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Transcriptome analysis is a powerful tool that enables a deep understanding of
complicated physiological pathways, including immune responses. RNA sequencing
(RNA-Seq)-based transcriptome analysis and various bioinformatics tools have also
been used to study non-model animals, including aquaculture species for which
reference genomes are not available. Rapid developments in these techniques have not
only accelerated investigations into the process of pathogenic infection and defense
strategies in fish, but also used to identify immunity-related genes in fish. These
findings will contribute to fish immunotherapy for the prevention and treatment of
bacterial infections through the design of more specific and effective immune stimulants,
adjuvants, and vaccines. Until now, there has been little information regarding the
universality and diversity of immune reactions against pathogenic infection in fish.
Therefore, one of the aims of this paper is to introduce the RNA-Seq technique for
examination of immune responses in pathogen-infected fish. This review also aims
to highlight comparative studies of immune responses against bacteria, based on
our previous findings in largemouth bass (Micropterus salmoides) against Nocardia
seriolae, gray mullet (Mugil cephalus) against Lactococcus garvieae, orange-spotted
grouper (Epinephelus coioides) against Vibrio harveyi, and koi carp (Cyprinus carpio)
against Aeromonas sobria, using RNA-seq techniques. We demonstrated that only 39
differentially expressed genes (DEGs) were present in all species. However, the number
of specific DEGs in each species was relatively higher than that of common DEGs; 493
DEGs in largemouth bass against N. seriolae, 819 DEGs in mullets against L. garvieae,
909 in groupers against V. harveyi, and 1471 in carps against A. sobria. The DEGs in
different fish species were also representative of specific immune-related pathways. The
results of this study will enhance our understanding of the immune responses of fish, and
will aid in the development of effective vaccines, therapies, and disease-resistant strains.
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INTRODUCTION

Transcriptome analysis is used to study principal pathways
of development, cellular fate, physiology, activity, and disease
progression. RNA sequencing (RNA-Seq) is a modern technology
for transcriptome profiling that uses next-generation sequencing
(NGS). Advancements in bioinformatics has significantly
supported RNA-Seq technology to accelerate the knowledge on
transcriptomes (1).

In the aquaculture field, there is wide utility for RNA-Seq
in various applications, such as understanding the development
of embryo and larvae, toxicology, environmental stress, effect
of dietary conditions, and discovery of novel transcripts (2-4).
In addition, RNA-Seq has been used in many studies of fish
immunology (5, 6). Pathogenic infection is a major concern for
maintaining economic sustainability in natural and farmed fish;
it results in high mortality and economical loss in aquaculture.
An innate immunity is a front line of host defense, producing
effectors that directly to the pathogen and attack it. An
adaptive immune system is also present in teleost, including
humoral and cellular mechanisms. To reduce disease outbreaks,
it is essential to understand the immune mechanisms in fish
during pathogenic infections. This knowledge will support
the development of effective vaccines and adjuvants against
pathogens. However, it has not been reported that the universality
and diversity of immune reactions against pathogenic infection
in fish.

In this paper, we firstly introduce the RNA-Seq technique
and current knowledge for investigations of immune responses
in pathogen-infected fish. This review also aims to highlight
comparative studies of fish immune responses against bacteria
based on our previous studies that we demonstrated the
transcriptome of bacteria infected fish, largemouth bass
(Micropterus salmoides) against Nocardia seriolae, gray mullet
(Mugil cephalus) against Lactococcus garvieae, orange-spotted
grouper (Epinephelus coioides) against Vibrio harveyi, and koi
carp (Cyprinus carpio) against Aeromonas sobria.

ADVANTAGE OF RNA-seq ANALYSIS IN
FISH AQUACULTURE

Since the 2000s, hybridization-based microarray has been used to
examine fish immunology in aquacultures; some early examples
included Japanese flounder (Paralichthys olivaceus) (7), rainbow
trout (Oncorhynchus mykiss) (8), and Atlantic salmon (Salmo
salar) (9). Although species-specific probes should be designed,
microarray technology could provide us with high throughput
gene expression data. For transcriptome analysis, series analysis
of gene expression (SAGE) and cap analysis gene expression
(CAGE) have also been utilized. SAGE and CAGE, which are
tag-based technology, are more precise; however, the number of
genes that can be analyzed at one time is lower as compared
with that of microarrays. Recently, the number of reports that
uses RNA-Seq in aquaculture studies has rapidly increased. For
the complete detail of RNA-Seq methodology, please refer the
nicely reviews focused on aquaculture field (3, 6). The advantage

of RNA-Seq is that it could determine expression levels of low-
level transcripts as well as each splice variant isoforms. Current
focus in aquaculture fish research is to examine organisms that
do not process reference gene sequences; unigenes are obtained
via de novo assembly using Trinity or similar programs without
requiring reference gene sequences (10). RNA-Seq could provide
novel transcript sequences, thereby expanding our current list of
known transcripts in fish.

ANNOTATION, ENRICHMENT ANALYSIS,
AND PATHWAY ANALYSIS USING DE
NOVO ASSEMBLY DATA

Although RNA-Seq technology could be applied to non-model
animals, there are problems associated with the functional
annotation and enrichment analysis of transcripts data.
Transcripts sequences following assembly are usually searched
via several databases, such as NCBI nucleotide sequences (NT),
NCBI non-redundant protein (NR), Clusters of Orthologous
Groups (COGs) (11), Kyoto Encyclopedia of Genes and
Genomes (KEGG) (12, 13), gene ontology (GO) (14), and
InterPro annotation (15). In our previous study on orange-
spotted grouper (Epinephelus coioides), a total of 79,128 unigenes
were identified and aligned with each database; 58,926 (74.47%)
in NT, 43,576 (55.07%) in NR, 14,750 (18.64%) in COG, 34711
(43.87%) in KEGG, and 4232 (5.35%) in GO (16). The number of
genes aligned with existing genes in the database was the highest
in NT, while gene alignment was the lowest in GO. Differences in
the number of aligned genes between the databases were similar
to those found in other aquaculture studies (17-19). Although
the GO database could provide enrichment analysis and pathway
analysis, due to low gene alignment, results may be limited to
generalized conclusions. There are programs that can convert
gene IDs from one database to those of another database. For
example, DAVID and ID Converter Systems are able to change
gene IDs from NT to that of GO. However, these systems are
not very useful in genes of aquaculture species. Currently, the
KEGG database shows a relatively high number of aligned genes,
which allows for enrichment analysis of aquaculture species.
To obtain generalized conclusions using transcriptome data, it
is essential that systems are developed to describe non-model
organisms. There are databases now under construction that
contain transcriptome information of aquaculture species. In the
European common carp (Cyprinus carpio), a wide range of data
on tissue-specific gene expression and translation (20) has been
presented. These datasets will allow us to investigate immune
responses in aquaculture species via transcriptome analysis.

IMMUNE RESPONSES AGAINST
PATHOGENS IN TELEOST USING RNA-seq

Although fish are constantly exposed to risk of microorganism
pathogens, fish could keep in shape to act immune mechanisms
against pathogens. In a first line of immune response, fish
are protected by non-specific humoral factors including growth
inhibiting substances (transferrin and antiproteases), lysins
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(lysozyme, C-reactive protein, and bactericidal peptides), and
making a link with non-specific phagocyte responses. Second,
fish produce antibody constitutes for a specific humoral defense
inhibiting bacterial adherence and invasion of non-phagocytic
host cells and counteracting toxins from bacterial (21). After
developing the technology of molecular biology, the immune-
related gene functions and responses against pathogens have been
one of the major topic in fish immunology field. To investigate
the expression pattern of immune-associated genes, real-time
PCR is usually performed. However, this method is expensive and
not recommended for a genome-wide survey of gene expression.
As RNA-Seq could provide us with quantitative data on transcript
expression levels, this technique has been commonly used to
identify genes that respond to pathogenic conditions during
exogenous challenge. Table 1 lists transcriptome analysis studies
that examined immune regulations in teleost. In this review, we
will also focus on studies that investigated immune responses to
pathogen or their mimic molecules, using RNA-Seq analysis.

Aeromonus hydrophila is a Gram-negative bacterium, and
causes a wide spectrum of diseases in vertebrates (69, 70).
It is a major pathogen in aquaculture farms, and leads to
high mortalities and economic losses worldwide (71, 72). In
blunt snout bream (Megalobrama amblycephala), RNA-Seq
analysis was conducted with RNA from several tissues, and 238
differentially expressed unigenes were identified in infected fish
(22). In grass carp (Ctenopharygodon idella), 2121 DEGs were
identified in spleens of A. hydrophila (6 hpi)-infected fish, some
of which were involved in phagocytosis, the complement system,
and cytokine production (25). Using transcriptome analysis,
another study showed that A. hydrophila infected grass carp
exhibited 2992 DEGs in the spleen, which were associated
with the complement and coagulation cascades (26). In golden
mahseer (Tor putitora), DEGs in A. hydrophila-infected livers
were mainly associated with Th1/2 cell differentiation pathways,
as well as in pathogen recognition and complement system (24).

Flavobacterium columnare is a Gram-negative bacterium,
and causes columnaris in freshwater fish (73). This disease
induces pathological changes, and damages epidermal tissues,
gills, and the skin (74). In channel catfish (Ictalurus punctatus),
the transcript profile of F. columnare-infected gills was examined
using RNA-Seq to investigate differences in susceptibility to
F. columnare (34). In resistant fish, the expression level of
innate immune-associated genes (iNOS2b, lysozyme C, IL-8,
and TNFa) was found to be elevated. In susceptible fish,
the expression of secreted mucin forms, mucosal immune
factors (CD103 and IL-17a), and rhamnose-binding lectin (34)
was upregulated. The transcriptomic profiles of F. columnare-
infected and non-infected mandarin fish (Siniperca chuatsi) have
been reported using the head kidney F. columnare-infected and
non-infected group (35). The results indicated that 1019 genes
were differentially expressed between the two groups, of which 27
were immune-related (35). A similar study using the head kidney
F. columnare-infected topmouth culter (Culter alburnus) (36)
was also conducted. A total of 4037 DEGs (1217 upregulated and
2820 downregulated genes) were identified, and were found to
be involved in phagosome formation, carbohydrate metabolism,
amino acid metabolism, and lipid metabolism (36).

Streptococcus agalactiae, a Gram-positive round bacterium,
is a harmful aquaculture pathogen that leads to enormous
economic losses in various teleost (75-78). Transcriptome
analysis of hybrid tilapia (Oreochromis spp.) after S. agalactiae
infection was conducted, and results indicated that DEGs are
mainly involved in immune-related pathways, especially Toll-
like receptor signaling and leukocyte transendothelial migration
(49). Moreover, time-course expression profile of genes suggested
that induction of the NADPH oxidase complex and piscidin is
mediated by Toll-like receptor pathways (49). Another research
group conducted RNA-Seq analysis in tilapia (Oreochromis
niloticus) spleens following S. agalactiae infections (51). A total
of 2822 DEGs were detected, many of which were involved
in pathogen attachment and recognition, antioxidant/apoptosis,
cytoskeletal rearrangement, and immune activation (51). Wang
et al. (50) focused on the relation between temperature and
bacterial infection. They showed that temperature influences
mRNA profiles of the spleen in tilapia during S. agalactiae
infections. In addition, it was suggested that DEGs are involved
in immune responses and oxygen related metabolisms (50).

Vibrio alginolyticus is a halophilic Gram-negative bacterium
that causes septicemias, ulcers, exophthalmia, and corneal
opaqueness in marine fish worldwide (79, 80). Transcriptome
analysis in larvae of orange-spotted grouper (Epinephelus
coioides) revealed that the expression of genes involved
in the complement pathway and antimicrobial peptides is
enhanced upon V. alginolyticus infection (39). In addition,
transcriptome profiles of giant grouper (Epinephelus lanceolatus)
larvae infected with Vibrio alginolyticus suggested that TLR5
signaling induces secretion of several cytokines (IL-1f and
IL-8) (40).

DIVERSITY OF IMMUNE RESPONSES
AMONG SPECIES AND PATHOGENS

In the previous section, we introduced various RNA-seq
analyses conducted in fish with bacterial infections. We have
also previously published four research papers that conducted
transcriptome analysis on infected fish, namely largemouth
bass (Micropterus salmoides) against Nocardia seriolae (17),
gray mullet (Mugil cephalus) against Lactococcus garvieae (18),
orange-spotted grouper (Epinephelus coioides) against Vibrio
harveyi (16), and koi carp (Cyprinus carpio) against Aeromonas
sobria (19). Based on the transcriptome data from these
reports, we gained a deeper understanding of immune responses
to bacterial infections. However, there is little information
regarding the universality and diversity of immune reactions of
fish against pathogenic infections. Here, we investigated specific
genes and pathways that are involved in each bacterial infection
in various fish species. In this study, we used DEGs (transcripts
from spleen at 1 dpi with log2 > 1 or < —1 between infected
and control group) with KEGG-annotations. We first identified
overlapping and specific genes that were up- or down- regulated
in each species. Venn diagrams (Figure 1) showed that only 39
DEGs (25 up-regulated and 14 down regulated) were involved
in all species. The number of specific DEGs in each species was
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relatively higher than that of common DEGs; 493 DEGs (167 up-
regulated and 326 down regulated) were found in largemouth
bass against N. seriolae, 819 DEGs (291 up-regulated and 528
down regulated) were found in mullets against L. garvieae, 909
DEGs (601 up-regulated and 308 down regulated) were found
in groupers (Epinephelus coioides) against V. harveyi, and 1471
DEGs (1,001 up-regulated and 470 down regulated) were found
in carps against A. sobria (Figure 1).

Of the common DEGs, we found several immune-related
genes that were upregulated, including C4 (complement
component 4), CCL19 (C-C motif chemokine 19), and SOCS1
(suppressor of cytokine signaling 1) (Table S1). The complement
system is an important innate immune system that functions
to detect pathogenic infections in both vertebrates and
invertebrates. C4 is an important part of the classical and lectin
pathways, which form enzymes C3 and C5 convertases (81,
82). CCL19, a CC chemokine that is expressed in lymphoid
organs, manages the migration of antigen presenting cells and
lymphocytes (83). In teleost, there are also various reports that
investigated potential chemokine genes and their chemotactic
activity (84-86). SOCS1 is a regulator of JAK/STAT signaling, and
is induced by type I interferon (IFN) and IFN-y via binding and
blocking of JAK2 activation (87). It has been reported that SOCS1
acts as an inhibitor of IFN-mediated signaling in Atlantic salmon
(Salmo salar) (88). From other reports of the transcriptome
analysis (Table 1), complement system, JAK/STAT signaling and
chemokine systems are also commonly appeared in responding
pathways to bacterial infections. Therefore, it is suggested that
these genes contribute to early immune responses following
bacterial infections (within 24 h).

Nocardia seriolae is a filamentous Gram-positive bacterium
that causes nocardiosis with high mortality in many fish species
in Japan, Taiwan and Japan. The infected fish showed a lethal
granulomatous disease of the skin, muscle, spleen, kidney,
and liver tissues (89). Unlike other bacterial species from
our previous studies, N. seriolae is an intercellular bacteria.
To determine specific DEGs elicited by N. seriolae infections,
we performed functional enrichment of the KEGG pathway
for specific up-regulated genes in largemouth bass. As shown
in Table S2, specific upregulated genes were assigned to 11
KEGG pathways; based on the enrichment analysis. From the
enrichment analysis, Notch signaling pathway was focused and
illustrated using expression levels of RNA-seq data from all
four fish species (Figure 2A). Results indicated that Notchl
and HES1 (hairy and enhancer of split 1) were specifically
upregulated in largemouth bass against N. seriolae. The Notch
and HESI axis present in hematopoietic cells and stroma of
the thymus plays an important role in T cell development (90,
91). Additionally, in the “cytokine-cytokine receptor interaction”
pathway, IL12RBI1 (interleukin 12 receptor B-1) and IL12RB2
(interleukin 12 receptor f2) in largemouth bass against N. seriolae
were upregulated. IL12B is a ligand of IL12RBs, and is highly, but
not specifically expressed, in largemouth bass (Figure 2B). IL-12,
a heterodimetric cytokine consisting of p35 and p40 subunits,
is a key regulator of T helper 1 development (Thl), which
promotes cellular immunity against intracellular pathogens. In
Amberjack (Seriola dumerili), administrated recombinant IL-12

and formalin-killed N. seriolae showed the higher survival rates
after challenged with N. seriolae, compared to vehicle and FKC
only groups (92). These pathways promote immune reactions
against N. seriolae during early stages of the infection, and are
candidates for infection prevention and adjuvants in fish.

Aeromonas sobria is a Gram-negative, motile, rod-shaped
bacterium that has been isolated from many diseased fish (93-
95). In the spleen and head kidney of disease fish, necrotized
spleen cells and hemorrhagic pulps were observed (93). From
the extracted data of specific up-regulated genes (1001 genes) in
koi carp against A sobria (Figure 1), we performed functional
enrichment of the KEGG pathway for specific up-regulated
genes. As shown in Table S3, specific upregulated genes of koi
carp against A. sobria are associated with 45 KEGG pathways.
As shown in Figure S1, regulation of the actin cytoskeleton was
activated during A. sobria infection. In addition, CXCL12 (C-X-
C motif chemokine 12) and CXCR4 (C-X-C motif chemokine
receptor 4) in were also up-regulated in koi carps during
A sobria infections (FigureS1). The CXCL12-CXCR4 axis
modulates various immune functions, such as induction of
hematopoiesis and accumulation of immune cells in inflamed
tissues (96). Therefore, the CXCL12-CXCR4 axis may function
in reorganization of hematopoiesis in injured tissues during A.
sobria infections.

Vibrio harveyi is one of the major photogenes of a luminescent
Gram-negative bacterium, which impacts to wide range of
aquaculture species (97-99). The 601 specific upregulated genes
in orange-spotted grouper against Vibrio harveyi (Figure 1)
were assigned to 8 KEGG pathways (Table S4). We focused
on the ErbB signaling pathway, and found that expression
of TGFa (transforming growth factor o) and its receptor,
ERBB1 (epidermal growth factor receptor), were upregulated
(Figure S2). Previous studies have shown that TGFa promotes
the expression and activity of TLR5 and TLR9 in skin
keratinocytes (100). In our previous study, expressions of TRL5
and its downstream genes in the spleen were found to be
enhanced 2 days following V. harveyi infections (16). While the
immunological function of TGFa in the spleen of fish is unclear,
we hypothesize that TGFa is a key regulator for prevention of V.
harveyi infection in fish.

Lactococcus garvieae is a Gram-positive, facultative anaerobic,
non-motile bacterium, and affects freshwater and marine
cultured fish species worldwide (101, 102). Functional
enrichment analysis of the KEGG pathway was performed
to determine specific upregulated genes (291 genes) in gray
mullets against L. garvieae (Figure 1). Specific upregulated genes
were mapped to 10 KEGG pathways during L. garvieae infection
in gray mullets (Table S5). Results indicated that the IL-17
signaling pathway is clearly enhanced during the infection, as
illustrated by Figure S3. IL-17 is composed of six ligands (IL-17A
to F), and plays critical roles in inflammatory responses and host
defenses during invasion by extracellular pathogens. Binding
of IL-17s to its five perspective receptors (IL-17Rs; IL-17RA
to E), induces inflammatory and immune responses (103).
In vitro study, exogenous IL-17A induced bacterial clearance
in F. tularensis LVS- live vaccine strain infected cells (104).
Additionally, in mice model, it has been reported that in vivo
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FIGURE 1 | Venn diagrams showing overlaps of up and down regulated genes among each fish with bacterial challenge. The numbers indicate up (red arrow) and
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FIGURE 2 | Pathway map of Notch signaling (A) and Th1 differentiation (B) in KEGG. In each gene boxes, the gene expression levels are shown in 4 fish (C, Carp; G,
Grouper; L, Largemouth bass; M, Mullet) spleen 1 day after infection with A. sobria, V. harveyi, N. seriolae, and L. garvieae, respectively, when compared to the control
group. The lower expression levels of genes are shown in green, and the higher expression levels of genes are shown in red. Undetected genes are shown by white

coloring (see color legend in figure).

administration of IL-17A moderately delays time of death from
lethal infection of Francisella tularensis live vaccine strain (105).
While we did not detect expression of IL-17 ligands in this study,
we found that expressions of IL-17RB, IL17RC, and IL-17RE
were up-regulated in gray mullets infected with L. garvieae. There
are studies that aimed to identify and characterize IL-17 and
IL17Rs in fish (106, 107). However, functional differentiations of
teleost IL-17s and these receptors remain elusive. Our findings

on the expression pattern of IL17Rs will provide useful models
that can be used to investigate immune functions of IL17s in
teleost.

A. sobria and V. harveyi are classified to Gram-negative
bacteria. Therefore, we approached to find the immune-related
genes and pathways using commonly DEG (379 upregulated
genes and 91 downregulated genes) of koi carp against A.
sobria and orange-spotted grouper against V. harveyi (Figure 1).

Frontiers in Immunology | www.frontiersin.org

February 2019 | Volume 10 | Article 153


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Maekawa et al.

Transcriptome Profiling of Bacterial Infected Fish

However, any immune-related pathways were not assigned by
KEGG enrichments analysis. TLR4, which is the pathogen
recognized receptor for the Gram-negative bacteria specific
lipopolysaccharide, is not highly expression in the spleen of koi
carp against A. sobria and orange-spotted grouper against V.
harveyi. While, we could find the up-regulated immune-related
gene of these two species, such as pattern recognition receptors
(TLR6 and TLR5), cytokines and chemokines (CSF3 and CCL21),
lysosome related genes (LYPLA3 and SLC11A1l) and caspase
recruitment domain-containing protein (Card) 9 (Table S6). N.
seriolae and L. garvieae are classified to Gram-positive bacteria.
Therefore, we investigated to commonly immune-related genes
and pathways in Gram-positive bacteria using commonly
DEGs (32 upregulated genes and 63 downregulated genes) of
largemouth bass against N. seriolae and gray mullet against
L. garvieae (Figure1). Up-regulated immune-related genes of
these two species were identified, such as IL-6, TNF Receptor
Superfamily Member 11b (TNFRSF11B), interferon regulatory
factors (IRF4 and IRF8) and CD83 (Table S7). Although it is
unclear the pathways to induce these up-regulated genes, these
immune related genes may become the marker and immune
factors in Gram-negative or positive bacterial infection.

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we first introduced applications of the RNA-Seq
technology in aquaculture studies. The RNA-Seq technology has
allowed us to identify many novel genes, and to investigate the
expression patterns at various conditions in non-model teleost.
Therefore, findings based on this technology have accelerated
research in the aquaculture field. Additionally, high throughput
quantification by RNA-seq could be used to identify pathogen,
and to evaluate the efficacy of vaccines and adjuvants against
pathogen in vivo. We also summarized current knowledge on
immune responses to pathogenic challenges via RNA-Seq in
teleost. In this study, we could identify the specific pathway
in each fish against bacteria species, Nothl signaling and IL-
12 signaling pathway in largemouth bass against N. seriolae,
CXCL12 and CXCR4 signaling pathway in koi carp against
A. sobria, TGFa signaling pathway in orange-spotted grouper
against V. harveyi, and IL-17 signaling pathway in gray mullet
against L. garvieae. These types of studies are increasing, and have
enormously aided in our understanding of pathogenic strategies
and immune defense systems in aquaculture fish. However, there
remains certain limitations of RNA-Seq analysis in aquaculture
species. Additionally, the RNA-seq technology could be used
to expand existing datasets on splicing variants in mRNA and
SNP. Currently, differences in immune response against different
pathogens are not well-described. In this study, we attempted to
investigate both species-specific and common immune related
genes that are up-regulated during bacterial infections based
on our previous RNA-seq data. Secondary use of RNA-seq
datasets may be essential for preparation of future RNA-seq
studies in aquaculture species, which can further deepen our
understanding of specific immune functions against pathogens.

In aquaculture field, these deep and particular understanding of
immune response against each pathogens will provide us to more
accurate diagnosis of disease and develop a more effective vaccine
and adjuvant of each pathogens.
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Figure S1 | Pathway map of Regulation of actin cytoskeleton in KEGG. In each
gene boxes, the gene expression levels are shown in 4 fish (C, Carp; G, Grouper;
L, Largemouth bass; M, Mullet) spleen 1 day after infection with A. sobria, V.
harveyi, N. seriolae, and L. garvieae, respectively, when compared to the control
group. The lower expression levels of genes are shown in green, and the higher
expression levels of genes are shown in red. Undetected genes are shown by
white coloring (see color legend in figure).

Figure S2 | Pathway map of ErbB signaling pathway in KEGG. In each gene
boxes, the gene expression levels are shown in 4 fish (C, Carp; G, Grouper; L,
Largemouth bass; M, Mullet) spleen 1 day after infection with A. sobria, V. harveyi,
N. seriolae, and L. garvieae, respectively, when compared to the control group.
The lower expression levels of genes are shown in green, and the higher
expression levels of genes are shown in red. Undetected genes are shown by
white coloring (see color legend in figure).

Figure S3 | Pathway map of IIl-17 signaling pathway in KEGG. In each gene
boxes, the gene expression levels are shown in 4 fish (C, Carp; G, Grouper; L,
Largemouth bass; M, Mullet) spleen 1 day after infection with A. sobria, V. harveyi,
N. seriolae, and L. garvieae, respectively, when compared to the control group.
The lower expression levels of genes are shown in green, and the higher
expression levels of genes are shown in red. Undetected genes are shown by
white coloring (see color legend in figure).

Table S1 | Expression levels of commonly up or down regulated genes among 4
fish infected with bacteria. Each expression data indicated fold-change (log2) of
bacterial infection/control groups.

Table S2 | Functional enrichment KEGG pathway for specific up-regulated genes
of largemouth bass against N. seriolae.

Table S3 | Functional enrichment KEGG pathway for specific up-regulated genes
of koi carp against A. sobria.

Table S4 | Functional enrichment KEGG pathway for specific up-regulated genes
of orange-spotted grouper against V. harveyi.

Table S5 | Functional enrichment KEGG pathway for specific up-regulated genes
of gray mullet against Lactococcus garvieae.
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Table S6 | Expression levels of commonly up regulated immune-related genes
among koi carp against A. sobria and orange-spotted grouper against V. harveyi.
Each expression data indicated fold-change (log2) of bacterial infection/control
groups.
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