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Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease characterized by

an incurable condition of the pulmonary vasculature, leading to increased pulmonary

vascular resistance, elevated pulmonary arterial pressure resulting in progressive

right ventricular failure and ultimately death. PAH has different underlying causes. In

approximately 30–40% of the patients no underlying risk factor or cause can be found,

so-called idiopathic PAH (IPAH). Patients with an autoimmune connective tissue disease

(CTD) can develop PAH [CTD-associated PAH (CTD-PAH)], suggesting a prominent

role of immune cell activation in PAH pathophysiology. This is further supported by the

presence of tertiary lymphoid organs (TLOs) near pulmonary blood vessels in IPAH and

CTD-PAH. TLOs consist of myeloid cells, likemonocytes and dendritic cells (DCs), T-cells,

and B-cells. Next to their T-cell activating function, DCs are crucial for the preservation

of TLOs. Multiple DC subsets can be found in steady state, such as conventional DCs

(cDCs), including type 1 cDCs (cDC1s), and type 2 cDCs (cDC2s), AXL+Siglec6+ DCs

(AS-DCs), and plasmacytoid DCs (pDCs). Under inflammatory conditions monocytes can

differentiate into monocyte-derived-DCs (mo-DCs). DC subset distribution and activation

status play an important role in the pathobiology of autoimmune diseases and most

likely in the development of IPAH and CTD-PAH. DCs can contribute to pathology by

activating T-cells (production of pro-inflammatory cytokines) and B-cells (pathogenic

antibody secretion). In this review we therefore describe the latest knowledge about DC

subset distribution, activation status, and effector functions, and polymorphisms involved

in DC function in IPAH and CTD-PAH to gain a better understanding of PAH pathology.

Keywords: dendritic cell, dendritic cell subsets, pulmonary arterial hypertension, idiopathic pulmonary arterial

hypertension, autoimmune disease, dendritic cell effector function, connective tissue disease

INTRODUCTION PULMONARY ARTERIAL HYPERTENSION

Pulmonary arterial hypertension (PAH) is characterized by a mean pulmonary arterial pressure
(PAP) of≥25 mmHg at rest and a mean capillary wedge pressure of≤15 mmHg (1). The high PAP
causes hypertrophy of the right ventricle (RV) leading eventually to RV dilatation, heart failure, and
ultimately death. Particularly small pulmonary arteries (PAs) and arterioles are affected. They show

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00011
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00011&domain=pdf&date_stamp=2019-01-22
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.kool@erasmusmc.nl
https://doi.org/10.3389/fimmu.2019.00011
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00011/full
http://loop.frontiersin.org/people/541186/overview
http://loop.frontiersin.org/people/634216/overview
http://loop.frontiersin.org/people/115914/overview


van Uden et al. DCs in Pulmonary Arterial Hypertension

a thickened vascular wall and formation of plexiform lesions
due to endothelial dysfunction and proliferation of all three cell
layers, the endothelium, smooth muscle cells (SMC), and the
adventitia (2).

PAH patients can be subdivided into groups based on
associated conditions and risk factors. However, in a substantial
proportion of PAH patients no cause or associated condition
can be identified: idiopathic PAH (IPAH). In another subgroup
of patients, PAH is associated with autoimmune diseases (AD)
such as connective tissue disease (CTD). CTD includes systemic
sclerosis (SSc), systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), and mixed connective tissue disease (MCTD). SSc
is the most common AD associated with PAH, followed by SLE
(3–6). PAH patients have a low 1-year survival rate: only 82% of
SSc-PAH patients and 93% of IPAH patients are still alive after 1
year (6).

ROLE FOR IMMUNE ACTIVATION IN THE
DEVELOPMENT OF PAH

The presence of PAH in a proportion of autoimmune patients
suggests that activated immune cells (or their mediators)
directly provoke pulmonary vascular remodeling. Local immune
activation is also observed as tertiary lymphoid organs (TLOs or
ectopic lymphoid structures) are present in the lungs of IPAH
and CTD-associated PAH (CTD-PAH) patients (7, 8). TLOs are
organized structures similar to lymph nodes (LNs), including
distinct T-cell areas containing dendritic cells (DCs), organized
B-cell follicles with germinal centers (GCs), high endothelial
venules (HEV), and lymphatics. TLOs most likely develop due
to long-lasting local immune activation and are considered a
hallmark of chronic disease (9). In lungs of IPAH patients,
TLOs are found in the vicinity of PAs, suggesting that they
promote vascular remodeling (7). Not surprisingly, as TLOs are
characteristic for ongoing/chronic immune activation, they are
often found in target organs of several ADs. For instance, in
SLE patients TLOs are present in the kidneys, and in SSc-PAH
patients TLOs have even been found in the lungs (8, 10, 11). Even
though the SSc-PAH patient group used in this study is small, it
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is conceivable that TLOs are present in the lungs of various CTD-
PAH patients. In addition, it is very likely that immune activation
in PAH patients will also occur in draining LNs.

During chronic antigenic stimulation, the lymphotoxin
(LT)α1β2-LTβ receptor axes is crucial for development of TLOs
(12), whereby lymphoid tissue inducer (LTi) cells interact with
lymphoid tissue organizer (LTo) cells. Repeated DC injection
in the lungs of mice, mimicking chronic activation, provokes
TLO development (13). Activated DCs can produce chemokines
which attract T-cells and B-cells (e.g., CCL19/21 and CXCL13,
respectively), as well as T- and B-cell survival factors (e.g.,
interleukin (IL)-15 and BAFF/IL-6, respectively) (13–17). They
furthermore secrete cytokines creating a pro-inflammatory
milieu and promote innate and adaptive responses. This milieu
can also induce post-translational modifications of proteins,
altering self-antigens into new antigens which could provoke
autoimmune responses as seen in SLE (18). Within TLOs and
LNs, tissue-migrated DCs present antigens to naïve T-cells,
inducing their activation and differentiation. The main T helper
(Th)-cell subsets are Th1, Th2, Th17, follicular Th-cells (Tfh),
and regulatory T-cells (Tregs). Within the GC reaction in TLOs
and LNs, Tfh-cells provide help to B-cells by producing cytokines
that induce class switching, survival, proliferation, and antibody
production.

The role of DC subsets and their effector function in
pathogenesis of IPAH, AD, and CTD-PAH will be discussed in
this review and is shown in Table 1.

DENDRITIC CELLS IN IPAH, CTD-PAH,
AND AD

DCs are equipped with pathogen recognition receptors (PRRs)
like toll-like receptors (TLR) to sense their surroundings. Antigen
recognition leads to DC activation and migration toward LNs.
Activated DCs upregulate co-stimulatory molecules like CD86,
produce pro-inflammatory cytokines, and present antigen to T-
cells using major histocompatibility complex class-II (MHC-II).
In TLOs, DCs are mature, indicated by high CD86 expression
and IL-12 production (37). Themaintenance of TLOs in two lung
infection models, has been shown to be dependent on DCs as
they disintegrate when DCs are ablated (13, 38). Furthermore,
impaired DC migration due to defects in the CCR7-signaling,
has been shown to lead to the formation of bronchus-associated
lymphoid tissue (39).

Under steady state conditions, several DC subsets with
unique functions can be identified (40, 41). Conventional
DCs (cDCs), identified by CD11c, and HLA-DR expression
in humans, are a major DC subset and can be divided
in two subtypes, type 1 cDCs (cDC1s) and type 2 cDCs
(cDC2s). cDC1s express IRF8 and CD141 and excel in cross
presentation (42). IRF4 and CD1c classify cDC2s, which are
potent inducers of Th-cell responses. Plasmacytoid DCs (pDCs)
produce interferons (IFN) and do not express CD11c, but express
HLA-DR and CD123. Recently, within this HLA-DR+CD123+

population potent Th-cell inducers have been found, which
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TABLE 1 | Involvement of DCs and monocytes in IPAH, AD, and CTD-PAH.

Disease Major finding Tissue References

cDC IPAH

SLE

cDCs are decreased in proportion and number Blood (19–23)

SSc cDC2s produce more IL-6, IL-10 and TNFα after TLR2 and TLR4 stimulation Blood (24, 25)

SSc-PAH • A TLR2 polymorphism in AD patients is associated with PAH development

• cDCs carrying this TLR2 polymorphism produce more cytokines (e.g., IL-6)

Blood (26)

IPAH cDCs numbers are increased Lung (27)

IPAH

ADa
cDCs are present in TLOs in target organs Lung, Thyroid

tissue

(7, 28)

pDC IPAH The number of pDCs is unaltered Blood (27)

SLE

SSc

pDCs are decreased in proportion and number Blood (22, 23, 29)

SSc pDCs predominantly secrete CXCL4 Blood, Skin (30)

IPAH • pDC numbers are increased

• pDCs are located around pulmonary vessels

Lung (27)

SLE

SSc

pDCs are increased in diseased tissue Skin (29, 31)

Monocytes

and mo-DCs

IPAH hyporesponsive monocytes to TLR4 stimulation Blood (32)

SSc-PAH Monocytes show an activated profile (mRNA expression) Blood (33)

SSc

SSc-PAH

The number of non-classical monocytes is increased Blood (34)

SSc CXCL10, CXCL8, and CCL4-producing non-classical monocyte subset is

increased

Blood (24)

IPAH Monocytes have either a similar or decreased activation status, depending on

the study

Blood (19, 35)

IPAH In vitro generated mo-DCs have either an increased or decreased Th-cell

stimulatory capability, depending on the study

Blood (19, 35)

SSc mo-DCs carrying the TLR2 polymorphism produce more cytokines (e.g., IL-6) Blood (26)

IPAH CD14+ cells are increased around pulmonary arteries Lung (36)

aGraves disease and Hashimoto’s thyroiditis, cDC, conventional dendritic cell; pDC, plasmacytoid dendritic cell; mo-DC, monocyte-derived-dendritic-cell; PAH, pulmonary arterial

hypertension; IPAH, idiopathic pulmonary arterial hypertension; AD, autoimmune disease; CTD-PAH, connective tissue disease-associated PAH; SLE, systemic lupus erythematosus;

SSc, systemic sclerosis; TLO, tertiary lymphoid organ; PAs, pulmonary arteries; TLR, toll-like receptor.

additionally express AXL and Siglec6 (AXL+Siglec6+ (AS)-
DCs) (43, 44). Under inflammatory conditions monocytes can
differentiate into DCs, giving rise to monocyte-derived-DCs
(mo-DCs).

Conventional Dendritic Cells
In IPAH patients, the proportion of circulating cDCs is decreased
compared to controls (19). Numbers of circulating cDCs are also
altered in several ADs associated with PAH. Both cDC1s and
cDC2s are decreased in proportion and number in SLE patients
compared to HCs, especially in patients with active disease (20–
23). The decrease in circulating cDCs in PAH could indicate
an increased cDC migration toward lung TLOs (Figure 1). In
support of this idea, DCs can be found in lung TLOs of IPAH
patients and cDC numbers were increased in total lung cell
suspensions of these patients (7, 27). In IPAH TLOs, DCs are
found inside T-cell zones, suggesting that they promote T-cell
activation. In patients with ADs, cDCs in TLOs show increased
expression of costimulatory molecules and a cDC2 phenotype,
since they express CD1c and CD11c (28). Alternatively, the
reduction in circulating cDCs might also be caused by alterations

in cDC viability or DC progenitors resulting in a decreased
output of cDCs from the bone marrow.

In addition to DC or DC precursors entering the affected
tissue from the blood circulation, DCs may accumulate in tissue
and contribute to TLO formation as they fail to go to LNs (39).
Upon activation, DCs upregulate CCR7. The CCR7 allows the
DC to respond to CCL19 and CCL21 expressed by the lymphatic
endothelial cells and to enter the lymphatic vessels to migrate
to the draining LN. Both CCL19 and CCL21 are expressed
by lymphatic vessels in IPAH patients, which could facilitate
DC attraction (7). Strikingly, CCR7-deficient mice develop lung
TLOs and signs of PH, perhaps due to DC retention in the
lungs (39, 45). DCs, amongst other cells, can produce CCL20
and CXCL13, which attract T-cells, B-cells, and immature DCs.
CCL20 and CXCL13 mRNA expression are increased in IPAH
lungs compared to controls (7), contributing to TLO formation.
However, the cell responsible for this increased expression in
IPAH is yet unknown.

Research into cDC subset activation is still limited in PAH and
ADs. In SSc patients, circulating cDC2s produce more IL-6, IL-
10, and TNF-α after TLR2 and TLR4 stimulation (24, 25). These

Frontiers in Immunology | www.frontiersin.org 3 January 2019 | Volume 10 | Article 11

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


van Uden et al. DCs in Pulmonary Arterial Hypertension

FIGURE 1 | cDC and monocyte migration toward lung TLOs. (A) cDCs and monocytes are decreased in circulation of IPAH patients due to migration to the lungs in

which cDCs and monocytes are increased. (B) In the lung they can add to the development of TLOs surrounding PAs. (C) TLOs consist, besides DCs, of different

immune cells such as T-cells, B-cells, macrophages, and granulocytes.

cytokines appear to play a central role in the immunopathology
of PAH, as IL-6 and IL-10 are increased in the serum of
IPAH patients and correlate with mortality (46). Especially IL-6
appears to be a crucial cytokine in PAH pathobiology, as mice
overexpressing IL-6 develop signs of PH, while IL-6-deficient
mice do not develop PH after hypoxia (47, 48). At this time, a
phase II trial using Tocilizumab, an IL-6 receptor antagonist, is
conducted in PAH patients (49).

In conclusion, in both IPAH and ADs circulating cDC
proportions are decreased possibly due to migration to target
organs, where they can both initiate adaptive immune responses
and maintain TLOs (Figure 2B). Currently, only little is known
about cDC subset distribution and function in IPAH, CTD-PAH,
and ADs.

Plasmacytoid Dendritic Cells
Plasmacytoid DCs are predominantly found in lymphoid tissues
and blood in steady state conditions. During inflammation,
pDCs home toward peripheral tissues, produce type I IFNs,
and promote activation of immune cells. In IPAH lungs pDC
numbers are enhanced and pDCs are specifically located around
the pulmonary vessels, while circulating pDC numbers are
unaltered (27). In contrast, in SLE and SSc patients, circulating
pDC number and frequency are decreased compared to controls,
which could be due to emigration into diseased tissues (22, 23,
29, 31). Indeed, pDCs are present in diseased organs of SSc
patients (29). Several ADs are associated with the interferon
gene signature (IGS), to which different cells contribute. pDCs
are major contributors to the IGS through their production
of type I IFNs. One of the most strongly upregulated genes
in pDCs within the IGS is CXCL10 (50). Augmented serum
CXCL10 levels are associated with PAH in SSc patients (51).
Likewise, in IPAH patients, serum CXCL10 is elevated and even

associated with poor RV function (52), suggesting the possibility
of a prominent role for pDCs in disease immunopathology.
Next to IFNs, pDCs are also large producers of CXCL4 in
SSc (30). CXCL4 can induce an influx of CD45+ cells in
target tissues, perhaps leading to tissue remodeling and disease
progression.

The associations of pDC with CTD-PAH and the increase
in pDCs in lungs of IPAH patients suggest that type-I IFN
and chemokine secretion by pDCs not only play an important
role in several ADs, but also in CTD-PAH and IPAH pathology
(Figure 2A).

Monocytes and Monocyte-Derived DCs
Monocytes are precursors of mo-DCs that arise under
inflammatory conditions (40). Monocytes are heterogeneous
and can be divided into 3 subsets based on CD14 and
CD16 expression (53, 54). Classical monocytes, also called
inflammatorymonocytes, express CD14 and can infiltrate tissues,
produce pro-inflammatory cytokines, and differentiate into
inflammatory macrophages. Classical monocytes express several
PRRs and are superior in phagocytosis. Monocytes expressing
both CD14 and CD16 are termed intermediate monocytes, can
also produce pro-inflammatory cytokines (55) and are unique
in their ability to produce reactive oxygen species. Their gene
expression signature indicates their ability to present antigens
and induce T-cell activation (56). Intermediate monocytes
specifically promote pro-inflammatory Th17-cell responses,
which also contribute to PAH development, as discussed below
(55). Finally, non-classical monocytes, expressing CD16, are
known to survey the endothelium for danger signals (54). They
differentiate into tissue-resident macrophages in steady state or
into anti-inflammatory macrophages during inflammation, to
repair damaged tissues.
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FIGURE 2 | Involvement of DCs and monocyte in lungs of IPAH and CTD-PAH patients. (A) pDCs are increased in lungs and might play a role in IPAH and CTD-PAH

pathology by producing higher levels of CXCL4 and CXCL10 that is induced by IFNs. (B) cDC display higher levels of CD83 and have an enhanced cytokine

production e.g., IL-6. cDCs are increased in lungs of PAH patients and can directly lead to PA remodeling or indirectly by production of CXCL13 and CCL20. CXCL13

leads to migration of B-cells toward the lungs, B-cells will produce pathogenic antibodies after interaction with Tfh cells, leading to remodeling of PAs. CCL20 attracts

T-cells such as Tregs and Th17 cells leading to an increase in Th17 cells in the lung resulting in a Th17/Treg disbalance and by IL-17 production contributes to PA

remodeling. (C) Monocytes are increased in the lung and produce CCL2 and CCL5 which might lead to attraction of other monocytes. Monocytes might differentiate

in macrophages or mo-DCs. Mo-DCs induce Th17 cells adding to PA remodeling.

The number of non-classical monocytes is increased in SSc
associated with PAH development, whereas there is no difference
in the number of classical monocytes (34). The number of CTD-
PAH patients in this study was very small, so this should be
confirmed in a larger cohort. Increased numbers of CD14+ cells,
including classical/intermediate monocytes and macrophages,
are observed around PAs of IPAH patients (36). Monocytes might
be attracted to the PAs through their expression of CCR2 and
CCR5 and an increased expression of their ligands CCL2 and
CCL5 in lungs and serum of IPAH patients (57, 58). In SSc and
CTD-PAH enhanced CCL2 is also observed in either skin or
serum (59–61).

Strikingly, circulating monocytes of IPAH patients are
hyporesponsive, as demonstrated by decreased cytokine
production upon TLR4 stimulation (32). The local and/or
systemic pro-inflammatory milieu in IPAH patients could
provoke a feedback mechanism, resulting in hyporesponsive
monocytes. However, the underlying mechanism is still

unknown and further research is needed. In contrast to
IPAH monocytes, monocytes from SSc-PAH patients are
activated, as shown by their mRNA expression profile. This
profile is even discriminative between SSc-PAH and SSc
patients (33). Non-classical monocytes, expressing CXCL10,
CXCL8, and CCL4 are involved in SSc pathology, and are
found in increased numbers in SSc patients compared to
controls (24).

Mo-DCs for in vitro assays, used to model and monitor
human DC function, are commonly generated from monocytes.
Contradictory results have been found using this model
in IPAH. Decreased activation of monocytes together with
lower T-cell stimulation (19), as well as a similar activation
status with an increased Th-cell stimulatory capability
have been observed (35). These opposite findings might be
caused by the type of stimulation used to mature mo-DCs
and different mo-DC:T-cell ratios in the T-cell stimulation
assays.
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Taken together, increased pulmonary expression
of chemokines may attract monocytes to lungs of
IPAH and CTD-PAH patients, where they become
activated and alter their gene expression due to
the pro-inflammatory environment. These altered
monocytes may give rise to mo-DCs, which arise at
places of inflammation and can induce T-cell activation
(Figure 2C).

EFFECTOR FUNCTION OF DCS IN IPAH,
CTD-PAH AND ADS

T-Cell Responses
DCs excel at antigen presentation to T-cells and together
with their costimulatory molecule expression and cytokine
production, they are pivotal for the succeeding T-cell response.
Specifically, Th17-cells are implicated in the pathogenesis of
many ADs and are observed inside mature TLOs of IPAH
patients (7). Th17 differentiation from naïve Th-cells occurs in
the presence of IL-1β, IL-6, and TGFβ (62), cytokines produced
by activated DCs. Both IL-1β and IL-6 are elevated in serum
of IPAH patients (46). Th17-cells are the main source of IL-
17, IL-21, and IL-22. IL-21+ cells are present in remodeled PAs
of IPAH patients (63). In addition, IL-17 may affect structural
remodeling observed in PAH, as IL-17 enhances fibroblast
proliferation and collagen production in vitro (64). In SSc, IL-
17 induces adhesion molecule expression and IL-1/chemokine
production on endothelial cells (ECs) (65–67). Additionally, in
IPAH PBMCs the IL-17 gene is hypo-methylated, indicating
increased IL-17 transcription and supporting a possible role
for Th17-cells in the pathology of IPAH (35). Indeed, IL-17
gene expression is enhanced in lungs of both IPAH and SSc-
PAH compared to idiopathic pulmonary fibrosis (IPF) and
pulmonary fibrosis associated SSc (SSc-PF) (68), this IL-17 may
be expressed by cells in TLOs as well as in tissues outside
of TLOs.

Furthermore, IL-23, also produced by DCs, stabilizes
the phenotype of Th17-cells, but also promotes their pro-
inflammatory potential (62). Th17-cells are also highly plastic
cells and under the influence of IL-23 start co-expressing
cytokines from the Th1-cell lineage. This leads to possibly
pathogenic IFNγ-producing Th17-cells, also called Th17.1-
cells. Enhanced expression of the IL-23 receptor on Th17(.1)-
cells might contribute to their pro-inflammatory pathogenic
phenotype (62, 69, 70). IL-23 is increased in exhale breath
condensate of SSc patients, so perhaps Th17 plasticity plays
a role in SSc pathology (71). Furthermore, IFNγ, IL-12, and
TNFα can induce plasticity toward Th17.1-cells (62). Both serum
IL-12 and TNFα are enhanced in IPAH patients and mRNA
transcripts of these cytokines were increased in lungs rats in
a PH model (46, 72). IL-17/IFNγ-double producing Th-cells
are observed within the arteries of atherosclerosis patients,
where they provoke pro-inflammatory cytokine production (e.g.,
IL-6, CXCL10) by vascular SMCs (73). This feedback loop
could also exist within PAH, since IL-6 is highly produced by
pulmonary ECs of IPAH patients. In addition, IL-6 promotes

SMC proliferation in a hypoxia-induced PH model (74, 75).
Blocking of IL-6 signaling improved PH physiology in a hypoxia-
induced PH mouse model and prevented accumulation of Th17-
cells (63). IL-6 also converts Th17-cells into IL-17+ Tregs, which
are less suppressive than conventional Tregs (76). In SSc, IL-
17+ Tregs are observed in the circulation and possibly also in
the skin, indicated by IL-17 and FoxP3 positivity (64, 65, 77).
The balance between pro-inflammatory Th17-cells and anti-
inflammatory Tregs is crucial to control autoimmune features.
IL-6 is a key cytokine in Th17/Treg balance, since TGF-β alone
polarizes naïve Th-cells to Tregs, while TGF-β together with
IL-6 induces Th17-cells (78). Active TGF-β signaling is very
prominent in PAH and can be produced by different cells, like
monocytes and DCs (79). However, whether DC-derived IL-
6 plays a prominent role is unknown yet, as many cells can
produce IL-6. In favor of a disturbed balance are the decreased
number of Tregs observed in SLE, which correlates with disease
severity (66). In CTD-PAH patients Th17-cells and Th17-related
cytokines are elevated compared to AD patients without PAH
(80). The disturbed Th17/Treg ratio even appears to correlate
with PAH severity in APAH patients (80). This demonstrates that
Th17-cells and Tregs are implicated not only in ADs but also in
PAH (80).

Therefore, Th17 plasticity and Th17/Treg balance may
contribute to ADs and PAH, potentially in part by modulating
vascular remodeling.

Humoral Immune Response
Apart from their interaction with Th17-cells, DCs can induce
(immature) Tfh-cells, which develop under the influence of IL-21,
IL-6, IL-12, and IL-27 (78). In mature TLOs containing GCs, Tfh-
cells interact with B-cells, leading to either antibody-producing
plasma cells or memory B-cells. There is clear evidence for B-cell
dysregulation in IPAH and CTD-PAH (81, 82). In IPAH patients
circulating B-cells have an increased expression of genes involved
in inflammatory mechanisms, host defense, and endothelial
dysfunction, suggesting increased activation of B-cells (82). Also
numbers of circulating plasmablasts are elevated in IPAHpatients
(83). Anomalies in B-cell homeostasis were also observed in SSc-
PAH patients, with increased circulating IgD+ B-cell proportions
(81). Tfh-cell numbers crucially control the development of auto-
reactive B-cells, since an increase in Tfh-cell number can lead to
increased autoantibody production (84, 85). In several ADs, Tfh-
cells are increased in blood and target organs (86–89). Serum IgG,
IgM, and IgA antibodies are elevated in IPAH patients, and EC-
specific IgA promotes cytokine production and upregulation of
adhesionmolecules (83, 90–92). IgG and IgM antibodies directed
against EC-surface antigens are also found in ADs and CTD-
PAH, being most prevalent in SSc-PAH patients, followed by
IPAH patients and SSc patients without PAH (92). IgG antibodies
in SSc and SLE were directed against microvascular ECs antigens,
while IgG in SSc, IPAH, andCTD-PAH recognizedmicrovascular
dermal and lung EC antigens, and vascular SMCs (90, 91, 93–
95). Auto-reactive IgG provoked EC dysfunction, induced pro-
inflammatory signals, and increased adhesiveness of T-cells to
ECs, which also modulated migration and proliferation of SMC.
These autoantibodies from SSc or CTD-PAHpatients can directly
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cause signs of PH when injected into healthy mice (96). It is
unknown where the autoantibodies found in IPAH and CTD-
PAH patients are produced. TLO might be a likely location since
Tfh-cells and B-cells, and perhaps antigens, are present in these
TLOs. However, these autoantibodies can also be produced in the
draining LNs.

In brief, pathogenic autoantibodies in CTD-PAH and IPAH
might be produced by dysregulated B-cells that interact with Tfh-
cells in TLOs. These autoantibodies recognize protein epitopes
expressed by ECs, leading to endothelial dysfunction and vascular
remodeling. So far, the role of Tfh-cells in IPAH is unknown and
further research is needed.

GENETICS

Increased activation of the immune system in PAH is also
supported by different polymorphisms observed in genome wide
association studies. A polymorphism in TLR2 of SSc patients is
associated with PAH development (26). Functional analysis of
mo-DCs and cDCs carrying the TLR2 polymorphism showed
enhanced cytokine production, including IL-6, compared to
control DCs. As discussed above, IL-6 plays a prominent role
in PAH pathology. Strikingly, a decreased IL-6 serum level
was observed in healthy individuals and patients with a single
nucleotide polymorphism in the promotor region of the IL-
6 gene, IL-6-572C/G, which correlated with decreased risk
to develop IPAH (97). SNPs might not only be useful to
determine disease susceptibility but also to determine disease
onset or activity, as is seen for a specific SNP in TGFB
gene in heritable PAH patients carrying a BMPR2 mutation
(98). Another genetic association found in both PAH and SSc
involving immune activation is a SNP in the TNFAIP3 gene
(99). TNFAIP3 encodes for the ubiquitinating enzyme A20,
which is crucial for down-regulation of the nuclear factor-
kappa B (NF-κB) signaling pathway and thereby cell activation
(100). Macrophages, pulmonary arterial ECs, and pulmonary

arterial SMCs in end-stage IPAH patients showed an increased

expression in NF-κB (101), suggesting an important role for the
NF-κB pathway in IPAH.

This demonstrates that several SNPs and genes
that are involved in DC function are present in PAH
patients.

FUTURE DIRECTIONS

In conclusion, different DC subsets are involved not only in
the pathobiology of ADs but appear to play a role in the
pathobiology of IPAH and CTD-PAH as well. However, the
exact role of these DCs in PAH development has not been
fully elucidated. The increasing knowledge on DC biology
obtained by advanced immunological techniques has led to a
more unified method to identify DC subsets and the discovery
of new DC subsets. Determining the role of all currently
known DC populations, including AS-DCs, as well as their
specific functions may help to unravel the pathobiology of PAH.
This might lead to new opportunities for therapies targeting
specific DC subsets, their activation, and/or their effector
function.
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