the slower rate of tumor growth in
C5aR antagonist-treated animals was not dependent on tumor
cell proliferation/apoptosis or angiogenesis, as evidenced by
analysis of end-point tumor specimens. Conversely, there were
differences in the infiltration of tumor tissue by cytotoxic T cells,
the main effectors of the antitumor immune response. Profiling
of MDSCs isolated from tumors and spleens of C5aR-deficient,
tumor-inoculated animals confirmed that C5a contributes to the
accumulation of MDSCs in peripheral lymphoid organs and
their migration into tumors. Of note, MDSCs isolated from
mice with disabled C5aR signaling were less able to suppress
T cell proliferation in vitro. This deficiency was linked to
lower production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) in mononuclear MDSC from C5aR-
deficient animals.

Similarly to lung cancer cells, endogenous C5a generation by
pancreatic and colon cancer cells was later reported. These cells
processed C5 with a cell surface-expressed serine protease and
expressed C5aR, suggesting autocrine activation of complement
(61). In ovarian cancer, endogenous production of complement
components and autocrine stimulation of the anaphylatoxin
receptors C3aR and C5aR was suggested to be an important
mechanism supporting tumor growth (62). The observed effect
was independent of infiltration by cytotoxic T cells, since
experiments with silenced expression of C3 yielded the same
result (i.e., reduced tumor growth) in CD8T cell-sufficient and
-deficient mice. A direct effect of C3aR and C5aR agonists on
proliferation, migration, and invasion of tumor cells has also
been reported. Finally, quantification of C3 mRNA in tumors
from patients with ovarian cancer showed that overall survival in
patients with low tumor expression of C3 was more than double
that of patients with high expression of C3 in the tumor (62).

In recent years, there has also been growing evidence for
the pro-tumor activity of anaphylatoxins and anaphylatoxin

receptors in either tumor cells or the tumor stroma in multiple
tumors types, including melanoma, breast, ovarian, cervical,
colon, and intestinal cancer, as well as sarcoma [reviewed in (63)].
Interestingly, in addition to the larger body of work focusing
on the role of C3a and C5a in promoting tumor growth, recent
studies have described a pro-tumor effect of factor B silencing
(64) as well as a complement-independent enhancement of
tumor growth, adhesion, and angiogenesis by C1q produced by
the tumor stroma (65). The concept of complement activation
supporting tumor growth provided the rationale for combined
inhibition of C5a and PD-1 (66, 67), suggesting that targeting
complement may be an effective anticancer treatment. These
novel discoveries may be perceived as contradictory to the
acknowledged theory that complement inhibits tumor growth.
For example, NSCLC cells, which have been shown to benefit
fromC5a generation (56), were previously shown to form smaller
tumors in a mouse xenograft model when their endogenous
expression of the complement inhibitor factor H was silenced
(40). In addition, potent complement activators such as the anti-
CD20 immunotherapeutics rituximab and ofatumumab are first-
line therapies for treatment of B cell malignancies (33). Notably,
solid and circulating tumors have different requirements for
growth. While sold tumors are typically depend on angiogenesis,
migration, degradation of extracellular matrix, liquid tumors
originate in the bone marrow, peripheral blood, or lymph nodes,
which are rich in both nutrients and complement. Even solid
tumors of the same origin can differ one from another in
their mutational status, basal expression of growth factors and
metalloproteinases, and metabolic rate. All of these parameters
can influence the overall effect of complement activation on
tumorigenesis and/or tumor progression. Finally, tumor cells
often produce both complement activators and complement
inhibitors. Thus, it seems as though tumor cells actively regulate
the complement system depending on microenvironmental
conditions, rather than simply avoiding constitutive inhibition or
activation of complement (68).

Despite the extremely long phylogenetic distance between
eukaryotic cells and bacteria, some prokaryotes have acquired
strategies similar to tumor cells, which utilize the host
inflammatory status to create favorable survival conditions.
Bacterial growth in the human body is less dependent on
neovascularization than tumor growth, and in contrast to tumor
cells, bacteria do not have to overcome internal mechanisms
controlling proliferation. Moreover, most bacteria can stand
much harsher conditions than eukaryotic cells in terms of pH,
oxygen tension, temperature, concentration of metabolites, etc.
Nevertheless, the common feature between bacteria and tumor
cells is the demand for nutrients and certain microelements.
While solid tumors induce angiogenesis to acquire a source of
nutrients, bacteria can successfully utilize products from the
breakdown of local tissue. Therefore, tissue-destructive processes
linked to local inflammation form permissive conditions for
prokaryotic pathogens, which can survive immune attack.
An additional benefit of this strategy is the elimination of
inflammation-sensitive bacterial species (human commensals or
normal microflora) that normally compete within the same niche
(69, 70).
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INFLAMMOPHILIC CHARACTER OF
PORPHYROMONAS GINGIVALIS, WHICH
PROPELS PERIODONTISIS

One of the most well-documented examples of bacteria hijacking
host immunity to create an environmental niche occurs in
periodontitis, a chronic inflammatory disease characterized
by dysbiosis that results in degradation of the gingiva and
tooth-supporting bone and ultimately leads to tooth loss (1).
Periodontal disease begins from dental plaque, amicrobial matrix
colonizing the gum line usually as a result of inefficient oral
hygiene (71). The next stage, gingivitis, is characterized by
local inflammatory response to microbial plaque. The switch
between non-destructive gingivitis and destructive periodontitis
involve dysbiosis of the normal oral microbiome. The dysbiotic
process results from an imbalance of homeostasis caused by
so-called keystone pathogens (72). A keystone pathogen is
usually a microorganism of low abundance that induces changes
in the composition of the local microflora by introducing a
new selective pressure, such as inflammation. In periodontitis,
the keystone pathogen is Porphyromonas gingivalis. However,
as shown by studies in mice, this Gram-negative bacteria
cannot establish periodontitis by itself, but requires commensal
microbes. These microbes are then converted from a symbiotic
into a dysbiotic community. Pivotal experiments showed that
bone loss was reduced when C3aR- or C5aR-deficient mice
were inoculated with P. gingivalis and that no changes in the
oral microbiota were observed in these knockout mice after P.
gingivalis inoculation, in contrast to wild-typemice (69). As some
tumor cells generate C5a through their surface enzymes, so does
P. gingivalis. It is equipped with gingipains, outer membrane-
anchored bacterial surface arginine-specific proteases with C5
convertase-like activity (73, 74). Importantly, gingipains release
C5a from C5, but at higher concentrations, they degrade the
larger fragment (C5b), thus preventing MAC formation (75).
C3 and C4 complement proteins are also degraded by high
concentrations of gingipains. Thus, human serum pre-incubated
with clinical strains of P. gingivalis but not mutants lacking
gingipains is devoid of bactericidal activity (74, 76). Additionally,
gingipains interact with the C1 complex and increase its
deposition onto bacteria surfaces (74). Based on these findings,
one can postulate a biphasic effect of P. gingivalis proteolytic
enzymes. A low abundance of bacteria initiates the classical
complement pathway, but increasing numbers of bacteria results
in the degradation of crucial complement components, leading
to osmotic lysis. C5 is present in gingival crevicular fluid at
concentration corresponding to 70% of that in serum and the
active C5a anaphylatoxin can be locally released by convertases
and bacterial proteases (77). C5a is a strong inflammatory
mediator that increases vascular permeability and attracts and
modulates the function of neutrophils, monocytes, and mast
cells. All these events are considered antimicrobial events.
Paradoxically, P. gingivalis’ strategy for immune subversion by
proinflammatory C5a involves targeted immunosuppression of
macrophages. C5a affects intracellular killing of engulfed P.
gingivalis by RNS and corrupts the crosstalk between C5aR

and TLR2, one of the most important PRMs in antibacterial
innate immunity (73). At the same time, C5aR-TLR2 crosstalk
results in release of proinflammatory cytokines such as IL-
1β, IL-6, and TNF-α, which accelerate bone resorption and
thus contributes to the pathological mechanism of periodontitis.
Similarly, P. gingivalis spoils intracellular killing mechanism
but not proinflammatory activity of neutrophils by degradation
of TLR2 adaptor molecule MyD88 provoked by concomitant
activation of TLR2 and C5aR (78).

Another functional similarity between P. gingivalis and
tumor cells, which produce either complement inhibitors or
complement components, is the fact that P. gingivalis not
only possesses the proteolytic machinery to generate C5a but
also expresses a unique enzyme, peptidyl arginine deiminase
(PPAD), which can citrullinate the C-terminal arginine in C5a,
a modification that results in substantial loss of anaphylatoxin
chemotactic activity (79). This suggests that the evolutionary
goal of pathogens like P. gingivalis is not constitutive activation
or inhibition of the complement system, but rather the
ability to actively control complement status depending on its
current needs. As a keystone pathogen, P. gingivalis is a low-
abundance species that plays a major role in remodeling the
local microbiota community (69). Following establishment of
P. gingivalis infection, a succession of other dysbiotic species
proliferates in the periodontal plaque. Some express their own
complement inhibitors, such as Tannerella forsythia, which
produces karilysin and mirolysin (80, 81), Filifactor alocis, which
produces FACIN (82), and Prevotella intermedia, which produces
interpain A (83). Of note, interpain A works in concert with
gingipains in the initial stages of infection, as both proteins
activate the C1 complex and increase its deposition onto the
cell surface. A dysbiotic bacterial community may promote a
transcriptomic response that further improves bacterial fitness
by regulation of nutrient acquisition and expression of virulence
factors (84). This process resembles the crosstalk between tumor
cells and the stroma, at least to a certain extent. Tumor cells
can drive the polarization of infiltrating immune cells (e.g., into
M2 macrophages), which in turn benefit the tumor cells by, for
example, expressing angiogenic cytokines (85, 86). In addition,
carcinoma-associated fibroblasts (CAF), which differentiate from
normal fibroblasts upon stimulation by cancer-derived cytokines
such as TGF-β, have emerged as important players in cancer
progression and metastasis (87, 88).

CONCLUDING REMARKS

The role of the complement system in combating bacteria
and cancer is more complicated than was initially believed.
Certain pathogens have evolved the ability not only to evade
complement attack but also to use it as a tool for establishing
their own niche, while remaining protected from complement-
mediated lysis. Such a strategy seems to be widespread in
nature and has been adopted by both bacteria and tumor cells
(Figure 2). It seems likely that additional pathogenic strategies
remain to be discovered, and thus one must be careful when
designing complement-based therapeutics. On the other hand,
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anti-complement approaches may be effective in the treatment
of infections caused by inflammophilic microbes.
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