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Robust anti-tumor immunity requires innate as well as adaptive immune responses. We

have shown that plasmacytoid dendritic cells develop killer cell-like activity in melanoma

cell cocultures after exposure to the infectious but replication-deficient herpes simplex

virus 1 (HSV-1) d106S. To combine this innate effect with an enhanced adaptive immune

response, the gene encoding humanMelanA/MART-1was inserted into HSV-1 d106S via

homologous recombination to increase direct expression of this tumor antigen. Infection

of Vero cells using this recombinant virus confirmed MelanA expression by Western

blotting, flow cytometry, and immunofluorescence. HSV-1 d106S-MelanA induced

expression of the transgene in fibroblast and melanoma cell lines not naturally expressing

MelanA. Infection of a melanoma cell line with CRISPR-Cas9-mediated knockout of

MelanA confirmed de novo expression of the transgene in the viral context. Dependent

on MelanA expression, infected fibroblast and melanoma cell lines induced degranulation

of HLA-matched MelanA-specific CD8+ T cells, followed by killing of infected cells. To

study infection of immune cells, we exposed peripheral blood mononuclear cells and in

vitro-differentiated macrophages to the parental HSV-1 d106S, resulting in expression

of the transgene GFP in CD11c+ cells and macrophages. These data provide evidence

that the application of MelanA-encoding HSV-1 d106S could enhance adaptive immune

responses and re-direct MelanA-specific CD8+ T cells to tumor lesions, which have

escaped adaptive immune responses via downregulation of their tumor antigen. Hence,

HSV-1 d106S-MelanA harbors the potential to induce innate immune responses in

conjunction with adaptive anti-tumor responses by CD8+ T cells, which should be

evaluated in further studies.
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INTRODUCTION

Based on the results of a large phase III trial (1), Talimogene
laherparepvec (T-VEC) was recently approved as first oncolytic
herpes virus 1 for the treatment of patients with stage IIIB,
IIIC, or IVM1a malignant melanoma. This attenuated virus
induces regression of injected or distant cutaneous, lymphatic,
and visceral lesions (2). It preferentially replicates in tumor cells
due to defects in the type I interferon pathway, which renders
these cells more susceptible to virus replication (3). T-VEC
encodes GM-CSF, which contributes to recruitment of antigen-
presenting cells to the site of injection. Via lysis of melanoma
cells and uptake into antigen-presenting cells, T-VEC enhances
cross-presentation of tumor-associated antigens to T cells, which,
in particular in combination with immune checkpoint inhibitors,
induces strong anti-tumoral responses leading to significantly
improved survival of the patients (4, 5).

T-VEC is one of several oncolytic herpes simplex viruses,
which havemade their way to the clinic. Amongst them are G207,
HSV 1716, NV1020, and HF10, which have been used in phase
I/II trials in glioma, glioblastoma, melanoma, neuroblastoma,
breast, and pancreatic cancer (6). All these viruses are attenuated,
but replication-competent. In addition to inactivation of the
neurovirulence gene γ34.5 and the TAP-binding protein ICP47,
the third generation oncolytic herpes virus 147 has mutated the
ribonucleotide reductase ICP6, resulting in a more pronounced
attenuation of the virus (7).

We have investigated the oncolytic effects of the HSV-
1 d106S strain, which, in contrast to other oncolytic herpes
viruses, is infectious but replication-deficient due to deletions
of essential viral genes (8). HSV-1 d106S expresses GFP, which
can be replaced by other genes of interest via homologous
recombination. Using eleven different melanoma cell lines, we
have shown that HSV-1 d106S is oncolytic, in particular if
combined with plasmacytoid dendritic cells (PDC) (9). These
cells are major producers of type I interferons (IFN) in the blood
upon stimulation with herpes simplex or influenza viruses (10,
11). They surround and occasionally infiltrate primarymelanoma
lesions and sentinel lymph nodes (12–14).

Due to an immunosuppressive tumor microenvironment,
infiltrating PDC are usually immature and tolerogenic,
promoting regulatory immunity (15) and tumor progression
(16, 17). Upon activation by Toll-like receptor (TLR) agonists,
PDC induce a Th1-type immune response and contribute to
T cell-mediated tumor regression. In this respect, we have
shown that PDC develop strong killer-cell like activity against
melanoma cells upon exposure to HSV-1 d106S (9). This was
similarly observed by others using Toll-like receptor 7 and 9
agonists as well as viral vaccines for stimulation of PDC (18–26).

So far, evidence is accumulating that oncolytic herpes viruses
are potent inducers of innate immune responses. Beyond
that, robust anti-tumor immunity requires adaptive immune
responses. Two recent proof-of-concept trials showed induction

Abbreviations: HSV, Herpes simplex virus; IFN, interferon; ko, knockout; MOI,

multiplicity of infection; PBMC, peripheral blood mononuclear cells; PCR,

polymerase chain reaction; PDC, plasmacytoid dendritic cells; p.i., post infection;

sg, single guide.

of strong (mostly CD4+) T cell responses with subsequent delay
in reappearance of new metastases in melanoma patients via
injection of minigenes coding for different neoantigen-derived
peptides (27) or via vaccination using respective peptides in the
context of adjuvant (28).

With oncolytic viruses, induction of adaptive immunity
is currently based on the uptake and cross-presentation of
tumor-specific antigens released from dying tumor cells. To
enhance antigen presentation, we envisaged to replace the
transgene GFP in HSV-1 d106S by the melanoma-associated
antigen MelanA/MART-1. We hypothesized that the expression
of a tumor antigen in the context of the oncolytic HSV-1
d106S may provoke CD8+ T cell responses against melanoma
cells, combining oncolytic effects of the virus with enhanced
expression of melanoma-associated antigens. Hence, such an
oncolytic virus may target both innate and adaptive immune
responses.

MATERIALS AND METHODS

Cloning of MelanA Into Transfer Plasmid
pd27B
The transfer plasmid pd27B containing sequences homologous
to HSV-1 d106S (8) and a MelanA expression plasmid (29)
were propagated in Escherichia coli XL-1 Blue cells (Agilent,
Böblingen, Germany) and isolated using the PureLink HiPure
Plasmid Midiprep kit (Invitrogen/Life Technologies, Darmstadt,
Germany). The coding sequence for MelanA was amplified
using NheI-MelanA (5′-TAGATAGCTAGCATGCCAAGAGAA
GATGCTC-3′) and MelanA-XbaI (5′-GTCCATTCTAGATTA
AGGTGAATAAGGTGGTG-3′) (biomers.net, Ulm, Germany).
The PCR product and pd27B were digested using NheI and XbaI
(NEB, Frankfurt, Germany), followed by dephosphorylation
of pd27B. Both products were purified using the QIAquick
PCR purification kit (Qiagen, Hilden, Germany), ligated at
room temperature overnight, and transformed into XL-1 Blue
cells. Correct inserts were identified using T7-EEV-Prom (5′-

AAGGCTAGAGTACTTAATACGA-3
′
; Promega, Mannheim,

Germany) with primers 5′-CCGATGAGCAGTAAGACTC-3′;
5′-AGTTGTGGTTTGTCCAAACTC-3′; 5′-TGGATAAAAGTC
TTCATGTTGG-3′.

Cultivation of HSV-1 d106S and HSV-1
d106S-MelanA
HSV-1 d106S is an infectious recombinant strain derived from
the HSV-1 d106 virus (30). It expresses GFP under the control of
a CMV promoter, has a restored susceptibility to aciclovir, and
is replication-deficient due to deletions of essential viral genes
and promoter regions (8). Complementing E11 cells providing
ICP4 and ICP27/47 in trans were propagated in DMEM
supplemented with 10% heat-inactivated FCS (Sigma-Aldrich,
Munich, Germany), 90 U/ml streptomycin, 0.3 mg/ml glutamine,
200 U/ml penicillin, and periodic G418 selection (400µg/ml).
Infected at 90% confluency (MOI 0.1), cells were harvested at 50–
60 h when they showed cytopathic effects but were still adherent.
After three freeze-thaw cycles, cells were resuspended in DPBS.
Supernatants were filtered through 0.45µm pores and stored at
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−80◦C. The number of infectious HSV-1 particles was quantified
using the 50% tissue culture infective dose (TCID50) according to
the method of Reed and Munch.

Isolation of HSV-1 d106S DNA
Viral DNA was prepared from nucleocapsids following a
published protocol (31). Supernatants of infected cell cultures
were loaded onto discontinuous OptiPrep gradients (Sigma-
Aldrich) of 40% iodixanol overlayed with 20% iodixanol,
and subjected to ultracentrifugation using SW41Ti Ultraclear
tubes (Beckman Coulter, Krefeld, Germany) at 30,000 rpm
for 2 h, without braking at 800 rpm. The visible whitish
ring containing viral particles was harvested by side-puncture,
transferred to a VTi65 ultraclear tube (Beckman Coulter), and
filled with 30% iodixanol, forming a continuous gradient during
ultracentrifugation at 55,000 rpm for 6 h. The visible ring was
transferred to a SW41Ti ultraclear tube, filled with DPBS, and
pelleted at 20,000 rpm for 90min. Pellets were re-suspended in
DPBS, filtered through 0.45µm pores, and digested using 10×
Taq DNA polymerase buffer containing proteinase K (Sigma-
Aldrich) and 0.1% (v/v) Tween 20 at 56◦C for 1 h. For all
subsequent steps, shearing of viral DNA was minimized by
cutting off pipet tips and gentle mixing of solutions. The
digested pellet was transferred to a phase lock “light” gel tube
(5 Prime, Hilden, Germany) andmixed with phenol-chloroform-
isoamylalcohol. After centrifugation at 2,000 rpm for 5min, the
aqueous phase was transferred to another phase lock gel tube,
recapitulating the step described above. Traces of phenol were
eliminated by chloroform extraction. The aqueous solution was
precipitated with 7.5M ammonium acetate and ice-cold ethanol
at −80◦C overnight. DNA was pelleted at 15,000 rpm at 4◦C
for 45min, washed with 70% ethanol, and resuspended in TE-
buffer. Purified DNA was not frozen to avoid double-strand
breaks. Purity and integrity was checked using NanoDrop UV-
spectrophotometry and EcoRI-HF digestion (NEB).

Homologous Recombination
E11 cells were seeded into 6-well plates to obtain 90% confluency
for transfection. pd27B-MelanA was linearized using SwaI
(NEB), purified using the QiaQuick PCR purification kit, and
mixed with HSV-1 d106S DNA at a ratio of 1:4 (w/w) in DMEM
plus glutamine. Themixture was heated at 95◦C for 3min, chilled
on ice, andmixed with FuGENEHD transfection reagent (Roche,
Mannheim, Germany). After incubation at room temperature for
30min, the mixture was added to E11 cells. Cytopathic effects
were identified after 2 days. Non-fluorescent viral plaques were
purified using limiting dilution and further analyzed for evidence
of homologous recombination.

Isolation and Cultivation of Cells
PBMCwere isolated from EDTA-anticoagulated blood of healthy
donors using standard Biocoll density gradient centrifugation
(Biochrom AG, Berlin, Germany), as approved by the Ethical
Committee of the Medical Faculty, Friedrich-Alexander-
Universität Erlangen-Nürnberg (Ref. no. 3299). PBMC were
cultivated in RPMI 1640 with supplements described above. For
generation of macrophages, PBMC were seeded into Nunc Lab-
Tek chamber slides (Thermo Fisher Scientific) and cultivated

in the presence of 15% heat-inactivated autologous serum,
removing non-adherent cells by trypsin after 3 days. At 10–14
days, macrophages were infected with wild type HSV-1 (32),
HSV-1 166v (33), HSV-1 d106S, and HSV-1 d106S-MelanA.
MRC-5 fibroblasts (ATCC R© CCL-171TM) and melanoma cell
lines (IGR-37, IGR-39, ARST-1, ICNI-5li, SK-MEL30, LIWE-7)
were cultivated as described (9).

CRISPR-Cas9 Knockout
The MelanA gene was knocked out from SK-MEL30 cells
using CRISPR-Cas9 technology (Addgene, Cambridge, MA).
Sequences of single guide (sg) RNAswere taken from the GECKO
library (sgMelanA1: 5′-GCACGGCCACTCTTACACCA-3′;
sgMelanA2: 5′-TTGAACTTACTCTTCAGCCG-3′) (34) and
inserted into LentiCRISPRv2 puro (#52961) (35). Lentiviral
stocks were produced from 293T cells transfected with
plasmids LentiCRISPRv2 puro, psPAX2 (#12259), and pMD2.G
(#12260).

HLA Typing
High resolution HLA-A, -B, and -C genotyping was performed
using the HLA SBT S4 HLA class I kit (Protrans GmbH,
Hockenheim, Germany) according to the manufacturer’s
instructions in full compliance with the HLA typing standards of
the European Federation for Immunogenetics (EFI).

MelanA-Specific T Cell Generation and
Coculture
CD8+ T cells were purified from PBMC of a HLA-A∗02:01-
positive donor using a CD8 cell isolation kit (Miltenyi Biotec,
Bergisch-Gladbach, Germany) and stimulated using artificial
antigen-presenting cells (36) loaded with MelanA/MART-
127L26−34 peptide (ELAGIGILTV, GenScript, distributed by
Biozol, Eching, Germany). The coculture was carried out in
M’ medium (37) supplemented with 5% autologous plasma
and 3% T cell growth factor (38), kindly provided by
Mathias Oelke. On day 7 and weekly thereafter until week
4, T cells were restimulated. Purity was assessed using HLA-
A∗02:01/MART-127L26−35 tetramers and found to be > 95%.
Coculture with HLA-matched fibroblast and melanoma cell
lines was carried out in the presence of Alexa 488-labeled
CD107a (eBiosciences/ThermoFisher, Frankfurt, Germany) and
Golgi blockers brefeldin A andmonensin (Sigma-Aldrich/Merck;
1:1,000) for 4 h. Prior to coculture, melanoma and MRC5 cells
were plated at 90% confluency, infected with the respective
viruses (MOI 1) for 20 h or loaded with peptide for 1 h,
washed, and subsequently overlaid with a total of 1.5 × 105

CD8+ T cells in 96-well plates. After FcR blocking, cells were
stained with fixable viability dye eFluor 506 (eBiosciences)
and anti-CD8 APC/Cy7 (BioLegend, Koblenz, Germany),

and, after permeabilization using the BD Cytofix/Cytoperm
TM

Kit, with anti-IFN-gamma PE-Cy7 or the respective isotype
(eBiosciences).

FACS Analysis
PBMC were exposed to HSV-1 d106S and HSV-1 d106S-
MelanA for 24 h, washed, and incubated with FcR blocking
reagent at 4◦C for 10min. Cell populations were stained
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at 4◦C for 20min, using a published protocol (39) with
antibodies to CD3 (Alexa Fluor700; clone UCHT1; BioLegend,
London, UK), CD4 (PE-Cy7; clone RPA-T4; BioLegend),
CD11c (PE-Cy5; clone B-ly6, BD Biosciences, Heidelberg,
Germany), CD14 (APC; clone HCD14; BioLegend), CD19
(APC-H7; clone SJ25C1; BD Biosciences), CD56 (BV-605;
clone NCAM16.2; BD Biosciences), and CD304 (PE; clone
AD5-17F6; Miltenyi Biotec). Dead cells were stained using
PacificBlue (Invitrogen/Life Technologies). Cells were collected
using multiparameter LSR-II flow cytometer with FACSDiva
software (BD Biosciences) and FCS Express 3 Software (De
Novo Software, Los Angeles, CA, USA). MelanA expression
was studied in infected cells, using the BD Cytofix/Cytoperm
kit with FITC-conjugated (clone A103, Santa Cruz, Heidelberg,
Germany) or unconjugated murine anti-MelanA (clone A103,
Dako, Hamburg, Germany) and the respective isotype controls
followed by Alexa Fluor 555-conjugated goat anti-mouse F(ab′)2
(Invitrogen/Life Technologies).

Western Blot Analysis
Cells were lysed on ice for 30min (50mM TRIS, pH 8.0; 150mM
NaCl; 5mM EDTA; 1% NP-40; 0.1mM PMSF), heated in sample
buffer containing SDS and ß-mercaptoethanol at 105◦C for
10min, separated on a 10% polyacrylamide gel, and transferred
to a PVDF membrane (Merck Millipore, Darmstadt, Germany).
After blocking with 5% milk powder plus 0.4% Tween 20,
samples were incubated with unconjugated MelanA antibody
(1:750) at room temperature for 1.5 h or at 4◦C overnight,
followed by HRP-conjugated rabbit polyclonal anti-mouse IgG
(H+L) (DAKO Diagnostics GmbH, Hamburg; 1:1,000) at
room temperature for 60min. After adding ECL solution
containing luminol (Sigma-Aldrich) for 1min, luminescence was
recorded using the Fujifilm LAS-1000 plus gel documentation
system.

Immunofluorescence and Confocal
Microscopy
E11/Vero cells and macrophages were infected in chamber slides
using HSV-1 d106S and HSV-1 d106S-MelanA (MOI 10) for
16 h, and incubated in DPBS plus 0.3% Triton-X100 at 4◦C
for 20min. After blocking in DPBS with 1% BSA (NEB) and
5% FCS, cells were stained with unconjugated anti-MelanA
(diluted 1:75 in DPBS plus 1% BSA) at room temperature for
1 h and Alexa Fluor 555-conjugated goat anti-mouse F(ab’)2
(Invitrogen/Life Technologies, diluted 1:500 in DPBS plus 1%
BSA) for 30min. Slides were washed with DPBS containing DAPI
and covered with VectaShield (Vector Laboratories, distributed
by Biozol). In some experiments, cell membranes were stained
using Alexa Fluor 555-labeled wheat germ agglutinin (5µg/ml)
(Life Technologies). Cells were analyzed using the DMI 6000B
inverted microscope and the TCS SP5 laser scanning microscope
equipped with the LAS-AF software (Leica Microsystems,
Mannheim, Germany).

Cell Killing Assays
To investigate direct oncolytic effects of HSV-1 d106S and HSV-1
d106S-MelanA, 1× 104 melanoma cells were infected with these

viruses using different MOI (1 and 10). Cell viability was checked
at day 1, 2, 3, and 4 p.i. using the MTT lysis assay according to
the manufacturer’s recommendations (Trevigen, R&D Systems,
Nordenstadt, Germany). Oncolytic effects of MelanA-specific
CD8+ T-cells were studied in melanoma cells, which had been
infected with HSV-1 d106S and HSV-1 d106S-MelanA (MOI 1)
for 8 h, followed by CD8+ T-cell coculture (ratio 1:8) for 16 h
and subsequent MTT lysis assay. Peptide-loaded cells served as
controls.

Statistics
In our statistical analysis, we used one-way ANOVA for multiple
group comparisons with GraphPad Prism version 8. Two-sided
p < 0.05 were considered significant.

RESULTS

Generation of HSV-1 d106S-MelanA
The infectious, but replication-deficient HSV-1 d106S expresses
GFP under the control of a CMV promoter. To replace this
transgene by MelanA, the coding sequence of MelanA was
amplified from expression plasmid pcDNA3(+) MART-1
(29) (Figure 1A) and cloned into transfer plasmid pd27B
(8). The clone used for homologous recombination was
sequenced, revealing identity with the MelanA sequence in
GenBank (accession no. NM_005511). After infection of
E11 cells with HSV-1 d106S (Figure 1B), viral DNA was
isolated from nucleocapsids. Purity and integrity of DNA
were confirmed by spectrometry and digestion with EcoRI,
which revealed distinct bands (Figure 1C). Cotransfection
of SwaI-linearized pd27B-MelanA with HSV-1 d106S DNA
into E11 cells resulted in mostly GFP-expressing (Figure 1D,
upper part) and a few non-fluorescent viral plaques (Figure 1D,
lower part), which indicated homologous recombination
with replacement of GFP in a minority of transfected
cells.

Characterization of HSV-1 d106S-MelanA
Two non-fluorescent viral plaques were purified via limiting
dilution and used to infect E11 cells. The coding sequence
of MelanA was detected in cells infected with both clones,
but not in cells exposed to HSV-1 d106S, while all three
infections were positive for the housekeeping ß-glucuronidase
gene (Figure 2A). Western blotting detected MelanA protein
in E11 cells infected with the two non-fluorescing clones, but
not with HSV-1 d106S, while ß-actin was present in all three
infections (Figure 2B). In flow cytometry, E11 cells infected
with HSV-1 d106S expressed GFP, while cells infected with the
two putative MelanA-expressing clones showed red fluorescence
after intracellular staining of MelanA (Figure 2C). Vero cells,
which do not support productive HSV-1 d106S replication, also
expressed GFP or MelanA upon infection (Figure 2D) with
mostly nuclear and cytoplasmic expression of GFP and MelanA,
respectively, as evident from confocal microscopy. Altogether, we
obtained a recombined HSV-1 d106S strain expressing MelanA,
further termed HSV-1 d106S-MelanA.
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FIGURE 1 | Generation of HSV-1 d106S-MelanA. (A) Agarose gel image of full-length MelanA amplified from expression plasmid pcDNA3(+) MART-1 (29) using

XbaI/NheI-containing primers. (B) Light microscopic images of uninfected E11 cells (left) and cytopathic effects induced in these cells 56 h post HSV-1 d106S

infection (right). (C) EcoRI digestion of HSV-1 d106S DNA obtained from viral nucleocapsids showing distinct bands as evidence of DNA integrity. (D) Overlay of phase

contrast and immunofluorescence microscopy of E11 cells harboring fluorescing (upper part) and non-fluorescing (lower part) viral plaques, representing HSV-1

d106S and HSV-1 d106S-MelanA, respectively, after cotransfection of the linearized transfer plasmid pd27B-MelanA and HSV-1 d106S DNA. Light and

immunofluorescence microscopy were taken using the DMI 6000B inverted microscope (20 × magnification).

FIGURE 2 | Characterization of HSV-1 d106S-MelanA. MelanA expression in E11 cells infected with HSV-1 d106S and two non-fluorescent viral clones (MOI 10),

which were obtained after cotransfection using HSV-1 d106S DNA and transfer plasmid pd27B-MelanA, as evident from (A) PCR, (B) Western blot, and (C) flow

cytometry. Controls were (A) housekeeping gene ß-glucuronidase (GUS) and (B) ß-actin protein. (D) Expression of GFP and MelanA in Vero cells infected with HSV-1

d106S and two non-fluorescent HSV-1 d106S-MelanA clones, analyzed using immunofluorescence microscopy (upper panel) and confocal imaging (lower panel). The

immunofluorescence and confocal images were taken using the DMI 6000B inverted microscope (20 × magnification) and the TCS SP5 laser scanning microscope

(40 × magnification, 2.5 × zoom), respectively. Scale bars represent 50 and 10µm in immunofluorescence and confocal images, respectively.

Expression of MelanA in Human Fibroblast
and Melanoma Cell Lines
Melanoma cells frequently express MelanA, which may be lost
upon immune escape (40). Three of our melanoma cells lines
expressed MelanA (IGR-37, ARST-1, SK-MEL30), while three
others were negative (LIWE-7, IGR-39, ICNI-5li). We analyzed
whether MelanA expression may be restored in the latter upon
infection with HSV-1 d106S-MelanA (MOI 1). At 20h p.i.,
IGR-37 and ARST-1 cells still expressed MelanA (Figure 3A),
while transgene expression was induced in LIWE-7, IGR-39,

and ICNI-5li cells (Figure 3B). Similarly, MelanA expression
was induced in MRC-5 fibroblasts. MelanA protein expression

was confirmed in IGR-37 and LIWE-7 cells using Western

blotting (Figure 3C). These data indicated that melanoma cell
lines which did not express MelanA per se could be induced to
do so.

To exclude upregulation of endogenous MelanA in these cell

lines, we used two CRISPR-Cas9 approaches targeting different
regions of the MelanA gene (sgMelanA1, sgMelanA2) to knock

out this gene in SK-MEL30 cells. Four weeks after lentiviral
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FIGURE 3 | Induction of MelanA expression in melanoma and fibroblast cell lines by HSV-1 d106S-MelanA. Expression of MelanA in (A) MelanA-positive (IGR-37,

ARST-1) or (B) MelanA-negative melanoma cells (LIWE-7, IGR-39, ICNI-5li) and in MRC-5 fibroblast cells before (mock) and 20 h p.i. using HSV-1 d106S-MelanA.

Data are representative of one (MRC-5, ICNI-5li), two (ARST-1, IGR-39), three (IGR-37), and four (LIWE-7) separate experiments. (C) Expression of MelanA and ß-actin

in melanoma cell lines IGR-37 and LIWE-7, analyzed by Western blotting after infection with HSV-1 wildtype (WT), HSV-1 d106S, and HSV-1 d106S-MelanA.

(D) MelanA expression in parental SK-MEL30 cells and after CRISPR-Cas9 treatment resulting in loss of MelanA expression in two of the three analyzed cell clones

(sgMelanA1-clone4, sgMelanA2-clone4), while in one cell clone the knockout was not successful (sgMelanA1-clone1). Upon HSV-1 d106S-MelanA infection, MelanA

was re-expressed in the cell clones, which had lost MelanA expression.

transduction, MelanA was no longer detectable in 85% of cells.
After single-cell sorting, two and fiveMelanA-negative cell clones
were obtained for sgMelanA1 and sgMelanA2, respectively.
Upon infection with HSV-1 d106S-MelanA, MelanA-negative
cell clones (sgMelanA1-clone4, sgMelanA2-clone4) started to
re-express MelanA, while MelanA expression was marginally
downregulated in parental SK-MEL30 cells and a cell clone with
ineffective MelanA knockout (sgMelanA1-clone1) (Figure 3D).
These data indicated de novo expression of the transgene in the
viral context.

Presentation of MelanA in Human
Fibroblast and Melanoma Cell Lines
In further experiments, we investigated whether expression of
MelanA in infected cell lines was followed by presentation
of MelanA peptides within the HLA-A context. To this end,
we cocultured HLA-A∗02:01-positive fibroblast (MRC-5) and
melanoma (SK-MEL30) cell lines with HLA-A∗02:01/MART-
127L26−34-specific CD8+ T cells. As expected, MelanA-expressing
SK-MEL30 cells induced CD8+ T cell activation after 4 h of

coculture, as evident from degranulation (CD107a) (Figure 4A)
and IFN-gamma (Figure 4B) production, whileMelanA-negative
MRC-5 cells failed to do so. Similar results were obtained
after infection of cell lines using HSV-1 d106S, confirming
that virus infection per se did not induce CD8+ T cell

activation. Upon infection of MRC-5 cells with HSV-1 d106S-
MelanA, however, CD8+ T cells showed enhanced surface
exposure of CD107a (Figure 4A) and, at least to some extent,
IFN-gamma production (Figure 4B). These results indicated
processing of virus-encoded MelanA with presentation of
the respective peptide in the context of HLA-A in these
cells. As a positive control for CD8+ T cell activation,

MRC-5 and SK-MEL30 cells were exogenously loaded with
saturating concentrations of the optimized MelanA/MART-
127L26−34 peptide.

To corroborate activation of CD8+ T cells by virus-

encoded MelanA in melanoma cells, we investigated SK-
MEL30 knockout cells. A MelanA-negative cell clone obtained

using sgMelanA1 (sgMelanA1-clone4) did not activate HLA-

A∗02:01/MART-127L26−34-specific CD8+ T cells, while HSV-1
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FIGURE 4 | Activation of CD8+ T cells by HLA-matched melanoma and fibroblast cell lines infected with HSV-1 d106S-MelanA. Degranulation (CD107a) and

IFN-gamma (IFNg) production in HLA-A*02:01/MART-127L26−34-specific CD8+ T cells after coculture with HLA-matched SK-MEL30 melanoma and MRC-5

fibroblast cell lines for 4 h. In contrast to SK-MEL30 cells, MelanA was not expressed by MRC-5 and SK-MEL30 knockout (ko) cells (sgMelanA1-clone4). Cell lines

were infected with HSV-1 d106S or HSV-1 d106S-MelanA for 20 h prior to coculture or loaded with MelanA peptide MART-127L26−34. T cells were identified as viable

CD8+ cells after exclusion of doublets. (A) One representative experiment and (B) mean and standard error of four, five, and (C) three separate experiments for

SK-MEL30, MRC-5, and SK-MEL30 ko cells, respectively. Percentages of CD107a- and IFNg-expressing cells were compared to mock using one-way ANOVA for

multiple group comparisons; *p < 0.05.

d106S-MelanA infection of this cell clone induced degranulation

as evident from the detection of CD107a at the surface of
CD8+ T cells (Figure 4A). A similar increase in CD8+ T cell
degranulation was observed after infection of another MelanA-

negative SK-MEL30 clone obtained using sgMelanA2 (data not
shown). In independent experiments, significant CD8+ T cell

degranulation was induced by HSV-1 d106S-MelanA-infected
MRC-5 compared to uninfected cells (0.2% vs. 3.2%, p =

0.03) (Figure 4C). A similar trend was observed in SK-MEL30

knockout cells (1.1% vs. 4.9%, p = 0.06). Altogether, fibroblast

and melanoma cells were induced to express tumor antigen
and present respective peptides to tumor antigen-specific HLA-

matched CD8+ T cells.

Direct and CD8+ T Cell-Mediated Oncolytic
Effects of HSV-1 d106S-MelanA
To investigate direct effects of HSV-1 d106S and HSV-1 d106S-
MelanA on tumor cell killing, SK-MEL30 wild type cells were
infected using two different MOI. Oncolytic effects of both
viruses on SK-MEL30 cells were comparable. Infection using
a MOI of 10 resulted in a significantly stronger reduction of
viability than infection using a MOI of 1 (p < 0.001 for d106S
and p < 0.01 for d106S-MelanA at day 2 p.i.) (Figure 5A). MRC-
5 cells were significantly less susceptible to this oncolytic effect
(MOI 10) compared to SK-MEL30 cells at day 1 and 2 p.i. (p <

0.05).
In further experiments, we studied whether infection of

MelanA-negative melanoma cells using HSV-1 d106S-MelanA
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FIGURE 5 | Direct and indirect oncolytic effects of HSV-1 d106S-MelanA. (A) Viability of SK-MEL30 wild type cells and MRC-5 fibroblast cells was assessed after

infection with HSV-1 d106S and HSV-1 d106S-MelanA (MOI 1 and 10) using MTT lysis assay at day 1, 2, 3, and 4 p.i. (B) Parental SK-MEL30 cells and

sgMelanA1-clone1, which both expressed MelanA, as well as MelanA-negative sgMelanA1-clone4 and MRC-5 fibroblast cells were infected with HSV-1 d106S and

HSV-1 d106S-MelanA (MOI 1) for 8 h or exposed to MelanA peptide for 1 h prior to coculture with CD8+ T cells for another 16 h. MTT values were corrected for

values of CD8+ T cells only, and normalized to mock-infected cells incubated in the absence of CD8+ T cells. Data show mean and standard error of three

independent experiments. Viabilities were compared to mock using one-way ANOVA for multiple group comparisons; *p < 0.05.

would contribute to the oncolytic effects of MelanA-specific
CD8+ T cells. SK-MEL30 wild type cells as well as sgMelanA1-
clone1, which both expressed MelanA, were readily attacked,
while MelanA-negative SK-MEL30 (sgMelanA1-clone 4) and
MRC-5 cells remained mostly unaffected (Figure 5B). Exposure
of all cell lines to MelanA peptide significantly increased cell
death in comparison to untreated cells (p < 0.05). Notably,
infection with HSV-1 d106S-MelanA significantly induced
T cell-mediated killing of the MelanA-negative SK-MEL30
(sgMelanA1-clone4) and MRC-5 cells, and even enhanced lysis
of theMelanA-expressing SK-MEL30 cell line (p< 0.05), whereas
infection using HSV-1 d106S showed no effect. In sum, HSV-
1 d106S-MelanA proved to be oncolytic via two effects: direct
oncolysis of melanoma cells and induction of enhanced oncolytic
activity by MelanA-specific CD8+ T cells.

Expression of the Transgene GFP in Human
PBMC and Antigen-Presenting Cells
We have shown that fibroblast and melanoma cell lines can
be induced to express MelanA upon HSV-1 d106S-MelanA
infection. To find out whether the transgene can also be
expressed in antigen-presenting cells, we studied the infection

of PBMC obtained from healthy volunteers. Because GFP is
more readily detected compared to MelanA, we used HSV-1
d106S and focused on monocytes, which can differentiate into
antigen-presenting cells. However, CD14 was downregulated at

24 h p.i., as reported previously (41), which precluded proper

identification of monocytes. Therefore, antigen-presenting cells
including monocytes were labeled using CD11c, which remained
expressed at the cell surface. Upon infection with wild type HSV-
1, PBMC did not display green fluorescence, while GFP was
detected in a proportion of cells exposed to HSV-1 v166 (33)
(Figure 6A). This virus codes for a VP22-GFP fusion protein,

which is not only expressed but also secreted from infected cells.
Therefore, cells with attached fluorescing viruses or VP22 cannot

be discriminated from truly infected cells. In contrast, HSV-1
d106S expresses GFP under the control of a CMV promotor
in infected cells only, and GFP is not incorporated into viral

particles. This virus induced GFP expression in CD11c+ PBMC,
becoming more prominent with increasing MOI (Figure 6A).

Individual cell populations were identified as T cells (CD3+),
B cells (CD3− CD19+), NK cells (CD3− CD19− CD56+),
and CD11c+ cells (CD3− CD19− CD11c+) using a multicolor
flow cytometry panel (Supplementary Figure 1). Again, green
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FIGURE 6 | Expression of GFP in human PBMC and macrophages after infection with HSV-1 d106S. (A) Expression of GFP in CD11c− and CD11c+ viable PBMC

after infection with HSV-1 wildtype (wt), HSV-1 166v, and HSV-1 d106S for 24h, using increasing multiplicities of infection (MOI). One representative experiment out of

three is shown. (B) Percentage of GFP-expressing cells among CD11c+ cells, T cells, B cells, and natural killer (NK) cells. T cells were identified as CD3+ cells, B cells

as CD3− CD19+ cells, NK cells as CD3− CD19− CD56+ cells, and CD11c+ cells as CD3− CD19− CD11c+ cells (for detailed gating strategy see

Supplementary Figure 1). Data are shown as mean and standard deviation of three independent experiments using different donors. Expression of GFP in

plasmacytoid dendritic cells was not evaluated due to low number of events. Percentages of GFP-expressing cells were compared to mock using one-way ANOVA for

multiple group comparisons; *p < 0.05, **p < 0.01, ***p < 0.001. (C) Expression of GFP in macrophages obtained from a HSV-seronegative donor and exposed to

HSV-1 wild type (WT), HSV-1 166v, and HSV-1 d106S for 24 h. Cellular membranes were stained using Alexa Fluor 555-labeled wheat germ agglutinin and visualized

using confocal imaging. (D) Expression of GFP in macrophages exposed to HSV-1 d106S for 24 h. Flow cytometry data are representative for two HSV-seronegative

donors studied in independent experiments.

fluorescence was not detected upon infection with wild type
HSV-1, but upon infection with HSV-1 v166 (CD11c+ cells >

CD56+ NK cells = CD19+ B cells > CD3+ T cells) (Figure 6B).
With HSV-1 d106S, GFP was detected in CD11c+ cells only,
resulting in 22.1, 68.3, and 79.2% of cells infected at MOI of 1,
10, and 100, respectively (Figure 6B).

In addition to primary CD11c+ cells, we studied macrophages

generated from PBMC of HSV-seronegative donors in the
presence of autologous serum. Adherent cells were differentiated

into macrophages, which, upon exposure to HSV-1 d106S,

expressed GFP in confocal imaging (Figure 6C) and flow

cytometry (Figure 6D) comparable to the extent observed in
fibroblast and melanoma cell lines. Overall, these data indicated

expression of virus-encoded GFP in CD11c+ cells and in
macrophages. We further sought to confirm expression of the
transgene upon HSV-1 d106S-MelanA infection. However, we
were not able to verify MelanA expression in PBMC and

macrophages in any of the experimental settings (data not
shown).

DISCUSSION

Oncolytic viruses infect and replicate in tumor tissues.
Subsequent lysis of infected cells releases tumor-specific
antigens, which are taken up by antigen-presenting cells and
induce anti-tumor immune responses via cross-presentation
to T cells (42). We sought to optimize the induction of
adaptive immune responses by incorporation of a tumor
antigen into the viral genome. For this purpose, we used
the infectious but replication-deficient HSV-1 d106S, which
exerts oncolytic activity in particular in combination with
PDC (9), and replaced the transgene GFP by MelanA via
homologous recombination. Using flow cytometry, Western
blotting, and immunofluorescence, protein expression was
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confirmed in complementing E11 and Vero cells. Upon
HSV-1 d106S-MelanA infection, we detected transgene
expression in MelanA-negative fibroblast and melanoma
cells, and in SK-MEL30 cells with specific knockout of
the MelanA gene using CRISPR-Cas9 technology. These
data confirmed de novo expression of MelanA in the viral
context.

Subsequent coculture of infected melanoma and fibroblast
cell lines with HLA-matched MelanA-specific CD8+ T cells
verified MelanA-specific activation, as evident from CD8+ T cell
degranulation upon induced MelanA expression. The infection
of parentalMelanA-expressing SK-MEL30 cells induced a slightly
reduced degranulation of CD8+ T cells, most likely due to the
oncolytic activity of the virus on target melanoma cells. Notably,
we observed an increase after HSV-1 d106S-MelanA infection
of MelanA-negative cells. It has to be admitted, though, that
the degree of IFN-gamma secretion in CD8+ T cells was very
low. This was not due to a functional limitation of CD8+ T
cells, as evident from the control using an optimized MelanA
peptide. It may rather be the result of the limited MelanA
expression induced upon HSV-1 d106S-MelanA infection, which
was not significantly enhanced using a higher MOI (data not
shown). The reason may be the efficient oncolytic activity of
this replication-deficient virus, resulting in depletion of MelanA-
expressing target cells (Figure 5A). Importantly, we observed
enhanced CD8+ T cell-mediated killing of MelanA-negative
melanoma cells upon infection with HSV-1 d106S-MelanA, but
not upon infection with HSV-1 d106S (Figure 5B). These data
indicate that HSV-1 d106S-MelanA exerts direct and indirect
oncolytic effects.

Altogether, our data confirmed that HSV-1 d106S-MelanA
could re-express MelanA in melanoma cells which have escaped
immune recognition via loss of tumor antigen expression. Loss
of MelanA expression may be more frequent than previously
thought, occurring in three of our 11 melanoma cell lines
(Figure 3 and data not shown). As a consequence, MelanA-
specific CD8+ T cells may be re-directed to infected tumor
lesions, which will become re-accessible to this adaptive CD8+

T cell response. In this case, an efficient oncolysis will be
mediated by HSV-1 d106S-MelanA as well as by innate and
adaptive immune cells. The apoptotic and necrotic tumor cells
will serve as source for new tumor-associated antigens, which
have evolved during tumor progression. In this respect, it has
previously been shown that apoptotic cells, which were killed
by infection with replication-deficient HSV, served as vaccines
by pulsing DCs (43). Apoptotic debris will be phagocytosed by
dendritic cells and cross-presented to T cells. In this respect,
CD11c+ cells and macrophages may also play an important
role.

Our tumor vaccine may profit from incorporating other
tumor antigens which are targets of cytotoxic CD8+ T cells,
like the MAGE-A family, tyrosinase, NY-ESO1, gp100 or
neoantigens (44). With the incorporation of MelanA into HSV-
1 d106S, however, viral stocks harbored slightly less infectious
virions compared to the parental strain. The generation of
infectious stocks may become increasingly challenging with
the incorporation of additional tumor-associated antigens.

The difficulty in inserting full-length sequences of tumor
antigens may be overcome by introducing much smaller
genomic information as minigenes coding for tumor antigen-
derived peptides (27). It may also be worth cloning the
coding sequences of tumor antigens or peptides into T-VEC,
which is fully replicative and thus more virulent than HSV-1
d106S-MelanA.

The minor virulence of the non-replicative HSV-1 d106S-
MelanA in comparison to the replication-competent T-VEC
strain may be advantageous for the infection of antigen-
presenting cells: a reduced cytotoxicity may facilitate the
presentation of tumor peptides in the context of HLA-ABC. For
these purposes, we infected PBMC with HSV-1 d106S, showing
GFP expression in CD11c+ antigen-presenting cells, but not in
other immune cells. Subsequently, we noticed expression of GFP
in macrophages comparable to the extent of MelanA expression
in infected MRC-5 cells. However, we were not able to detect
MelanA expression in any of the immune cells investigated,
which was unexpected because both transgenes are expressed
from the same CMV promoter. So far, it is unclear whether
expression of MelanA in antigen-presenting cells is too low
to be detected reliably, or whether MelanA is proteasomally
degraded and presented on HLA-ABC immediately after mRNA
translation.

More importantly, HSV-1 d106S has been shown to induce
CD8+ T cell responses in vivo. To this end, studies in mice
and monkeys (45–47) revealed that HSV-1 d106S can not only
activate, but also induce virus-specific CD8+ T cells. This de novo
induction may be more difficult with tumor-associated antigens
(with the exception of neoantigens), which, as autoantigens,
need to overcome self-tolerance. De novo induction can occur
via direct presentation of the tumor antigen synthesized in the
cytosol or via indirect cross-presentation after endocytosis of
the tumor antigen, export into the cytosol and proteasomal
degradation, transport to the endoplasmic reticulum and loading
on HLA-ABC. Whether the vaccine HSV-1 d106S-MelanA can
induce expansion of MelanA-specific CD8+ T cells, and if
so, which of the two mechanisms hold true, needs to be
evaluated in further studies. It would be particularly valuable
to study these effects in vivo using suitable animal models.
The immune stimulation following intratumoral injection of
the oncolytic virus in vivo may enhance the CMV promotor
activity and thus contribute to a more efficient transgene
expression.

A further prospect of our research is the combination
of oncolytic viruses with other anti-cancer approaches like
checkpoint inhibitors, chemotherapy, targeted therapy,
and radiation therapy (42, 48, 49). It may even be
interesting to test oncolytic viruses in combination with
tumor-specific peptides. These conditions may reduce
the immune-inhibitory activities of tumors and help
tumor antigen-specific CD8+ T cells to gain access to
the malignant lesion. In addition, a new generation of
oncolytic herpes viruses has been designed, which is less
virulent due to deletion of ICP6 in addition to inactivation of
neurovirulence factor γ34.5 and antagonist of the host cell’s
transporter associated with antigen presentation, ICP47. This
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oncolytic herpes virus allows a broader applicability and is
currently being tested in glioblastoma and prostate cancer
patients (7).

For these reasons, our approach to develop an oncolytic
herpes virus which augments antitumor responses by coding for
a tumor antigen appears to be promising for further combination
immunotherapies against malignant melanoma. It may also be
promising for other tumors. This may be true in particular
for tumors which are known to be infiltrated by PDC, like
head and neck squamous cell carcinoma (50), and ovarian (51,
52) and breast cancer (53, 54). A tumor antigen-expressing
HSV-1 d106S may target both PDC and myeloid dendritic
cells, which cooperate in inducing effective anti-tumor T cell
responses (55).
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