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Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than

19 million people with incidence increasing rapidly worldwide. For T cells to effectively

drive T1D, they must first traffic to the islets and extravasate through the islet vasculature.

Understanding the cues that lead to T cell entry into inflamed islets is important because

diagnosed T1D patients already have established immune infiltration of their islets. Here

we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets

in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show

that T cell extravasation into the islets is an extended process, with T cells arresting

in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is

not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor

signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over

20 different chemokines that bind chemokine receptors expressed on islet T cells.

One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD.

CXCR6−/− mice progressed normally to T1D and CXCR6 deficient T cells trafficked

normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked

to infiltrated islets. These data reinforce that chemokine receptor signaling is highly

redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells

strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that

targeted depletion of CD11c+ cells associated with the islet vasculature may yield a

therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of

T1D.
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INTRODUCTION

The recruitment of immune cells to sites of inflammation is
one of the hallmarks of the immune response as well as a
major therapeutic target in autoimmunity. Although blocking
trafficking to the active site of disease has been shown to
be efficacious in other autoimmune diseases, tools to inhibit
recruitment of immune cells to inflamed islets, during type 1
diabetes (T1D) have not been successful. Cells within active
sites of inflammation produce pro-inflammatory signals that lead
to increased chemokines and integrin expression on inflamed
vasculature. These changes to the inflamed vasculature then
promote increased recruitment and entry of immune cells into
these sites. (1, 2). While the process of leukocyte recruitment to
inflamed tissues has been well-studied, many of the cellular and
molecular signals that drive immune cell recruitment specifically
to diabetic islets during the progression of T1D remain unclear.

T1D is characterized as a largely T cell mediated autoimmune
destruction of the insulin producing β cells within the islets of

Langerhans. This destruction of the β cells leads to dysregulation
of blood glucose levels. Therapeutic options are limited to
insulin replacement without treating the ongoing autoimmunity.

Patients diagnosed with T1D maintain some beta cell mass
despite having immune infiltration and destruction of many

islets. Maintaining remaining beta cell mass is critical for
preventing T1D progression and related complications. New

lymphocytes are constantly being recruited to infiltrated islets
(3). The incomplete understanding of how these lymphocytes
traffic to the islets contributes to a lack of effective therapeutics
to prevent immune cell recruitment in T1D progression.

In T1D, research (including our own) on the role of
mononuclear phagocytes has focused on their role in antigen
uptake and presentation to activate T cells (4–8). Notably, the
majority of the mononuclear phagocytes in the islets express
the marker CD11c (4). In T1D, islet CD11c+ cells are a mix of
resident and recruited macrophages, dendritic cells (DCs), and
inflammatory monocytes (4, 9, 10). Depletion of CD11c+ cells or
removal of the pancreatic draining lymph node (PLN) prior to
islet infiltration, prevents T1D progression in non-obese diabetic
(NOD) mice (11–13). This suggests that the initial antigen
priming of autoreactive T cells by CD11c+ cells occurs within
the PLN. After islet infiltration, removal of the PLN in NODmice
no longer affects T1D disease progression, suggesting that further
T cell recruitment and activation can occur within the pancreas
(11). In experimental autoimmune encephalomyelitis (EAE), a
mouse model of multiple sclerosis, CD11c+ cells are necessary
for the recruitment of T cells to the inflamed CNS (14). However,
in T1D, the role that CD11c+ cells play in the recruitment of T
cells to inflamed islets remains unclear. These studies reinforce
that there is a need to further understand the role of CD11c+

cells within the islets once infiltration has been established.
T cells that initially infiltrate the islets are thought to be islet

antigen-specific (15). After initial infiltration, the requirement
of antigen specificity for T cell trafficking to islets has yielded
conflicting results (15–17). In a B10.BR.RIP-mHEL model of
T1D, initial T cell infiltration is followed by up-regulation of
chemokine and vascular adhesion molecule expression within

the islets. These changes allowed for non-islet antigen-specific T
cells to traffic to previously infiltrated islets (18). However,
antigen was required for the accumulation of T cells in
infiltrated islets of NOD retrogenic bone marrow chimera mice
which expressed islet antigen-specific or non-specific TCRs (17).
Due to these conflicting reports, the requirement of antigen
for T cell trafficking to previously infiltrated islets remains
unclear.

Chemokines are important for the directed recruitment of
immune cells to sites of inflammation (1, 2). In T1D, more
than half of all chemokines and chemokine receptors have been
implicated in disease progression in both mouse and man (19).
The chemokine superfamily is made up ofmore than 46members
in human,most of which have homologousmembers inmice. For
immune cell trafficking to the islets, most studies focused on the
role of CCL2, CCL3, CCL5, CXCL9, and CXCL10 (20–26). The
chemokine CXCL16 has been reported as a potential candidate
gene for the Idd4 T1D risk locus in mouse (27), and its receptor,
CXCR6, is located within IDDM22 T1D risk locus in man (28–
30). Although it has been shown to have pathogenic properties in
other autoimmune disease, the role of CXCL16 and CXCR6 have
not been investigated in T1D.

We sought to identify the major requirements for T cells
to traffic to the inflamed islets of NOD mice. Using intravital
imaging, we show that T cell entry into the islets is an extended
process, and intravascular T cells frequently arrest in close
proximity to perivascular CD11c+ cells. We show that the
presence of cognate antigen is not necessary for T cell trafficking
to previously infiltrated islets, but T cell chemokine receptor
signaling is required. Using RNA sequencing, we found that
islet CD11c+ cells produce more than 20 chemokines that can
recruit T cells to the islets. While CXCL16 is produced at high
levels by islet CD11c+ cells, T cells deficient in its receptor
CXCR6 can still traffic to infiltrated islets, even when combined
with CXCR3 deficiency. However, depletion of CD11c+ cells
profoundly impaired trafficking of lymphocytes to previously
infiltrated islets. These data suggest that targeting CD11c+ cells
within the islets may offer a therapeutic pathway to restrict T cell
trafficking to previously infiltrated islets.

RESULTS

T Cell Extravasation Into the Islets Is an
Extended Process
Type 1 diabetes is caused by the T cell mediated destruction
of the insulin-producing β cells within the islets. Before they
can cause destruction of the β cells, T cells must enter the
islets from the bloodstream (31). Previous work demonstrated
that T cells within the islet vasculature arrested for prolonged
periods of time, but T cell extravasation was not observed (32).
Here, we analyzed T cell entry into the islets using an intravital
pancreas imaging method that we developed (8). Islets were
identified by vascular morphology and islet infiltration state was
characterized as mild (0.1–30% of islet volume infiltrated by T
cells) or advanced (30–60% of islet volume infiltrated by T cells)
as previously described (8).

Frontiers in Immunology | www.frontiersin.org 2 January 2019 | Volume 10 | Article 99

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sandor et al. CD11c+ Gatekeepers in Infiltrated Islets

To identify the level of T cell infiltration in each islet, in
vitro activated dye-labeled islet-antigen-specific BDC-2.5 CD4T
cells were intravenously (i.v.) transferred 24 h prior to imaging.
Recipients were >10-week-old non-diabetic female NOD mice
with established islet infiltration (Figure 1A). After 24 h, 90% of
transferred BDC-2.5 CD4T cells had extravasated into the islet
parenchyma, while only 10% of transferred T cells remained in
the islet vasculature (Figures S1A,B).

To analyze the process of T cell extravasation within the
islets, additional in vitro activated differentially dye-labeled BDC-
2.5 CD4T cells were transferred immediately prior to intravital
imaging (Figure 1A). Each islet was imaged by intravital 2-
photon microscopy for 2 h. Individual T cells were tracked as
they extravasated into the islets and moved away from the islet
vasculature (Figures 1B,C; Video 1). Notably, we only observed
the completion of extravasation through the microvasculature of
the islet rather than islet-surrounding blood vessels (Figure 1B).

T cells that arrested in the vasculature were observed
to complete the process of extravasation into the islets or
more frequently release back into the blood flow (Figure 1D;
Figure S2). Notably, completion of extravasation was only
observed in advanced infiltrated islets, but not mild infiltrated
islets within our 2-h imaging time. This indicates that the
infiltration state within each islet can affect further T cell
recruitment as extravasation becomes more permissive with
increased infiltration (Figure 1D; Figure S2). Arrested T cells in
the islet vasculature that released into the blood flow had a 43-
min median time until their release, while completion of T cell
extravasation had amedian time of 63min from the time of arrest
(Figures 1E,F). Importantly, because many of the cells analyzed
were arrested in the vasculature at the start or end of imaging,
analyses of the duration of extravasation are underestimates.
Extravasation into the islets was an extended process, more
similar to extravasation into the highly restrictive CNS than to
the permissive lymph nodes where T cell extravasation takes
only 5–10min (33–35). Therefore, the islet vasculature is highly
restrictive to T cell extravasation.

T Cells in the Islet Vasculature Are in Close
Proximity to Perivascular CD11c+ Cells
The specific requirements for T cell entry into the islets remain
unclear. A CD11c+ cell subset has been shown to be in
contact with the islet vasculature (15). Thus, we asked whether
CD11c+ cells contribute to the recruitment of T cells into
the islets. To do so, islets were imaged using intravital 2-
photon microscopy (Figure 2A). The distribution of T cells
within the islet vasculature was identified using the imaging
software Imaris (Figures 2A–C). Islet intravascular T cells and
T cells undergoing extravasation (Figure 2B), were in close
proximity to perivascular CD11c+ cells (Figure 2C; Video 2).
To determine whether T cell arrest and extravasation in the
vasculature was biased toward being in proximity to CD11c+

cells, we first quantified the regions of the islet vasculature
that were in direct contact with CD11c+ cells (CD11c-vascular
contact zones). The frequency of intravascular T cells that
resided in or out of the CD11c-vascular contact zones was

then quantified (Figures 2C–E). An average of 18.7% of the
islet vasculature was in a CD11c-vascular contact zone. If the
T cell distribution in the islets was random, we would expect
that the frequency of intravascular T cells in CD11c-vascular
contact zones to be 18.7%. Strikingly we found that 86.6% of
the intravascular T cells were in CD11c-vascular contact zones
(Figure 2D). Furthermore, 75.0% of intravascular T cells were
in direct contact with CD11c+ cells (Figure 2E). This strong
enrichment of intravascular T cells in CD11c-vascular contact
zones suggests that CD11c+ cells may assist in T cell recruitment
into the islets.

Antigen Is Not Required for T Cell
Trafficking to Previously Infiltrated Islets
CD11c+ cells are classically thought of as antigen-presenting
cells, but the requirement for antigen in T cell trafficking to
the islets has been controversial. It is thought that antigen is
important for the initial wave of T cells to enter the islet as well as
for the long-term accumulation of T cells in the islets (15, 17).
Following islet infiltration, increased inflammation within the
islets allows for non-islet antigen-specific T cells to traffic to the
islets in a B10.BR.RIP-mHEL model of T1D (18). Furthermore,
it has been shown that the majority of T cells that traffic to the
islets of NOD mice have a naïve phenotype (3). To address if
cognate antigen is a requirement for T cells to traffic to the islets
of NODmice we used the NOD.C6mouse which has normal islet
infiltration and disease progression, but lacks the antigen for the
BDC-6.9 TCR transgenic T cells (36, 37).

The antigen for the BDC-2.5 CD4T cell is present in both
wild type (WT) NOD and NOD.C6 mice, while the antigen for
the BDC-6.9 CD4T cell is present in WT NOD but absent in
NOD.C6 mice (Figure 3A). Thus, we tested if BDC-6.9 CD4T
cells could traffic to NOD.C6 islets in the absence of their
cognate antigen (Figure 3). To do so, we co-transferred BDC-2.5
and BDC-6.9 CD4T cells. Recipients were >10-week-old non-
diabetic female WT NOD and NOD.C6 mice with established
islet infiltration (Figure 3B). After 24 h, islets were harvested and
the number of transferred T cells in the infiltrated islets was
analyzed by 2-photon microscopy. The level of islet infiltration
betweenWT NOD and NOD.C6 was similar as shown by similar
numbers of BDC-2.5 CD4T cells inWTNOD andNOD.C6 islets
(Figure 3C). There was also no significant difference in the ability
of both activated and naïve BDC-6.9 T cells to traffic to infiltrated
islets regardless of whether their cognate antigen was present
(WT NOD) or absent (NOD.C6) (Figure 3C). These data clearly
show that antigen is not required for T cells to traffic to islets once
infiltration has occurred.

Chemokine Receptor Signaling Is
Necessary for T Cell Trafficking to
Previously Infiltrated Islets
Once initial infiltration occurs there are changes to the
inflammatory state of the vasculature as well as increased
chemokine production within the islets (15). Since antigen
recognition is not required for T cell trafficking into the islets,
we hypothesized that CD11c+ cells recruit T cells via chemokine
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FIGURE 1 | T cell extravasation into the islets is an extended process. Islet antigen-specific BDC-2.5 T cells were antigen-activated, fluorescently labeled, and

transferred 24 h (to determine islet infiltration state, not shown) and immediately prior to imaging (to determine arrest and extravasation, green). Islets were imaged

intravitally by 2-photon microscopy. (A) Schematic of experimental setup. (B) Representative islet image (dashed line) with T cells (green) and vascular volume (red).

Scale bar = 50µm. Right: T cell marked with arrow and track of motion is undergoing extravasation into the islet. Yellow arrow indicates completed extravasation.

Time stamp = min:sec; Scale bar = 10µm. (C) Each line represents the distance of the leading edge of one T cell from the surface of the blood vessel. Blue lines

represent cells that completed extravasation; red lines represent arrested cells that did not complete extravasation. (D) Frequency of cells that remain arrested, release

from arrest, or complete extravasation in mild and advanced infiltrated islets. (E,F) Dots indicate cells that arrested in the vasculature during the imaging period. Bar

represents the median. (E) Time for T cell release from arrest in the islet vasculature. (F) Time to complete extravasation. (D–F) n = 6 islets from 5 mice in 5

experiments. (D) Error bars = SEM. *P < 0.05 calculated by Students T-test.

Frontiers in Immunology | www.frontiersin.org 4 January 2019 | Volume 10 | Article 99

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sandor et al. CD11c+ Gatekeepers in Infiltrated Islets

FIGURE 2 | T cells arrest in close proximity to CD11c+ cells in the islet vasculature. Islet antigen-specific BDC-2.5 T cells (blue) were antigen-activated, fluorescently

labeled, and transferred into NOD.CD11c-mCherry (green) mice. Islets were imaged intravitally by 2-photon microscopy. Vascular volume was labeled with fluorescent

dextran (red). (A) Representative islet outlined by dashed line. Arrow indicates an intravascular T cell. (B,C) 3-Dimensional renderings created from the fluorescence in

the boxed region in (A). (B) Optical slice through the vascular lumen shows the T cell extending through the blood vessel wall. (C) Time lapse of T cell shown in (B).

Arrow indicates area of contact with perivascular CD11c+ cell (green). (D) Quantification of the percentage of vasculature area in contact with CD11c+ cells

(CD11c-vascular contact zone) vs. the percentage intravascular T cells within CD11c-vascular contact zone. Red line indicates the predicted value for percentage of

intravascular T cell within CD11c-vascular contact zones if T cell location within the vasculature was random. Error bars = SEM. *P < 0.05 calculated by Students

T-test. (E) Analysis of the distance from intravascular T cells to the nearest CD11c+ cell. Bar = median. (D,E) n = 5 islets from 3 mice in 3 experiments.

production. To confirm that chemokine signaling is required for
recruitment of T cells into previously infiltrated islets, we treated
T cells with pertussis toxin (Ptx) to inhibit Gαi-coupled receptors,
which include most chemokine receptors (38).

In vitro activated differentially dye-labeled BDC-2.5 CD4 and
8.3 CD8T cells were pretreated for 2 h with 200 ng Ptx or vehicle
control. Treated T cells were differentially dye-labeled, and then
co-transferred into 10–16 week old WT NOD mice. After 24 h,
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FIGURE 3 | Antigen is not required for T cell entry into previously infiltrated

islets. Islets in WT NOD mice contain the antigens for both BDC-2.5 and

BDC-6.9 CD4T cells. NOD.C6 mice lack the antigen for BDC-6.9 T cells but

have the antigen for BDC-2.5 T cells and develop diabetes similar to WT NOD.

BDC-2.5 or BDC-6.9 CD4T cells were activated using αCD3 and αCD28, or

naïve BDC-6.9 CD4T cells were harvested from NOD.C6.BDC-6.9 mice. T

cells were differentially fluorescent dye-labeled and co-transferred into NOD

WT or C6 mice. Twenty-four hours after T cell transfer, islets were isolated and

imaged using 2-photon microscopy to determine the number of transferred T

cells that infiltrated the islets. (A) Table of transfer conditions. (B) Schematic of

experimental setup. (C) Quantification of the number of islet BDC-2.5 T cells

and islet BDC-6.9 T cells with or without antigen present. WT islets n = 25

from 4 experiments. C6 islets n = 18 from 5 experiments. All islets were

previously infiltrated. Error bars = SEM. Statistical analysis by Students T-test.

the number of transferred cells was quantitated in the non-
draining inguinal lymph node (ILN), islet-draining pancreatic
lymph nodes (PLN), blood, and the islets by flow cytometry
(Figure 4A). An average of 90% of T cells were localize to
extravascular regions of islets at 24 h post-transfer (Figure S1).
Ptx-treated T cells were significantly impaired in their ability to
traffic to the islets and the lymph nodes (Figures 4B–E). This
resulted in a low ratio of Ptx treated to vehicle treated CD4 and
CD8T cells in the ILN, PLN, and islets and an enriched ratio
of Ptx to control treated T cells in the blood (Figure 4C). This
suggests that the Ptx treated cells were viable but trapped in
the blood. Ptx treatment of T cells led to a 95.6% impairment
of CD4 trafficking and 91.3% of CD8 trafficking to the islets
(Figure 4D) as well as a significant reduction in T cell entry into
the non-draining ILN (Figure 4E). These data show that T cell

FIGURE 4 | Chemokine receptor signaling is necessary for T cell trafficking to

infiltrated islets. Antigen activated BDC2.5 (CD4) and 8.3 (CD8) T cells were

treated with 200 ng of pertussis toxin (Ptx) or PBS for 2 h at 37◦C and

differentially dye-labeled. T cells were co-transferred into 10–16 weeks old

female NOD mice. After 24 h ILN, PLN, blood, and pancreatic islets were

isolated. The numbers of transferred T cells were determined by flow

cytometry. (A) Schematic of experimental setup. (B) Representative flow plots

of CD45+ cells comparing trafficking of WT and Ptx treated T cells to islets.

Red numbers represent the number of cells in the gate. (C) Ratio of transferred

Ptx treated to control T cells in each tissue analyzed. Statistics: One sample

T-test with hypothetical value = 1. Error bars = SEM. (D,E) Quantification of

the total number of transferred T cells that trafficked to (D) the islets and (E)

the non-draining ILN. Statistics: Paired T-test. (C-E) n = 7 mice in 3

experiments for BDC2.5 CD4T cells; n = 5 mice in 2 experiments for 8.3

CD8T cells. *P < 0.05;** P < 0.01;***P < 0.001.

chemokine receptor signaling is necessary for T cell trafficking to
infiltrated islets.

Islet CD11c+ Cells Express Many
Chemokines That Pair With Chemokine
Receptors on Islet T Cells
If CD11c+ cells directly recruit T cells to the islets via
chemokine production, they must produce chemokines that islet
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T cells can respond to. To determine if CD11c+ cells express
chemokines that can bind islet T cell chemokine receptors,
RNAseq was performed on islet CD11c+ cells and islet T
cells. Islet CD11c+ cells (CD45+DAPI−CD19−CD11c+MHC-
II+) and T cells (CD45+DAPI−CD19−CD90.2+) were FACS
sorted and the RNA was isolated, amplified, and sequenced.
RNA count data was normalized with DESeq2. Expression of
chemokines and chemokine receptors on islet CD11c+ cells
and T cells was analyzed using R (Figures 5A,B). Notably,
the islet CD11c+ cells expressed over 20 different chemokines
(Figure 5A). Of the top 10 chemokines produced by islet
CD11c+ cells, islet T cells expressed high levels of one or
more corresponding chemokine receptors for each chemokine
(Figure 5C). Two chemokine ligand-receptor pairs that stood
out were CXCR3-CXCL9/CXCL10 and CXCR6-CXCL16. CXCL9
was the highest expressed chemokine by CD11c+ cells and
CXCR3 was the second highest expressed chemokine receptor on
T cells (Figure 5C). CXCR6 was the highest expressed chemokine
receptor on islet T cells and CXCL16 was the third highest
CD11c+ cell produced chemokine (Figure 5C).

The CXCR3-CXCL9/CXCL10 axis has been well-studied in
the progression of T1D, showing that CXCR3 is involved in
initial recruitment of T cells to the islets, and is required for
effective recruitment of regulatory T cells to NOD islets (21, 39–
41). Thus, instead of pursuing the CXCR3-CXCL9/CXCL10 axis,
we decided to focus on the CXCR6-CXCL16 receptor-ligand pair
since CXCR6 and CXCL16 have not yet been well-investigated in
T1D (41).

The CXCL16 gene is located within the Idd4 T1D risk locus
in mouse (27), and CXCR6 is located within the IDDM22 T1D
disease locus in man, making this chemokine-receptor pair of
strong potential interest (28). This pathway also interested us
since CXCR6 has been shown to have a role for trafficking of
pathogenic T cells in other animal models of autoimmunity such
as EAE and colitis (42–44). CXCL16 has also been shown to be
elevated in EAE and during rejection of a transplant (42, 45–
47). Flow cytometry was used to confirm protein expression
of CXCL16 by islet CD11c+ cells and CXCR6 on islet T cells
(Figures 5 D,E). CD11c+ cells selectively expressed CXCL16
within the islet leukocyte population (Figure 5D). Using CD62L
down regulation as a surrogate marker for T cell activation,
only activated CD4T cells expressed CXCR6 (Figure 5E), while
subsets of CD62L positive and negative CD8T cells expressed
CXCR6. These data show that CD11c+ cells produce multiple
chemokines that can bind receptors on islet T cells. We next
sought to determine if CXCR6 expression was necessary for T cell
infiltration into previously infiltrated islets.

CXCR6 Is Not Required for T Cell
Trafficking to Infiltrated NOD Islets
To investigate if CXCL16 and CXCR6 have a role in T cell
trafficking to previously infiltrated islets we used CXCR6−/−

NOD mice. Through PCR and flow cytometry we confirmed
CXCR6 deficiency (Figures S3A,B). CXCR6−/− NOD mice had
no changes in T1D disease progression (Figure S3C). To test if
CXCR6 deficiency impaired T cell trafficking to the islets, we

differentially dye-labeled activated WT and CXCR6−/− T cells
and co-transferred them into 10–16-week old WT NOD mice.
After 24 h ILN, PLN, blood, and islets were harvested, and the
number of transferred cells was quantified by flow cytometry
(Figures 6A,B). The ratio of CXCR6−/− to WT T cells was
compared within each tissue (Figure 6C). Trafficking of activated
T cells was not impaired to any tissues analyzed, including the
islets, as seen by an ∼ 1:1 KO:WT ratio for transferred CD4 and
CD8T cells (Figure 6C). There was also no significant difference
in the total number of CXCR6−/− T cells compared to their co-
transferred WT controls in either the islets (Figure 6D) or to the
ILN (Figure 6E). CXCR6−/− T cells still trafficked to the islets,
likely due to the redundancy of chemokine and receptor pairs
expressed within the islets (Figure 5C).

To determine if CXCR6 and CXCR3 dual deficiency could
overcome the redundant usage of chemokine receptors in T cell
trafficking to inflamed islets, we used the C57BL/6.RIP-mOVA
model of T1D. C57BL/6.RIP-mOVA mice have membrane
bound ovalbumin driven by the rat insulin promoter (48).
In our colony, transfer of naïve OT-I CD8T cells induces
infiltration of the islets 6 days post-transfer without overt
disease. We co-transferred differentially dye-labeled, activated
C57BL/6.CXCR6−/−CXCR3−/− double knock out and WT
C57BL/6 T cells into C57BL/6.RIP-mOVA mice with pre-
existing islet infiltration (Figure S4A). Surprisingly, the
CXCR6−/−CXCR3−/− T cells did not have a defect in trafficking
to infiltrated islets (Figures S4B–E). These data show that
deficiency in CXCR6 and CXCR3 is not sufficient to impair T cell
trafficking to inflamed islets. There are over 20 chemokine and
chemokine receptor pairs expressed by islet CD11c+ cells and T
cells, respectively. This redundancy makes it infeasible to test all
the combinations of CD11c-produced chemokines involved in
T cell trafficking to infiltrated islets. Instead, we asked whether
depletion of CD11c+ cells could disrupt T cell trafficking to the
islets.

Islet CD11c Depletion Is Effective and
Does Not Affect T Cell Adhesion to the Islet
Vasculature
To effectively deplete CD11c+ cells in the islets, NOD.CD11c-
DTR bone marrow (BM) chimeras were generated. CD11c-DTR
mice express the high affinity diphtheria toxin receptor (DTR)
under the CD11c promoter. Two treatments of diphtheria toxin
(DT) 24 h apart led to a significant reduction in the number of
CD11c+ cells within the islets 24 h after the final DT treatment
(Figures 7A–C). A minimum of 90% CD11c depletion in the
islets was required for inclusion in our analyses.

To determine whether vascular inflammation in the islets
changed with CD11c depletion, the expression of the adhesion
molecules ICAM-1 and VCAM-1 was quantified by flow
cytometry (Figure 7D). PE-CAM-1 (CD31) was used to identify
the vascular endothelial cells, but is also a vascular junction
protein. Thus, the mean fluorescent intensity (MFI) of PE-CAM-
1 was also quantified (Figure 7D). There was no difference in
the MFI of ICAM-1, VCAM-1, or PE-CAM-1 when normalized
to the average MFI of vehicle treated age-matched controls
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FIGURE 5 | Islet CD11c+ cells express chemokines that pair with chemokine receptors on islet T cells. RNAseq was performed on CD11c+ cells

(CD45+DAPI−CD19−CD11c+MHC-II+) and T cells (CD45+DAPI−CD19−CD90.2+) that were sorted from the islets of 12–20 wk NOD mice. Analysis of chemokine

ligand and chemokine receptor expression in the islets was performed in R. (A,B) Heat map of normalized gene expression from islet CD11c+ cells and islet T cells.

(A) Chemokine ligands. (B) Chemokine receptors. (C) Average expression of the top 10 expressed chemokine ligands by islet CD11c+ cells (black) and their receptor

expression on islet T cells (red). Error bars = SEM. (D) Representative flow cytometry plot of CXCL16 expression on CD45+ cells in the islets. (E) Representative flow

cytometry plots of CXCR6 expression by T cells in the islets.
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FIGURE 6 | CXCR6−/− T cells do not have impaired trafficking to NOD islets.

NOD WT and CXCR6−/− T cells were activated by αCD3 and αCD28,

differentially dye-labeled, and co-transferred into 10–16 week old female NOD

mice. After 24 h ILN, PLN, Blood, and pancreatic islets were isolated.

Transferred T cells were quantified by flow cytometry. (A) Schematic of

experimental setup. (B) Representative flow cytometry plots of CD45+ cells

comparing trafficking of WT and CXCR6−/− T cells to the islets. Red numbers

represent the number of cells in the gate. (C) Ratio of transferred CXCR6−/−

to WT T cells in each tissue analyzed. Statistics: One sample T-test with

hypothetical value=1. (D,E) Number of transferred T cells that trafficked to (D)

the islets normalized to the number of islets harvested and (E) to the

non-draining ILN. Error bars = SEM. Statistics: Paired T-test. (C-E) n = 7

mice from 3 experiments.

(Figure 7E). These data show that CD11c depletion does not alter
adhesion molecule expression on the islet vasculature.

To determine if T cell adhesion to the islet vasculature
was altered with CD11c depletion, activated T cells were dye-
labeled and transferred 2 h prior to islet harvest. In whole islet
preparations the vasculature was marked with αCD31 staining

and T cells were marked genetically by CD2-dsRed or stained
with αCD90.2 to identify the infiltration state of the islets. Islets
were maintained in media with Ca2+ and Mg2+ during the
harvest and stain. The number of transferred T cells within
the vasculature of infiltrated islets was quantified by 2-photon
microscopy. There was no significant difference in the average
number of transferred T cells within the vasculature of intact
vs. CD11c depleted islets (Figure 7F). These data suggest that
CD11c+ cells in the islets can be depleted without altering the
ability of T cells to adhere to the vasculature.

Lymphocyte Entry Into the Islets Is
Impaired Following CD11c Depletion
Based on the RNAseq data, islet CD11c+ cells produce more
than 20 different chemokines that could recruit lymphocytes to
the islets (Figure 5C). To determine if these CD11c+ cells might
have a required role in lymphocyte entry to infiltrated islets,
we assessed trafficking of T cells to the islets after CD11c+ cell
depletion. In vitro activated T cell trafficking to the islets was
assessed to mirror the experimental setup of our extravasation
and chemokine experiments. Trafficking of directly isolated
NOD ex vivo T cells and B cells was also assessed to ensure the
physiological relevance of the in vitro activated cells. In vitro
activated or directly ex vivo isolated islet antigen-specific BDC-
2.5 CD4 and 8.3 CD8T cells as well as ex vivo B cells were
differentially dye-labeled and transferred into vehicle (intact) or
DT (CD11c Depleted) treated NOD.CD11c-DTR BM chimeras.
After 24 h, the numbers of transferred cells in the non-draining
ILN, draining PLN, and islets were quantified by flow cytometry
(Figure 8A). Strikingly, short-term depletion of CD11c+ cells
strongly impaired the numbers of T cells and B cells that were
able traffic to the islets (Figures 8B,C). This impairment in
trafficking was seen for both in vitro activated (Figure 8B) and
ex vivo (Figure 8C) transferred T cells. However, lymphocyte
trafficking to the PLN and ILN were not affected by CD11c
depletion (Figures 8D–G). The impairment of T cell trafficking
to the islets with CD11c depletion was profound, with CD8T
cells having a stronger impairment (92 and 91% reduction for
ex vivo and activated) than CD4T cells (75 and 77% reduction
for ex vivo and activated). Interestingly, there was also a 92%
impairment of B cell trafficking to the islets following CD11c
depletion (Figure 8C). B cells also play a pathogenic role in
T1D progression and can be recruited to the islets through
chemokine signaling (49–53). These data show that CD11c+ cells
are required for effective recruitment of lymphocytes into islets.

DISCUSSION

In this study, we sought to better understand the cellular and
molecular cues that enable lymphocytes to traffic to diabetic islets.
Our data show that CD11c+ cells are necessary for effective entry
of lymphocytes into previously infiltrated NOD islets. We show
that T cell extravasation into the islets is an extended process,
indicating that the islet vascular barrier is highly restrictive
to T cell entry. Notably, T cells in the islet vasculature were
located proximal to CD11c+ cells, and required chemokine

Frontiers in Immunology | www.frontiersin.org 9 January 2019 | Volume 10 | Article 99

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sandor et al. CD11c+ Gatekeepers in Infiltrated Islets

FIGURE 7 | Islet CD11c+ cell depletion is effective and does not affect lymphocyte adhesion to the vasculature. Female NOD CD11c-DTR bone marrow was

transferred into irradiated female NOD hosts to make bone marrow chimeras. 10–16 weeks post-reconstitution chimeras were treated twice 24 h apart with 200 ng of

diphtheria toxin (DT) or PBS. Twenty-four hours after the second treatment, islets were isolated and digested. (A) Schematic for islet CD11c depletion. (B,C) Islet

CD11c+ cell numbers were quantified by flow cytometry. (B) Representative flow cytometry plot of islet CD45+ cells. (C) Number of islet CD11c+ cells. Intact n = 12

mice, CD11c depleted n = 16 mice from 7 experiments; Error bars = SEM. Statistics: Students T-test, ***P < 0.001. (D–G) Flow cytometric analysis of adhesion

molecule expression on endothelial cells (CD31+ CD45- cells) with or without CD11c depletion. (D) Representative histograms. (E) Adhesion molecule MFI

normalized to the average MFI of intact islets. Red line signifies no change compared to control. n = 5 mice from 3 experiments. Statistics: One sample T-test with

hypothetical value = 1. (F) Lymphocyte adhesion to the islet vasculature was analyzed by 2-photon whole islet imaging. Fluorescent dye-labeled, peptide-activated

BDC-2.5 (CD4) and 8.3 (CD8) T cells were co-transferred 2 h prior to harvest. Islets were antibody stained for CD31 and T cell infiltration. n = 4 mice from 3

experiments. Statistics: Students T-test.

receptor signaling rather than antigenic stimulation to traffic into
infiltrated islets. The fact that over 20 chemokine-receptor pairs
are expressed by islet CD11c+ cells and islet T cells, respectively,
highlights the large degree of redundancy for chemotactic cues

in infiltrated islets. This redundancy enables T cells to traffic to
the islets in the absence of individual chemokine receptors. The
profound impairment in lymphocyte trafficking to inflamed islets
in the absence of CD11c+ cells indicates that CD11c+ cells have
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FIGURE 8 | Lymphocyte entry into the islets is impaired by CD11c+ cell depletion. NOD.CD11c-DTR bone marrow chimera generation and CD11c depletion were

done as described in Figure 7A. Negatively selected ex vivo or peptide-activated BDC-2.5 CD4+ and 8.3 CD8+ islet antigen-specific T cells and ex vivo B cells were

fluorescent dye-labeled and co-transferred at the time of the second DT treatment. Twenty-four hours after cell transfer, ILNs and islets were isolated and digested.

Transferred cells within the tissues were quantified by flow cytometry. (A) Schematic of experimental setup. (B,C) The number of (A) activated and (B) ex vivo

transferred cells in the islets normalized to the total number of islets isolated. For ex vivo: n = 10–16 mice from 4–8 experiments. For activated: n = 6–8 mice from 3

experiments. (D,E) Number of (C) activated and (D) ex vivo transferred cells in the PLN. (F,G) Number of (C) activated and (D) ex vivo transferred cells in the ILN. (D–G)

For ex vivo: n = 4–6 mice from 2 experiments. For activated: n = 6 mice from 3 experiments. Error bars = SEM. Statistics: Students T-test; *P < 0.05; ***P < 0.001.

a gatekeeper role for lymphocyte trafficking and entry into the
islets, likely through production of multiple chemokines.

This profound dependence on CD11c+ cells for lymphocyte
trafficking to the islets is highly significant in that the impairment

is shown in NOD mice with established islet inflammation.
Studies of T cell trafficking to the islets have largely analyzed
trafficking to uninfiltrated islets (40, 54–57). Although these
studies are important for protecting β cell mass in uninflamed
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islets, patients diagnosed with T1D already have established islet
inflammation. Notably, many factors involved in T1D during
disease induction, such as INFγ or CXCR3, become redundant
once robust inflammation occurs within the islets (39, 58). In
the context of inflamed islets, multiple redundant pathways must
be blocked to prevent T cell entry into the islets as effectively as
CD11c+ cell depletion. Examples of these include the combined
blockade of vascular adhesion molecules or blockade of all
chemokine receptormediated signaling as we showwith pertussis
toxin (18, 59). This suggests that CD11c+ cells are likely key
mediators of redundant pathways required for T cells to traffic
to inflamed islets.

The ability of cells to traffic to the islets despite the absence
of cognate antigen is intriguing and in agreement with previous
reports (3, 15, 60). It has been shown that the majority of
T cells trafficking to infiltrated islets in NOD mice have a
naïve phenotype (3). Once naïve islet-antigen specific T cells
traffic to the islets, they may become activated through antigen
presentation by CD11c+ cells, since we have shown evidence of
active antigen presentation by CD11c+ cells in the islets (7, 8).
Non-islet antigen specific T cells have also been shown to traffic
to the islets in inducible systems of T1D once islet inflammation
is established (15, 60). Interestingly, the accumulation of non-
islet antigen specific CD8T cells is correlated with increased
suppression of islet-antigen specific CD8T cells (60). Therefore,
although these non-islet antigen specific T cells are not causing
increased β cell destruction, they could still have an effect on T1D
progression.

We show that as with T cell trafficking, CD11c+ cells are
required for effective B cell trafficking to the islets. This is likely
due to the broad expression of chemokines produced by CD11c+

cells, since recruitment of B cells to the islets can be driven by
chemokines (53). Although B cells play a pathogenic role in T1D
and their depletion can slow disease progression in T1D patients,
few studies have looked at the specific requirements for B cell
trafficking to the islets (49–52, 61, 62). The combined inhibition
of T cell and B cell trafficking to the islets may have greater
potential to prevent T1D disease progression than blocking T cell
trafficking alone.

CD11c+ cells in the islets include macrophages, dendritic
cells, and monocytes that serve multiple roles during the
progression of T1D (4, 7–10). Depletion of CD11c+ cells or
removal of the draining PLN prior to islet infiltration prevents
T1D, likely due to the lack of T cell priming by CD11c+ cells in
the PLN (11–13, 57). However, here we show that islet CD11c+

cells have a previously undescribed role in the recruitment
of lymphocytes to infiltrated islets. CD11c+ cells also enable
recruitment of T cells through the restrictive blood brain barrier
during CNS trafficking in EAE (14). This raises the question of
whether CD11c+ cells are generally required for T cell trafficking
to sites of inflammation, or if they are specifically required for T
cell extravasation at restrictive vascular sites.

The fact that both CD11c+ cell depletion and Ptx-mediated
chemokine inhibition led to ∼90% inhibition of CD8T cell
trafficking to the islets suggests that CD8T cells may be strongly
reliant on CD11c+ cell produced chemokines for islet trafficking.
This is surprising since other immune subsets and beta cells can

produce a large array of chemokines in infiltrated islets (21, 63).
Importantly, CD8T cells are considered one of the main effector
cells that lead to β cell death. On the other hand, since only 75%
of CD4T cell trafficking was inhibited by CD11c depletion, it is
likely that CD4T cells can respond to chemokines produced by
other cell types in the islets.

Chemokines not only act as chemoattractants for
lymphocytes, but they are also required for multiple steps
of extravasation (1, 2). Soluble chemokines bind to the surface
of CD11c+ cells and the vascular endothelium. These surface-
bound chemokines on CD11c+ cells, as well as transmembrane
chemokines such as CXCL16, can drive interactions of CD11c+

cells with T cells (1, 64–70). Here we show that not only are
T cells in close proximity to perivascular CD11c+ cells, but
many are in direct contact with CD11c+ cells. Intravascular
T cells can interact directly with CD11c+ cells due to the
ability of CD11c+ cells to periscope dendrites into the vascular
lumen of the islets (15). Since antigen is not necessary for T
cell trafficking to infiltrated islets, these interactions are likely
driven by chemokines or integrin ligands presented to T cells
by the CD11c+ cells (64–70). Notably, chemokine signaling
can potentiate integrin affinity maturation. Both chemokine
and integrin signaling drive cytoskeletal re-arrangements in T
cells that are required for extravasation through endothelial
barriers (71, 72). By increasing the local density of chemokines
at endothelial junctions or on the extravascular basal membrane,
CD11c+ cells may be responsible for enabling T cell path finding
to permissive sites of extravasation (73–76).

During T1D, islet CD11c+ cells also produce cytokines such as
TNFα, IL-1β, and VEGF that can increase vascular permeability
(9, 63, 77, 78). Additionally, matrix metalloproteases (MMPs)
are important for immune cell trafficking to the CNS during
inflammation and to the islets during T1D (79–82). Through
pro-inflammatory cytokine and MMP production, CD11c+

cells could break down vascular junctions and the basement
membrane, creating permissive sites for T cells to transit through
the vasculature. CD11c+ cell chemokine production would then
attract T cells to the permissive vasculature created at the CD11c-
vascular contact zones.

To more effectively identify a novel therapeutic target, further
work must be done to understand the populations of CD11c+

cells in the islets that drive T cell recruitment. Although
CD11c+ cells in the islet are a mixture of DC, macrophage, and
monocyte populations, one specific subtype may be selectively
required for T cell entry into the islets. Perivascular CD11c+

cells are likely responsible for T cell trafficking into the islets.
Understanding the unique characteristics and markers of this
islet CD11c+ cell subset may allow us to specifically target
these cells to disrupt trafficking to the inflamed islets, without
affecting normal T cell activation and immune function. This
study highlights the additional work that needs to be done
to understand the complexity of CD11c+ cells in the islets
and their roles during the progression of T1D. However,
we propose that targeting CD11c+ cell subtypes to alter
their presence or function could provide a therapeutic target
for broad inhibition of lymphocyte trafficking to the islets
during T1D.
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MATERIALS AND METHODS

Mice
WT NOD (001976), NOD.8.3 (005868), and C57BL/6.RIP-
mOVA (005431) were purchased from The Jackson Laboratory.
C57BL/6.CXCR3−/− (005796) and C57BL/6.CXCR6−/−

(005693) were also purchased from The Jackson Laboratory and
crossed to generate C57BL/6.CXCR3−/−CXCR6−/− dKO mice.
The lab of Dr. Kathryn Haskins provided the NOD.BDC2.5,
NOD.BDC6.9, NOD.C6, and NOD.C6.BDC-6.9 mice. The
lab of Dr. Jonathan Katz provided the NOD.CD11c-DTR
mice. Dr. Qizhi Tang provided the NOD.CD2-dsRed mice.
NOD.CXCR6−/− were generated by Dr. David Serreze at The
Jackson Laboratory as previously described by CRISPR/Cas9
targeting of exon 2 of CXCR6 in NOD mice using the guide
sequence CTCTTGATGCCCATCATCCA, resulting in a 7
base pair deletion (83). NOD.CXCR6−/− were provided by
Dr. Yi-Guang Chen, and are now available from The Jackson
Laboratory (033094). PCR screening for the NOD.CXCR6−/−

was done by PCR using the following primers: forward-
AGATGCCATGGATGATGG for which binding is disrupted
by the 7bp deletion and reverse-CCAAAAGGGCAGAGTACA
(Figure S3). The Institutional Animal Care and Use Committee
at National Jewish Health approved all the procedures.

Islet and Lymph Node Isolation and
Digestion
Islets were isolated as previously described (7, 8). Briefly, mice
were euthanized by i.p. administration of ketamine (50µg/g)
(Vedco)/xylazine (5µg/g) (JHP) and cervical dislocation. The
pancreas was inflated with 0.8% Collagenase P (Roche) and
10µg/mL DNAse (Roche) in HBSS (Cellgro). Each lot of
Collagense P was titrated for time necessary for digestion at 37◦C
between 11 and 14min. Digested islets were separated by density
centrifugation and hand picked under a dissection microscope.
Pancreatic draining and inguinal lymph nodes we harvested and
teased apart using syringe needles. For single cell suspension for
flow cytometric analysis, lymph nodes and islets were digested
for 30min with 4 Wunsch units of Collagenase D (Roche) with
250µg/ml DNAse in HBSS with 10% FBS. Islets were then
incubated for 30min in Cell Dissociation Buffer (Sigma).

T Cell Isolation and in vitro Activation of
T Cells
Lymphocytes were isolated from pooled lymph nodes and
spleen cells. Ex vivo cells were harvested into EasySep buffer
and CD4T cells, CD8T cells, and B cells were negatively
selected using EasySep negative selection isolation kits (StemCell
Technologies). For in vitro T cell activation, lymph node and
spleen cells were in vitro activated using 24 well-plates coated
with 2µg/ml αCD3 (BioXcell) antibody and soluble 2µg/ml
αCD28 (BioXcell). Peptide activation of T cells was used for
the BDC-2.5 and 8.3 TCR transgenics using the BDC-2.5
mimetope (YVRPLWVRME) (Pi Proteomics) or 8.3 cognate
peptide (KYNKANVEL) (Chi Scientific). Beginning on day 2
post-stimulation, activated T cells were cultured with 10 IU/ml
rhIL-2 (AIDS Research and Reference Reagent Program, Division

of AIDS, NIAID, NIH from Dr. Maurice Gately, Hoffmann - La
Roche Inc.). Cells were used 6–9 days post-initial T cell activation.

Pertussis Toxin Treatment, Dye Labeling,
and Adoptive Transfer of Lymphocytes
Activated T cells were resuspended at 107 cells/ml and treated
with 200 ng/ml Ptx (Hooke Labs) for 2 h at 37◦C or with PBS
as a vehicle control. For vital dye labeling, lymphocytes were
resuspended at 107 cells/ml and labeled using 1µM VPD (BD),
2µM CFSE (Invitrogen), 20µM CMTMR (Invitrogen) or 5µM
eFluor 670 (eBiosciences). Lymphocytes were dyed at 37◦C
for 10min for analysis by flow cytometry and for 25min for
microscopy. Dyes were switched between experiments. 107 dye-
labeled lymphocytes were adoptively transferred by i.v. injection
into recipient mice.

RNA Transcriptome Gene Expression and
Quality Control
Sample RNA was isolated using the Quick-RNA Microprep kit
(Zymo Research) according to the manufacturer’s protocol. RNA
AmpliSeq libraries were constructed and barcoded with the
Ion AmpliSeq Transcriptome Mouse Gene Expression Kit and
methods. Average RNA yields were 0.79± 0.95 ng. Because yields
were <10 ng used as standard input for AmpliSeq, we instead
loaded the maximum volume of RNA that the reaction could
accommodate for all samples. Average inputs for Amplification
were 0.64 ± 0.49 ng. Barcoded RNA sequencing (RNA-Seq)
libraries were pooled and sequenced together on the Ion Torrent
S5 sequencer by using P1 chips. Sequencing reads were mapped
to AmpliSeq transcriptome target regions with the torrent
mapping alignment program and quantified with the Ion Torrent
AmpliSeq RNA plugin using the unique mapping option.

CD11c-DTR Bone Marrow Chimeras and
CD11c Depletion
To generate CD11c-DTR bone marrow chimeras 8-week-old
NOD mice were lethally irradiated with two doses of 500
Rads. 107 CD11c-DTR bone marrow cells were transferred
i.v. after irradiation. Mice were allowed to reconstitute their
hematopoietic cells for >10 weeks. In order to deplete CD11c+

cells in the islets, two 200 ng doses of diphtheria toxin (Sigma)
were administered i.p. 24 h apart. By 24 h after the second dose,
>90% of CD11c+ cells were depleted. If there was not >90%
CD11c depletion compared to the average of the age matched
controls for each experiment, these mice were excluded from
analysis due to incomplete depletion.

Flow Cytometry Analysis
To analyze trafficking of dye-labeled lymphocytes, tissues
were digested and stained with the following antibodies:
CD45 BUV395 (BD), CD45 Pacblue (Biolegend), CD11c FITC
(Biolegend), CD4 BV711 (Biolegend), CD8 PE (eBioscience),
CD8 PE-Cy7 (eBioscience), and CD19 BV510 (Biolegend). For
intracellular chemokine staining of CXCL16 (R&D Systems)
was performed using the FoxP3 intracellular staining kit
(eBioscience); mice were treated i.v. with Berfeldin A (Sigma)
for 4 h prior to harvest. For vascular adhesion molecule and
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chemokine expression a combination of the previous antibodies
were used as well as CD31 PE (eBioscience), CD54 FITC
(eBioscience), and CD106 PE (eBioscience). All antibody staining
was done for 30min on ice. Samples were collected on either a BD
LSRII or LSR Fortessa and analyzed by FlowJo.

2-Photon Imaging of Islets
Islets were imaged using an Olympus FV100MPE (7, 8).
Excitation was 810 nm and emission was detected in four
channels: 450–490 nm, 500–550 nm, 575–640 nm, and 645–
685 nm. Islets were scanned with 3µm spacing in the z plane with
509 µm2 xy planes and a resolution of 0.994 µm/pixel. Analysis
and quantitation of imaging data was done on Imaris (Bitplane).

Whole Stained Islets
Activated BDC-2.5 T cells were transferred 2 h prior to harvest.
Whole islets were stained with 2–3 µg of antibody for CD31 and
CD90.2 for 45min on ice and then fixed with 1% PFA (Sigma) as
previously described (15).

Intravital Islet Imaging
Intravital imaging was done as previously described (8). Briefly,
mice were anesthetized with ketamine/xylazine and maintained
using inhaled isoflourane (2–3% in O2) on a heat pad to maintain
37◦Cbody temperature. To label the vasculature, 70 kDa dextran-
FITC (Invitrogen) was injected i.v. Activated BDC-2.5 T cells
were transferred 24 h prior to imaging, for analysis of islet
infiltration, and 30min prior to imaging for analysis of T cell
extravasation. The pancreas was surgically exposed and islets
were imaged for 30min segments, up to 2 h, through a heated
suction window to maintain the pancreas at 37◦C.

Statistical Analyses
Graphing and statistical analysis of all flow cytometry and
microscopy data was performed using Prism6 (Graphpad).
Statistical analyses and normalization of the RNA-seq
transcriptome data were performed in R statistical language (84).
Gene counts were normalized withDEseq2 (85). Gene expression
plots were created using the heatmap3 package (86).
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Figure S1 | BDC-2.5 T cells are largely located in extravascular regions of the islet

at 24 h post-transfer. Experimental setup as described for Figure 1. Islet

antigen-specific BDC-2.5 T cells were antigen-activated, fluorescently labeled, and

transferred. Twenty-four hours post-transfer, islets were imaged intravitally by

2-photon microscopy. (A) Representative islet image (dashed line) with transferred

T cells (blue), and vascular volume (red). Intravascular T cells are highlighted with

yellow spheres. (B) Percentage of extravascular T cells within individual islets.

n = 17 islets from 9 experiments.

Figure S2 | Numbers of intravascular T cells that adhere, release, and extravasate

within infiltrated islets. (A) Absolute numbers of cells within islets represented in

Figure 1C. n = 6 islets from 5 mice in 5 experiments. Error bars = SEM.
∗P < 0.05 calculated by Students T-test.

Figure S3 | NOD.CXCR6−/− mice lack the CXCR6 gene and protein expression,

but do not have altered T1D disease progression. (A,B) Confirmation of CRISPR

mediated CXCR6 gene knock out. (A) PCR confirmation that the 7 base pair

deletion in NOD.CXCR6−/− prevents binding of the forward primer and

amplification of 280 base pair CXCR6 gene fragment. (B) Wild type and

CXCR6−/− T cells were activated by plate-bound αCD3 and soluble αCD28

antibodies. After 6 days, CXCR6 protein expression on T cells was analyzed by

flow cytometry. (C) T1D disease progression of NOD.CXCR6−/− compared to

WT NOD mice in our colony. Diabetes was defined as two consecutive weeks with

blood glucose readings above 300 mg/dl. No significance by Log-rank test.

Figure S4 | Islet trafficking is not impaired in CXCR3−/− CXCR6−/− deficient T

cells. Infiltration of the islets was induced by transferring OT-I CD8T cells into

C65BL/6.RIP-mOVA mice. WT and CXCR3−/− CXCR6−/− T cells were activated

by αCD3 and αCD28, differentially fluorescent dye-labeled, and co-transferred 6

days after OT-I transfer. 24 h later islets were isolated, digested, and the

transferred cells were quantified by flow cytometry. (A) Schematic of experimental

setup. (B) Representative flow plots of CD45+ cells comparing trafficking of WT

and CXCR3−/− CXCR6−/− T cells to previously infiltrated islets. Red numbers

represent the number of cells in the adjacent gate. (C) Ratio of transferred

CXCR3−/− CXCR6−/− to WT T cells in each tissue analyzed. Statistics: One

sample T-test with hypothetical value = 1. (D,E) Number of WT and CXCR3−/−

CXCR6−/− T cells in (D) islets (E) ILN, normalized to the number of islets isolated.

Error bars = SEM. Statistics: Students T-test. (C–E) n = 6 mice from 3

experiments.

Video 1 | T cell extravasation into the islets is an extended process. Video of

Figure 1B. Extravasation of transferred BDC-2.5 T cells (green) from islet

vasculature (red). Two transferred T cells undergoing extravasation from islet

vasculature imaged intravitally by 2-photon microscopy. White track of motion

signifies movement of intravascular T cell and the track turns blue when the T cell

completes extravasation. Time stamp = min:sec; Scale bar = 10µm.

Video 2 | T cells arrest in close proximity to CD11c+ cells in the islet vasculature.

Video of Figure 2C. 3-Dimensional rendering of the fluorescence in the boxed

region in Figure 2A. Arrested T cell (blue) in contact with CD11c cell (green)

through islet vasculature (red). Time stamp=min:sec; Scale bar = 10µm.
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