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Regulatory T cells (Tregs) are believed to be dysfunctional in autoimmunity. Juvenile

idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM) result from a loss of normal

immune regulation in specific tissues such as joints or muscle and skin, respectively.

Here, we discuss recent findings in regard to Treg biology in oligo-/polyarticular JIA and

JDM, as well as what we can learn about Treg-related disease mechanism, treatment

and biomarkers in JIA/JDM from studies of other diseases. We explore the potential

use of Treg immunoregulatory markers and gene signatures as biomarkers for disease

course and/or treatment success. Further, we discuss how Tregs are affected by several

treatment strategies already employed in the therapy of JIA and JDM and by alternative

immunotherapies such as anti-cytokine or co-receptor targeting. Finally, we review

recent successes in using Tregs as a treatment target with low-dose IL-2 or cellular

immunotherapy. Thus, this mini review will highlight our current understanding and

identify open questions in regard to Treg biology, and how recent findings may advance

biomarkers and new therapies for JIA and JDM.
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INTRODUCTION

CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ T helper cells present in lymphoid
and non-lymphoid tissues, and are crucial for mediating tolerance to self, preventing allergies and
controlling immune reactions after infections (1). They develop in the thymus or are induced
in the periphery and exhibit contact-dependent and -independent mechanisms of action (1).
Inactivatingmutations in FOXP3 lead tomulti-organ autoimmune disease [immune dysregulation,
polyendocrinopathy, enteropathy, X-linked syndrome (IPEX)], highlighting the importance of
Tregs (2). Importantly, it is becoming clear that the local microenvironment affects the phenotype
and function of tissue-localized Tregs, which also have additional roles in repair and regeneration
(3).

Treg–tissue interaction might be particular important in autoimmunity with tissue-specific
presentation, such as juvenile idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM).
While JIA is the most common inflammatory rheumatic disease in children, JDM is rare. JIA is
characterized by persistent arthritis and subtype-dependent symptoms [reviewed in (4)]. Here,
we focus on polyarticular and oligoarticular JIA, which present without involvement of systemic
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organs or skin. JDM is characterized by inflammation of muscles
and skin, resulting in muscle weakness and rashes [reviewed
in (5)]. Interestingly, for both conditions researchers may
take advantage of clinical sample collection from the site of
inflammation: synovial fluid (SF) drained during therapeutic
joint injection (JIA) and biopsies (mostly muscle, JDM). While
some patients respond to therapy, others do not and studying
the underlying differences may lead to better understanding and
treatments.

Here, we discuss recent advances in the understanding of Treg
biology in oligo-/ polyarticular JIA and JDM, and what we can
learn about Treg-related disease mechanisms, treatments and
biomarkers from other diseases.

ALTERED TREGS IN JIA AND JDM

The phenotype of CD4+FOXP3+ Tregs in JIA has been
considerably characterized in the past (6) with the molecular
roles of FOXP3 in JIA reviewed by Copland and Bending in this
special collection (7). It is now clear that the Treg TCR (T cell
receptor) repertoire is highly restricted in JIA, both at the site
of inflammation (8–11) and in circulation (10, 12). Interestingly,
in blood only Tregs but not conventional CD4+ non-Treg
cells (Tconv) are more clonal (10, 12). Some suggest that the
TCR repertoires of Tregs from SF and peripheral blood (PB)
significantly overlap (8), while others only found a very small
overlap (9, 11). These differences might be explained by different
sequencing depth and analysis strategies and/or by different Treg
subsets studied: total (11) or effector Tregs defined by HLA-DR
(8) or CD161 expression (9). Further, one study found that SF
Tregs, but not Tconv, share specificity at an amino acid sequence
level among different patients (10), suggesting disease-associated
Treg clones might foster JIA.

Besides a restricted TCR repertoire, Tregs from the JIA
inflammatory sites show unstable FOXP3 and CD25 (13), altered
homing markers (9), cytokine production (6, 9), deficiency in
specific chemokine production (14), and low responsiveness
to IL-2 (13)—indicating impaired Treg function in JIA.
Nevertheless, many reports found that JIA SF and PB Tregs are
fully demethylated (8, 13), thus committed to the Treg-lineage,
and suppressive in vitro (6, 8, 9, 13, 15). Hence, JIA Tregs
are likely functioning inappropriately or insufficiently in the
context of the inflammatory microenvironment. Interestingly,
adding SF to in vitro cultures can both increase/stabilize Treg
FOXP3 expression (11, 16) and in situ induce effector T cells
to be resistant to Treg-mediated suppression ex vivo (17, 18).
Thus, more research is needed to decipher the effects of the
inflammatory microenvironment on Treg function.

In comparison, we know little about the contribution of
Tregs to JDM pathogenesis. Similar to JIA, the Treg repertoire
is restricted with a lack of diversity (12). FOXP3+ Tregs were
found to be enriched in JDM muscle compared to muscle tissue
from patients with Duchenne muscular dystrophy (19). Since
the latter is already enriched in Tregs compared to normal
muscle (20), this suggests a hyper-enrichment in JDM in response
to autoimmune inflammation. PB Tregs of active JDM also

appear less suppressive in vitro with decreased expression of
CTLA4 (19). Adult DM/ polymyositis muscle biopsies are also
enriched with Tregs (21). Interestingly, both Treg and effector
T cell numbers decreased post immunosuppressive therapy in
adult myositis, suggesting that Treg enrichment is a response to
inflammation. However, juvenile and adult DM have different
clinical presentation (22) and JDM PB express more Th17-type
and FOXP3 transcripts (23). JDM and other myopathies are
characterized by a type 1 IFN signature (24–26) and interferons
may be a potential therapeutic target (27), but their effects on
Tregs remain to be investigated.

Tregs are crucial in resolving muscle injury in animal studies
(28) and Treg-deficient mice develop more severe myopathies
in response to antigen, while adoptive Treg transfer prevents
inflammation (29, 30). Thorough immune-profiling recently
revealed pan-tissue and tissue-specific signatures and enhancers
of murine Tregs (31). The muscle Treg signature was highly
enriched in cell cycle genes, showed a dynamic response to
injury and was more similar to circulating Treg signatures
than to other tissue Tregs (31), indicating that muscle Tregs
might acutely infiltrate muscle and are not necessarily long-term
resident cells. While myopathy is a defining characteristic of
JDM, skin inflammation and rash are other symptoms (5). Skin-
resident Tregs are crucial for immune homeostasis (3) and have
been characterized in health and various disease settings (32).
However, studies on JDM-affected skin are lacking, and more
work is needed to characterize JDM skin-resident Tregs.

TREGS AS A BIOMARKER?

JIA and JDM can exhibit an unpredictable disease course. While
mounting evidence indicates that an early aggressive treatment
is best for severe disease (4, 27, 33, 34), the disease course
is unpredictable at presentation. Additionally, due to potential
short- and long-term side effects children should not be exposed
to unnecessarymedication. Unfortunately, once a patient appears
to be in clinical remission (on or off medications), disease
may flare without any notice or obvious trigger (Figure 1A).
Indeed, among JIA patients who are in clinical remission, 30–50%
experience flares (35, 36).

Hence, reliable biomarkers need to predict (i) the future
disease course, (ii) treatment response, and (iii) the safety for
medication withdrawal during clinical remission (Figure 1B).

Inflammation markers in the serum can indicate disease
activity and potentially treatment response in JIA [reviewed in
(36)]. In JDM, histology of biopsies and myositis-specific auto-
antibodies can indicate future disease severity or complications
[reviewed in (27)].

Only a few putative biomarkers probe the immunoregulatory
balance in autoimmune arthritis and myopathies. The frequency
of inflammation-associated Tregs (HLA-DR+) in PB was
proposed as a biomarker for disease activity in arthritis (8).
TCR sequence overlap of these PB HLA-DR+ Tregs with SF
Tregs in JIA, and an increase of HLA-DR+ Tregs in active
rheumatoid arthritis (RA) were found. Low expression of the
immunoregulatory receptor CD39 has been suggested as an
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FIGURE 1 | Current and desired disease progression models. (A) Current “Trial-and-error” model: Upon diagnosis the first line of treatment is started, which may lead

to remission, or partial remission. Often, a second, third or fourth treatment strategy needs to be implemented when the previous treatments are not effective. Choice

of treatments is guided by previous experience, e.g., upon presentation non-steroidal anti-inflammatory drugs with glucocorticoids are used, after a couple of month

many patients are switched to methotrexate as first disease modifying therapy, often followed by anti-TNF-α agents with/without methotrexate (4). This disease

progression and subsequent staggering of therapy can result in irreversible damage and long-term therapy. (B) Desired personalized/biomarker-driven model:

Biomarkers could be used for prediction and aid decisions at the following stages: disease trajectory, selection of treatment, early response to therapy,

remission/minimal disease activity and the risk of flare upon withdrawal of therapy, ongoing monitoring of immune activity and risk of flares. Biomarkers might thus

contribute to more efficient therapy, pre-empt flares, and minimize short- and long-term effects of flares and reduce long-term damage. Lines represent models of

disease progression, with line thickness representing frequency estimates.

indicator of methotrexate resistance in RA (37). Also, response
to the TNF-α blocker adalimumab could be predicted by a Treg
increase in PBMCs from RA patients cultured with adalimumab
prior to treatment (38). Finally, the soluble form of the high
affinity IL-2 receptor α chain (CD25), crucial for Treg phenotype
and function, might be a biomarker for adult myositis disease
activity (39).

In the recent past, gene signatures have been defined as
multi-parameter biomarkers. Thus, far, efforts to define JIA
immune-based gene biomarkers have focused on whole genome
expression profiling (40–42) and epigenomic signatures (43,
44). JIA displays an altered immune signature, which changes
during remission, but does not return to a state comparable to
healthy controls (41, 42). Myositis is characterized by type 1
IFN signatures (27). While interesting and highlighting potential
disease mechanisms, whole-genome/exome expression profiling
is not feasible for routine clinical practice due to cost, logistics
and data interpretation. We have recently developed a Treg gene
signature associated with Treg competency using the clinically-
applicable multiplex platform nanoString (45). NanoString is fast
and fewer than 10,000 lysed cells are sufficient without the need
to purify RNA. Although the proportion of Tregs that express
FOXP3 was similar between type 1 diabetes (T1D) and controls,

there was a significant change in their Treg signature (45). Future
work will elucidate whether the Treg gene signature may also be
used as a biomarker in JIA and other autoimmune conditions.

In summary, some progress has been made, but more
biomarkers are needed for biological disease activity, prognosis,
treatment success, and risk of flares. Further, a consensus of
criteria to describe active/inactive disease is needed to better
estimate the currently widely variable incidence of clinically
inactive JIA disease (46). For JDM, a comprehensive set of criteria
to assess disease activity and damage has been proposed (47).

TREGS AS THERAPEUTIC TARGET/TOOL?

Convincing evidence demonstrates that functioning Tregs are
crucial to prevent autoimmunity and our understanding of how
different immunotherapies affect Tregs has improved.

(Unforeseen) Treg Effects of
Immuno-Therapy
High levels of TNF-α in the inflamed JIA joint (32, 48) offer a
clear rationale for anti-TNF therapy in JIA with marked success
(4, 49). Anti-TNF therapy has also been used in refractory JDM
(50), but with mixed evidence for its effectiveness (27, 51–53).
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Blocking TNF-α can, however, also elicit further autoimmune
responses, particular in the skin and muscle (54–57). TNF-α
itself can have both positive and negative effects on Tregs (32,
58, 59). Interestingly, the negative effects are found especially
in inflamed joints (32, 58, 60), whereas positive effects of TNF-
α on Treg function were reported using healthy human cells or
in mice (58, 61–64). TNF-α has two receptors CD120a (TNFR1)
and CD120b (TNFR2) (58). CD120b may mediate the pro-
Treg functions of TNF-α, including Treg proliferation, stabilizing
Tregs, and preventing disease in mouse models (58, 62–64). Little
is known about the effects of ligation of CD120a in Tregs, but
some research suggests targeting CD120a while sparing CD120b-
TNF-interaction can alleviate collagen-induced arthritis (65). In
RA, adalimumab has been shown to enhance Treg frequency and
potency via CD120b (38, 66, 67). Etanercept, a soluble CD120b
as TNF-α blocker, instead might predominantly affect effector
T cells, by reversing their resistance to suppression in JIA (68).
Unfortunately, a considerable group of JIA/JDM patients do not
respond to anti-TNF therapy (27, 49, 53) and anti-TNF agents
are immunogenic (69), with 50% of patients developing anti-
drug antibodies leading to resistance to therapy and disease
progression.

Ustekinumab is another potentially attractive anti-cytokine
therapy which targets the p40 subunit of IL-12 and IL-23,
key cytokines driving Th1, Th17, and Th17.1, (ex-)Th17 cells
with a Th1-like phenotype, function (70–74). Ustekinumab
is well-tolerated in adult and pediatric patients for treating
psoriasis, psoriatic arthritis, systemic lupus erythematosus (SLE),
and Crohn’s disease (70, 71, 75–77), and has shown lower
immunogenicity compared to most anti-TNF agents (69). Th17.1
are enriched in JIA (72, 73), and ustekinumab therapy had some
success in enthesitis-related JIA (78), psoriatic arthritis (69, 79)
and is in trial for various rheumatological diseases (80). While
no imbalance in IL-17 has been established in JDM (19), Th17.1
have not been investigated. Ustekinumab has been suggested as a
potential therapy for JDM, and a case of JDM with psoriasis was
treated successfully with ustekinumab (81). Due to the reciprocal
relationship between Th17 and Tregs (82), Tregs might also be
affected by ustekinumab therapy, and this was indeed suggested
in a case report of giant cell arteritis (83) and in T1D treated with
ustekinumab (NCT02117765; Pesenacker et al.).

IL-6 also drives inflammatory environments, including
skewing the Treg/Th17 balance toward Th17 (71). Anti-IL-6
receptor therapy (tocilizumab) increases Treg frequency and
numbers in RA (71). IL-6 has also been implicated in JIA and
JDM (11, 17, 84, 85) and is used in polyarticular, extended
oligoarticular, systemic JIA (49), and refractory JDM (50), but
mechanistic studies in pediatric disease are lacking.

Whether drugs such as ustekinumab and tocilizumab act on
Tregs directly or through changing the microenvironment is
unclear. Human Tregs can express the receptors for IL-6 (86),
IL-12 (87), and IL-23 (88), but evidence for direct drug action on
Tregs is lacking.

Alternatively, co-receptors can be targeted to manipulate
the immunoregulatory balance. Initially established for cancer
therapy (checkpoint blockade), mimicking checkpoints such as
CTLA4 (CTLA4-Ig, abatacept, belatacept) is used as treatment

for autoimmunity. Abatacept has been shown to be safe and
effective in oligo- and polyarticular JIA (49, 89–92), adult
DM/polymyositis (34, 53), a case report of steroid-sparing
abatacept in complex JDM (93) and a trial in JDM is underway
(27). A reduction of the T cell activation state is themain reported
effect of abatacept (90, 94–96). Surprisingly, the majority of
studies found abatacept decreases the frequency of Tregs (90,
95, 97–99), with some studies showing an increase in function
(99). On the other hand, increased Treg frequency, but decreased
activity after abatacept therapy in RA was demonstrated (100). In
muscle tissue of adult DM/polymyositis, more Tregs were found
following abatacept (34), suggesting that abatacept treatment
could change Treg localization. Other co-receptor targeting
therapies are in use/development for malignancies (e.g., anti-
PD1, anti-TIM3, anti-TIGIT, etc.) and these pathways might be
useful targets in autoimmunity.

Treg (-Targeted) Therapy
Adoptive transfer of Tregs has been shown to be safe and
possibly effective at reducing inflammation, inducing transplant
tolerance, preventing graft-vs.-host disease (GVHD) and treating
autoimmunity [reviewed in (101)].

Important considerations for Treg-therapy currently under
investigation are the source of therapeutic cells, antigen-
specificity and possibly tailoring homing characteristics
for improved activity. Isolating and expanding sufficient
numbers of Tregs from patients awaiting transplantation,
under immunosuppression or with autoimmune disease is
feasible and can restore their function (101–103), although
achieving clinically relevant Treg numbers from pediatric JIA
and JDM patients might prove challenging. Third-party Tregs
from umbilical cord blood have been found safe and possibly
effective as GVHD prophylaxis in adults (104, 105) and pediatric
thymus—routinely removed during pediatric cardiac surgery—
might be a plentiful source for highly functional therapeutic
Tregs (106, 107). Antigen-specific Tregs are more effective
than polyclonal Tregs for therapy and with recent successes
of chimeric antigen receptor (CAR) T effector therapies for
cancer, there has been a surge to adapt this technology to
generate CAR-Tregs [reviewed in (108)]. While generation of
antigen-specific Tregs recognizing allogeneic HLA-molecules
is relatively straightforward in transplantation, generation of
CAR-Tregs for autoimmunity without known antigen (i.e., JIA)
might be difficult. Still, CAR-Tregs reacting with antigen found
at the site of inflammation (i.e., JIA joints or JDM muscle) could
activate Tregs locally. Alternatively, Tregs could be conditioned
in vitro to home to specific sites (107) or Tregs could be injected
locally, as shown with intra-dermal injection of Tregs to inhibit
murine allograft skin inflammation (109).

Since Treg cell therapies are challenging and expensive,
targeting Treg expansion in vivo might be more feasible for
conditions such as JIA and JDM. The most promising advances
of non-cellular therapies targeting Tregs have been low-dose IL-
2, IL-2 complexes, or IL-2 bio-similars (110–112). While high
doses of IL-2 stimulate mainly effector cells, low-dose IL-2 [0.3–
3 × 106 units/day (112)] skews the response toward Tregs.
Low-dose IL-2 increases the frequency of activated, functional
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FIGURE 2 | Tregs provide challenges and opportunities in JIA/JDM pathogenesis, treatment and monitoring. (A) Tregs are altered in repertoire, phenotype and

frequency in JIA/JDM, particularly at the site of inflammation. (B–D) Treatment options to restore the immunoregulatory balance include targeting pro-inflammatory

cytokines (B), targeting Tregs to enhance their activity (C) or using Tregs as a cellular therapy (D). (E) Further, changes in Treg gene signatures could aid as

biomarkers to measure or predict disease/treatment response.

and fully demethylated CD25+FOXP3+ Tregs (113–115) and
induces STAT5 phosphorylation in vivo (114, 115). Low-dose IL-
2 therapy has been deemed safe and successful in the treatment
of T1D (112, 114, 115), GVHD (116, 117), and SLE (113). Indeed,
low-dose IL-2 therapy rescued Tregs with low levels of CD25 in
SLE (113), indicating that it might also rescue JIA Tregs with
low CD25 expression (13). To further fine-tune specificity or
increase the half-life of IL-2, IL-2 complexes, and bio-similars
are in development (110, 111, 118); these expand Tregs and
induce phosphorylated STAT5 in vitro, in vivo, and prevent
disease in animal models (118–121), including resolution of
muscular dystrophy (20). Covalently linking IL-2 to anti-IL-2
(122), to non-FcRγ-binding human IgG1 (123) or CD25 (124)
may enhance potential clinical application by mitigating the risk
of in vivo dissociation of complexes.

However, increasing Treg numbers alone might not be
sufficient to overcome the highly inflammatory environment
and effector cell resistance. Thus, to achieve sustained remission
combination-therapy might be necessary to reduce the
inflammatory milieu paralleled with boosting Tregs to maintain
a renewed tolerance.

CONCLUDING REMARKS

Taken together, it is clear that Tregs present challenges and
opportunities in JIA and JDM research and clinical management
(Figure 2). Their phenotype and function are clearly altered in
JIA and JDM, targeting themmight improve disease outcome and
Tregs could be used as biomarkers to gage the state and progress
of disease.

The role of the microenvironment on Treg function
and phenotype in JIA- and JDM-affected tissues remains to
be explored further. Researchers should take advantage of
biopsies taken for clinical diagnosis (JDM) and SF aspirated
during therapeutic joint injections (JIA). Novel techniques,
such as single cell sequencing, multidimensional mass/flow
cytometry and microscopy, will aid using clinical samples
to their full potential (125–127). Additionally, co-culture
with SF or muscle-derived cells could highlight how the
microenvironment affects Tregs. Since JDM in particular is
a rare disease, collaborations between groups are crucial to
increase sample size for fundamental research, biomarker-
finding and -validation studies and controlled treatment trials.
This could be achieved by consortiums similar to juvenile
diabetes research foundation (JDRF) biomarker working group
for T1D (114) and the immune tolerance network trials
(128).

While there is progress toward unified measures of
disease activity (46, 47), these will need to be tested and
verified, followed by development of feasible, reliable
and cost-effective biomarkers to predict disease activity,
risk of flare and ideal treatment strategies. The ultimate
goal, aided by biomarkers, is to go from a trial-and-
error treatment approach toward a more efficient and
personalized medicine approach with more patients achieving
drug-free remission without major long-term disabilities
(Figure 1).

Success of various agents affecting the immunoregulatory
balance in other diseases point to potential uses in JIA
and JDM. Any (new) therapy will need to be considered
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in regards to both effector cells AND Tregs, since some
therapies might have unexpected effects on Tregs. Thus,
it is important to continuously build our understanding
of how various agents affect the immunoregulatory
balance.

In conclusion, important recent advances might lead to
valid future contributions to the widened arsenal of treatment
options available to restore the immunoregulatory balance in a
heterogeneous disease spectrum.
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