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An imbalance in GSH/GSSG ratio represents a triggering event in pro-inflammatory

cytokine production and inflammatory response. However, the molecular mechanism(s)

through which GSH regulates macrophage and cell autonomous inflammation remains

not deeply understood. Here, we investigated the effects of a derivative of GSH, the

N-butanoyl glutathione (GSH-C4), a cell permeable compound, on lipopolisaccharide

(LPS)-stimulated murine RAW 264.7 macrophages, and human macrophages. LPS

alone induces a significant production of pro-inflammatory cytokines, such as IL-1β,

IL-6, and TNF-α and a significant decrement of GSH content. Such events were

significantly abrogated by treatment with GSH-C4. Moreover, GSH-C4 was highly

efficient in buffering cell autonomous inflammatory status of aged C2C12 myotubes and

3T3-L1 adipocytes by suppressing the production of pro-inflammatory cytokines. We

found that inflammation was paralleled by a strong induction of the phosphorylated form

of NFκB, which translocates into the nucleus; a process that was also efficiently inhibited

by the treatment with GSH-C4. Overall, the evidence suggests that GSH decrement

is required for efficient activation of an inflammatory condition and, at the same time,

GSH-C4 can be envisaged as a good candidate to abrogate such process, expanding

the anti-inflammatory role of this molecule in chronic inflammatory states.
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INTRODUCTION

The tripeptide glutathione (GSH) is the most abundant low molecular weight antioxidant in
mammalian cells, with a peculiar bond linking the γ - carbon of glutamate to the cysteine residue,
the thiol group of which is responsible for its function (1). Indeed, intracellularly it is mainly present
as a reduced form and two convertible oxidized species: the disulfide form (GSSG) and the mixed
disulfide with protein thiols (GSSR). GSH protects cells against exogenous and endogenous harmful
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molecules including reactive oxygen and nitrogen
species (ROS/RNS), limiting the damaging effects of
oxidative/nitrosative stress (2, 3). Beside its function as
intracellular redox buffer, GSH exerts a key role in the
immune system, in antiviral and inflammatory response (4–7).
Concerning the inflammatory response, it has been demonstrated
that, intracellular GSH depletion represents the first event of the
signaling process (8–10). This alteration is accompanied by an
increased production of cytokine such as tumor necrosis factor
(TNF-α), IL-1β, IL-6, and IL-8 (11, 12). Changes in intracellular
GSH levels also characterize the polarization of M1 and M2
macrophages (13). Classical M1 and alternative M2 activation
of macrophages, as well as the mirroring Th1-Th2 polarization
process of T cells, represents the two extremities of a dynamic
changing state characterizing macrophage activation (14).

Cytokines released by M1 macrophages inhibit the
proliferation of neighboring cells and promote tissue damage,
unlike those derived from M2 macrophages that instead
support epithelial cell proliferation and tissue repair. Moreover,
microbicidal and tumoricidal activities are intrinsic functions of
the M1 macrophages, whereas M2 macrophages are involved in
immune tolerance, tissue remodeling, and tumor progression.
An imbalance of macrophage M1-M2 polarization is often
associated with diseases or inflammatory conditions. Indeed, the
M1-M2 switch characterizes the infection by several pathogens,
such as bacteria, parasites, and viruses (15). Moreover, several
intra-macrophage pathogens switch these cells in M2-type
macrophages through the modulation of the intracellular
GSH/GSSG ratio. This polarization may provide protection
against inflammation and tissue damage; on the other hand,
it may skew the immune environment to the advantage
of pathogens by supporting their survival. In fact, it was
demonstrated that low GSH/GSSG ratio determines altered
processing of the antigen, a decrease in IL-12 production and
finally a switch from Th1 to Th2 response (16). Contrarily, high
GSH/GSSG ratio induced by synthetic molecules in macrophages
restores antigen processing and high IL-12 production favoring
Th1 response patterns (17). In this context, we recently
demonstrated that a GSH derivate (N-butanoyl glutathione
(GSH) derivative, GSH-C4) was efficient in enhancing the Th1
response toward an antigen, restoring the Th1/Th2 ratio often
altered in inflammatory-related processes (18).

These events are mediated by the nuclear factor kappa
β transcription factor (NFκB) activation, which regulates the
transcription of several pro-inflammatory genes (19). The
transcriptional activity of NFκB is finely dependent on GSH
levels. Indeed, GSH precursors (e.g., N-acetyl-cysteine, NAC)
increased the content of the two NFκB forms (20, 21).
Contrarily, other studies show that GSH depletion down-
regulates NFκB trans-activation via IKK-independent and
dependent mechanisms (22).

Abbreviations: GSH, Glutathione; LPS, lipopolisaccharide; NAC, N-acetyl-

L-cysteine; GSH-C4, N-butanoyl glutathione; NFκB, nuclear factor kappa β

transcription factor; ROS/RNS, reactive oxygen and nitrogen species; TNF-α,

tumor necrosis factor; vAT, visceral adipose tissue; γ-GCS, γ-glutamyl-l-cysteinyl-

ethyl ester.

GSH depletion also represents a key factor in the activation
of cell autonomous inflammation, such as in aged-adipose
and -skeletal muscle tissues. During aging, visceral adipose
tissue (vAT) becomes hypovascularized and resident adipocytes
release cytokines and other pro-inflammatory signals, in
conjunction with GSH depletion (23–25). Subsequently, secreted
chemokines locally attract pro-inflammatory macrophages into
the adipose tissue where they form crown-like structures around
large dying or dead adipocytes. These tissue macrophages
in turn produce cytokines that exacerbate inflammation and
degeneration of aged-adipose tissue (26, 27). Similarly, we have
recently demonstrated that myoblasts of old mice or cultured
differentiated C2C12 myoblasts displayed a decrease of GSH
levels accompanied by an increase of pro-inflammatory cytokines
such as TNF-α and a decrement of IL-6 (28), which not only
regulates myoblast proliferation, but also promotes myoblast
differentiation through the p38 MAPK pathway (29). GSH
decline could thus impact muscle regeneration efficacy during
aging. Thus, GSH/GSSG ratio alteration seems to be a common
factor in regulating both macrophages and cell autonomous
inflammation.

In the present study, we tested whether by buffering GSH
depletion it is possible to counteract the pro-inflammatory
response in different cellular models of inflammation. First, we
analyzed the effects of GSH-C4 on the inflammatory response
induced in LPS-stimulated murine RAW 264.7 macrophages
and human primary macrophages. We demonstrated that, GSH-
C4 by impeding GSH decrement reduced the expression of
pro-inflammatory cytokines via NFκB modulation. Subsequent,
we analyzed the anti-inflammatory capacity of GSH-C4 in cell
autonomous models of inflammation such as aged murine
C2C12 myotubes and 3T3-L1 adipocytes, also characterized by
a GSH decrement. The results obtained clearly demonstrated
an inhibition of NFκB nuclear translocation and cytokine
production through inhibition of GSH decrement, suggesting a
hypothetical use of GSH-C4 as a drug to attenuate inflammatory
responses exerted by cells under different stimuli.

MATERIALS AND METHODS

Cell Culture and Treatments
Murine RAW 264.7 macrophages were acquired from the
European Collection of Cell Cultures (Salisbury, UK) and grown
in RPMI1640 medium with 10% FBS (Lonza, Basel, CH), 2mM
glutamine, 100 U/ml penicillin/streptomycin and maintained at
37◦C in a 5% CO2 atmosphere. Cells were plated in 6-well
culture plates (1 × 106 cells/well in 3mL of RPMI with 10%
FBS) and incubated at 37◦C for 24 hrs. Subsequently, RAW 264.7
macrophages were washed twice with Phosphate Buffered Saline
(PBS) (Lonza Sales, Basel, Switzerland) and were treated either
with 10mM GSH-C4 (a kind gift of Redox-Co, Rome, Italy)
or 10mM NAC (Sigma-Aldrich) for 2 hrs. This pre-incubation
is used in order to equilibrate the cells with the compound
before the challenge with LPS (18). Subsequently, GSH-C4 was
removed from culture medium by washing with PBS and the
cells were stimulated with 100 ng/ml LPS from E. coli (Sigma
Aldrich). After LPS stimulation (1, 3, 6, or 24 hrs) the medium
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was removed and replaced with fresh medium for further 24 hrs
with or without 10mM GSH-C4 or 10mM NAC.

Murine 3T3-L1 pre-adipocytes and C2C12 myoblasts were
acquired from American Type Cell Culture (ATCC) and grown
in DMEM supplemented with 10% newborn serum or FBS,
100 U/ml penicillin/streptomycin, 2mM glutamine (Lonza Sales,
Basel, Switzerland) and maintained at 37◦C in a 5% CO2

atmosphere. 3T3-L1 andC2C12 cells were plated at density of 2×
105 cells per well in 6-well plates and differentiated in adipocytes
and myotubes, respectively, as previously reported (28, 30).

Isolation of Nuclei
Cell pellets were lysed in nucleus lysis buffer (NLB) containing
50mM Tris-HCl pH 8.1, 10mM EDTA, 1% SDS, 10mM sodium
butyrate, protease inhibitors, and incubated 1 hrs at 4◦C. After
centrifugation at 600 x g for 5min at 4◦C the nuclear pellets were
resuspended in 1ml of NLB. Subsequently, nuclei were purified
on NLB containing 30% sucrose (w/v) and centrifuged at 700 x g
for 10min (31, 32). The purified nuclei were resuspended in NLB
to eliminate nuclear debris and finally used for Western blot or
ChIP assays.

Western Blot Analysis
Cell pellets were lysed in RIPA buffer (50mM Tris-HCl, pH
8.0, 150mM NaCl, 12mM deoxycholic acid, 0.5% Nonidet P-40,
and protease inhibitors). Protein samples were used for SDS-
PAGE followed by Western blotting as previously described (28).
Nitrocellulose membranes were stained with primary antibodies
against Tubulin (1:1,000), p-NFκB (p65) (Ser536) (1:1,000),
NFκB (p65) (1:1,000), NFκB (p50) (1:1,000); IKB-α (1:500), IKK-
α/β (1:500), p-IKB-α (1:500), p-IKK-α/β (1:500) LDH (1:1,000),
Sp1 (1:500), TNF-α (1:500), p-p38 (1:1,000), p-ERK1/2 (1:1,000)
(Santa Cruz Biotechnology). The nitrocellulose membranes
were incubated with the appropriate horseradish peroxidase
conjugated secondary antibody (Bio-Rad), and immunoreactive
bands were detected by a Fluorchem Imaging System upon
staining with ECL Select Western Blotting Detection Reagent
(GE Healthcare, Pittsburgh, PA, USA; RPN2235). The Western
blots reported are from one experiment out of three separated
experiments that gave similar results.

Proteins were assayed by the method described by Lowry
et al. (33).

RT-qPCR Analysis
TRI Reagent (Sigma-Aldrich) was used to extract total RNA,
which was used for retro-transcription. qPCR was performed in
triplicate by using validated qPCR primers (BLAST), Ex TAq
qPCR Premix (Lonza Sales) and the Roche Real Time PCR
LightCycler II (Roche Applied Science, Monza, Italy). mRNA
levels were normalized to ribosomal protein large subunit (RPL)
and the relative mRNA levels were determined by using the
2−11Ct method (34). The primer sequences are listed in Table 1.

Chromatin Immunoprecipitation Assay
ChIP was carried out according to the protocol of Im et al.
(35) with some modifications. After crosslinking, the nuclei
extracted from RAW 264.7 macrophages were fragmented by

TABLE 1 | List of primers used for RT-qPCR and ChIP analysis.

Genes Sequences

IL-1β FW 5′-GCTGAAAGCTCTCCACCTCA−3′

IL-1β RV 5′- GCTTGGGATCCACACTCTCC-3′

IL-6 FW 5′-CTCTGCAAGAGACTTCCATCCA−3′

IL-6 RV 5′-GACAGGTCTGTTGGGAGTGG−3′

TNF-α FW 5′-GCCTCTTCTCATTCCTGCTTG−3′

TNF-α RV 5′- CTGATGAGGGAGGCCATT-3′

NFκB FW 5′- GAAATTCCCTGATCCAGACAAAAAC-3′

NFκB RV 5′-ATCACTTCAATGGCCTCTGTGTAG−3′

IL-10 FW 5′-ATAAACTGCACCCCACTTCCCA-3′

IL-10 RV 5′-TGGACCATCTTCACTACGGG-3′

MCP-1 FW 5′-GCTCAGCCAGATGCAGTTAA-3′

MCP-1 RV 5′-TCAAAACAGTGGTTCGAGTTCT-3′

β-Actin FW 5′-CACACCCGCCACCAGTTCGC-3′

β-Actin RV 5′-TTGCACATGCCGGAGCCGTT−3′

NFκB FW (ChIP) FW 5′-GTCGAGTATGGGGACCC-3′

NFκB RV (ChIP) RV 5′-GGAATGGGTTACAGG-3′

ultrasonication using 4 × 15 pulse (output 10%, duty 30%).
Samples were precleared with pre-adsorbed salmon sperm
Protein G agarose beads (1 hrs, 4◦C). Subsequently, the samples
were subjected to overnight immunoprecipitation using anti-
NFκB antibody. After de-cross-linking (1% SDS at 65◦C for
3 hrs), qPCR was used to quantify the promoter binding with
30 cycles total (95◦C, 1 s; 60◦C, 30 s; 72◦C, 60 s). Results are
expressed as percentage of Input values (1%). The primers used
are reported in Table 1.

Measurement of Cytokine Production
The supernatants were removed at the allotted times and the
level of IL-1β, IL-6, and TNF-α production was quantified using
Luminex Assay (Bio-Rad) and Elisa Kit (ENZO LifeScience)
according to the manufacturer’s instructions (36, 37).

Determination of GSH and GSH-C4
Intracellular GSH was assayed upon formation of S-
carboxymethyl derivatives of the free thiol with iodoacetic
acid, followed by the conversion of free amino groups to
2,4-dinitrophenyl derivatives by the reaction with 1-fluoro-2,4-
dinitrobenzene and quantified through high performance liquid
chromatography (HPLC) as previously described (28). RAW
264.7 macrophages were treated with 100 ng/ml LPS for the
indicated time and immediately used for GSH determination.
Intracellular GSH-C4 was determined as previously described
(18). Data are expressed as nmol of GSH/mg protein.

Analysis of Cell Viability and Proliferation
Adherent cells were detached with trypsin, washed with PBS and
directly counted by optical microscope on hemocytometer, after
Trypan Blue staining.
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Human Macrophages Culture and
Differentiation
The peripheral blood mononuclear cells (PBMCs) from healthy
controls were separated by density gradient according to
Lympholyte R© Cell Separation Media (Cedarlane) technique.
PBMCs were immediately re-suspended in RPMI 1640 medium
supplemented with 10% FBS (Lonza, Basel, CH), 2mM
glutamine, 100 U/ml penicillin/streptomycin in the presence of
50 ng/ml human recombinant granulocyte macrophage colony-
stimulating factor (38), seeded in 24-well plates (4 × 106

cells/well; 1ml), andmaintained at 37◦C in a 5%CO2 atmosphere
for up to 2 weeks. Cell culture media was replenished every 3 days

and cells monitored morphologically for differentiation. Geimsa
staining ofmacrophages was accomplished to visualize the typical
morphology under light microscopy.

Fluorescence Microscopy
RAW 264.7 macrophages grown on glass coverslips were fixed
with 4% paraformaldehyde and permeabilized with 0.4% Triton
X-100. Cells were incubated with a monoclonal anti-p-NFκB
(p65) (1:50) diluted in PBS containing 10% FCS and then
probed with the appropriate Alexa Fluor R©-conjugated secondary
antibody. Nuclei were stained with the vital dye Hoechst 33342.
Images of cells were digitized with a Cool Snap video camera

FIGURE 1 | LPS induces an increase of pro-inflammatory cytokines and a concomitant decrease of GSH level. (A) RAW 264.7 macrophages were treated with

100 ng/ml LPS for 1 and 3 hrs. After 1 and 3 hrs the medium with LPS was replaced with fresh medium for 24 hrs. IL-1β, IL-6, and TNF-α production in culture

supernatants were detected using Luminex Assay (Bio-Rad). Data are expressed as means ± S.D. (n = 4; *p < 0.01). (B) RAW 264.7 macrophages were treated with

100 ng/ml LPS for 1 and 3 hrs. Immediately, after 1 and 3 hrs of LPS treatment, GSH content was assayed by HPLC. Data are expressed as means ± S.D. (n = 3; **p

< 0.001). (C) RAW 264.7 macrophages were treated with 100 ng/ml LPS for 1 and 3 hrs. Immediately, after 1 and 3 hrs of LPS treatment GSSG content was assayed

by HPLC. Data are expressed as means ± S.D. (n = 3). nd, not determined. All the images reported in the figures are representative of at least three experiments that

gave similar results.
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connected to Nikon Eclipse TE200 epifluorescence microscopy
(Nikon, Firenze, Italy). All of images were captured under
constant exposure time, gain and offset.

Statistical Analyses
The results are presented as means ± S.D. Statistical evaluation
was conducted by ANOVA, followed by the post-Student-
Newman-Keuls. Differences were considered to be significant at
p ≤ 0.05. N = 3 or other numbers is referred to the number of
independent experiment performed. Each experiments referring
to cytokines determination or other mRNA levels detection was
done in triplicate.

RESULTS

Effects of LPS on Cytokine Production and
GSH Level in RAW 264.7 Macrophages
It is well-known that the GSH-redox equilibrium is fundamental
for mounting efficient innate immune response in macrophages
and that LPS is a strong macrophage activator, which stimulates
the secretion of various cytokines (39, 40). Therefore, in order
to determine whether modulation of GSH content during
inflammation could be used as a therapeutic approach we
firstly determined the cytokine production and GSH levels in
RAW 264.7 macrophages treated with LPS. Figure 1A shows
the levels of IL-1β, IL-6, and TNF-α at different time-points
of LPS treatment, by the Luminex Assay. The obtained data
outlined a significant production of cytokines already after
1 hrs LPS treatment with peaked values around the 3 or 6 hrs
(Supplemental Figure 1A) compared to control cells. At longer
incubation times (i.e., 24 hrs), cytokine production decreased
and cell viability was seriously compromised, as reported in
Supplemental Figures 1A,B. We also measured the intracellular
GSH levels after stimulation with LPS for 1, 3, and 6 hrs by HPLC.
Figure 1B shows a decrement of GSH at both 1 and 3 hrs of
LPS treatment compared to control cells, whereas no changes in
the oxidation form of GSH (GSSG) were observed (Figure 1C).
The same trend was observed at 6 hrs (Supplemental Figure 1C).
Based on this result, we used 1 hrs LPS-stimulation for
the subsequent experiments. Thus, intracellular GSH rather
than GSSG content is mainly affected during macrophage
activation and cytokine production, supporting the idea that
inflammatory response might be modulated by buffering GSH
decrement.

Effects of GSH-C4 on LPS-Induced
Cytokine Production and GSH Modulation
Taking advantage of the possibility to use a cell permeable
GSH derivative (GSH-C4) to increase intracellular GSH levels,
we treated RAW 264.7 cells with GSH-C4 and evaluated both
inflammatory response and cytokine levels. In particular, we pre-
treated the cells with GSH-C4 (10mM) for 2 hrs. Subsequently,
GSH-C4 was removed from culture medium and the cells were
treated with 100 ng/ml LPS for 1 hrs. After stimulation, RAW
264.7 cells were treated again with 10mM GSH-C4 for 24 hrs.
The levels of intracellular thiols and cytokine production were
determined. As expected, intracellular GSH-C4 was determined

only in GSH-C4 treated cells and in cells co-treated with
LPS (Figure 2A). Moreover, the treatment with GSH-C4 was
able to buffer the intracellular GSH depletion observed in
RAW 264.7 macrophages upon LPS stimulation (Figure 2B).
Subsequently, we measured the concentration of inflammatory
cytokines in the culture supernatants with the Luminex
Assay. IL-1β, IL-6, and TNF-α production was decreased by
GSH-C4 with respect to LPS stimulation (Figure 3A). This
result was confirmed by the analysis of intracellular mRNA
(Figure 3B). To assess the efficacy of GSH-C4, we carried
out the same set of experiments with N-acetyl-L-cysteine
(NAC), a recognized pro-GSH synthesis molecule. As shown in
Supplemental Figure 1D, NAC treatment (10mM) was able to
affect cytokine production but at lower extent with respect to
GSH-C4.

FIGURE 2 | GSH-C4 is able to reverse the increase of intracellular GSH levels

after LPS stimulation. (A) RAW 264.7 macrophages were treated with 10mM

GSH-C4 for 2 hrs. Subsequently, GSH-C4 was removed from culture medium

and the cells were stimulated with 100 ng/ml LPS for 1 hrs. After 1 hrs RAW

264.7 macrophages were treated again with 10mM GSH-C4 or with fresh

medium for 24 hrs. GSH-C4 content was assayed by HPLC. Data are

expressed as means ± S.D. (n = 3; **p < 0.001). (B) GSH content was

assayed by HPLC. Data are expressed as means ± S.D. (n = 4; **p < 0.001).

nd, not determined. All the images reported in the figures are representative of

at least three experiments that gave similar results.
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FIGURE 3 | GSH-C4 treatment inhibits the production and expression of pro-inflammatory cytokines after LPS stimulation in RAW 264.7 macrophages. (A) RAW

264.7 macrophages were treated with 10mM GSH-C4 for 2 hrs. Subsequently, GSH-C4 was removed from culture medium and the cells were stimulated with

100 ng/ml LPS for 1 hrs. After 1 hrs RAW 264.7 macrophages were treated again with 10mM GSH-C4 or with fresh medium for 24 hrs. IL-1β, IL-6, and TNF-α

production in culture supernatants were detected using Luminex Assay (Bio-Rad). Data are expressed as means ± S.D. (n = 3; **p < 0.001). (B) Total RNA was

isolated and relative mRNA levels of IL-1β, IL-6, and TNF-α were analyzed by RT-qPCR. mRNA levels were normalized to ribosomal protein large subunit (RPL).

Dashed line indicates the value of control. Data are expressed as means ± S.D. (n = 6; **p < 0.001). nd, not determined. All the images reported in the figures are

representative of at least three experiments that gave similar results.

Effects of GSH-C4 on LPS-Mediated
Nuclear Translocation
NFκB-mediated pathways are implicated in the activation of
LPS-induced inflammatory mediators and cytokine production
(18, 41). Therefore, we investigated whether NFκB was affected
by treatment with GSH-C4. Relative to controls, LPS stimulation
significantly increased the phosphorylation of NFkB [p-NFkB
(p65) Ser536] and levels of total NFkB after 1 hrs stimulation
(Figure 4A). The treatment with GSH-C4 efficiently abrogated
these changes in NFκB activation/accumulation (Figure 4A).
Consistently, using RT-qPCR, we detected a corresponding
increase in the transcriptional level of NFkB upon LPS
stimulation, also inhibited by GSH-C4 (Figure 4B). To assess
whether other signaling pathways are activated by LPS treatment
we measured the levels of members of MAPKs pathways,
such as p38 and ERK1/2 due to their involvement in
inflammation (42, 43). RAW 264.7 cells were treated with
100 ng/ml LPS for 1 and 3 hrs and immediately used for

Western blot analysis of the basal and phosphorylated form
of p38 and ERK1/2. No significant changes in the activation
and levels of these kinases were detected relative to untreated
controls (Supplemental Figure 2A), confirming the main role
played by NFκB in our experimental system. To further

evaluate the involvement of NFκB signaling pathway in LPS-
stimulated macrophages we determined its nuclear localization
by Immunofluorescence microscopy. Phosphorylated NFkB

(p65) mainly localized in the nucleus after LPS stimulation

compared to unstimulated cells, a process efficiently inhibited

by GSH-C4 treatment (Figure 4C). These data were also
confirmed by Western blot analysis of both p-NFκB (p65)
and total NFκB on purified nuclei and cytoplasmatic fractions
from LPS- and GSH-C4-treated RAW 264.7 macrophages
(Supplemental Figure 2B). Interestingly, the cytoplasmic levels
of p-NFkB (p65) remained high and largely unaffected in the
presence of GSH-C4, independent of LPS stimulation. To further
investigate whether the decreased levels of NFκB were directly
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FIGURE 4 | GSH-C4 treatment reduces the NFκB (p65) induction in LPS-stimulated RAW 264.7 macrophages. (A) RAW 264.7 macrophages were treated with

10mM GSH-C4 for 2 hrs. Subsequently, GSH-C4 was removed from culture medium and the cells were stimulated with 100 ng/ml LPS for 1 hrs. After 1 hrs RAW

264.7 macrophages were treated again with 10mM GSH-C4 or fresh medium for 24 hrs. Twenty micrograms of total proteins were loaded for Western blot analysis of

the phosphorylated [p-NFκB (p65)] and total form of NFκB [NFκB (p65)]. Tubulin was used as loading control. (B) Total RNA was isolated and relative mRNA level of

NFκB was analyzed by RT-qPCR. Dashed line indicates the value of control. mRNA levels were normalized to RPL. Data are expressed as means ± S.D. (n = 4; **p <

0.001). (C) Paraformaldeyde-fixed cells were subjected to immunostaining with anti-p-NFκB (p65) antibody (red, AlexaFluor568®). Nuclei were stained with Hoechst

33342 (blue). Merge represents the overlay of nuclei and p-NFκB (p65) staining. Images reported are from one experiment representative of three that gave similar

results. All the immunoblots reported are from one experiment representative of three that gave similar results.

related to the decrement in cytokine release, we analyzed the
NFκB-mediated TNF-α production. In fact, some studies in
literature reported a close transcriptional correlation between
NFκB and TNF-α (44). For this reason, we analyzed the mouse
TNF-α promoter using Genomatix Software Suite database to
identify NFκB consensus sequences (known as κB sites). We
found five NFκB consensus sequences in the TNF-α promoter,
located at −83, +382, −400, +624, and −805. A ChIP analysis
of these sequences was performed to clarify the regulatory role
of NFkB on the murine TNF-α promoter. This demonstrated
a significant and selective increase in NFkB occupancy on the
+382 region of the TNF-α promoter after LPS stimulation,

compared to unstimulated controls (Figure 5A), while −83,
−400, +624, and −805 regions did not show NFκB binding
(data not shown). Accordingly, we observed that after GSH-C4
treatment the occupancy of NFκB on its consensus sequence
located on TNF-α gene promoter was significantly decreased
with respect to LPS-stimulated macrophages (Figure 5A). This
transcriptional regulation affected the mRNA and protein levels
of TNF-α, both significantly decreased following treatment
with GSH-C4 (Figures 3B, 5B). Finally, in order to assess
the specificity of NFκB in the LPS-mediated pro-inflammatory
response we determined the expression level of an anti-
inflammatory cytokine, IL-10 the transcription of which is
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FIGURE 5 | GSH-C4 treatment prevents the transcription of TNF-α. (A) RAW 264.7 macrophages were treated with 10mM GSH-C4 for 2 hrs. Subsequently, GSH-C4

was removed from culture medium and the cells were stimulated with 100 ng/ml LPS for 1 hrs. After 1 hrs RAW 264.7 cells were treated again with 10mM GSH-C4 or

fresh medium for 24 hrs. ChIP assay was carried out on crosslinked nuclei using NFκB antibody followed by qPCR analysis of NFκB binding site on TNF-α promoter

(+382: ggaggagaTTCCttg). Data are expressed as means ± SD (n = 3; **p < 0.001). (B) Twenty micrograms of total proteins were loaded for Western blot analysis of

the TNF-α. Tubulin was used as loading control. (C) 4 × 106 cells/well human macrophages were treated with 10mM GSH-C4 for 2 hrs. Subsequently, GSH-C4 was

removed from culture medium and the cells were stimulated with 100 ng/ml LPS for 1 hrs. After 1 hrs human macrophages were treated again with 10mM GSH-C4 or

fresh medium for 24 hrs. Twenty micrograms of total proteins were loaded for Western blot analysis of the phosphorylated and total form of NFκB [p-NFκB (p65), NFκB

(p65)] and TNF-α. Tubulin was used as loading control. (D) TNF-α and IL-1β production in culture supernatants were detected using Elisa Kit (ENZO LifeScience). Data

are expressed as means ± S.D. (n = 3; **p < 0.001). All the immunoblots reported are from one experiment representative of three that gave similar results.

also under NFκB (45). The mRNA levels of IL-10 significantly
increased after LPS stimulation, a process efficiently inhibited
upon GSH-C4 treatment (Supplemental Figure 2C). Moreover,
GSH-C4 treatment efficiently abrogates the IL-10 transcriptional
increment. To test the validity of our results on primary cells,
we examined the effects of GSH-C4 on an ex vivo experimental
model represented by primarymacrophage derived fromPBMCs.
After 2 weeks of differentiation, primary macrophages were
pre-treated with GSH-C4 (10mM) for 2 hrs. Thereafter, GSH-
C4 was removed from culture medium and the macrophages
treated with 100 ng/ml LPS for 1 hrs. After stimulation, cells
were supplemented with medium containing 10mM GSH-C4
for 24 hrs. LPS induced a significant increase of the phospho-
active form of NFkB (p-NFkB (p65) Ser536) as well as of the
basal form (NFκB) relative to unstimulated cells (Figure 5C). As
seen in the case of RAW 264.7 cells, treatment with GSH-C4
efficiently abrogated these changes. As a downstream effect, we
detected an increase in the protein levels of TNF-α, also reversed

to basal levels upon GSH-C4 treatment (Figure 5C). Finally, we
analyzed the levels of principal pro-inflammatory cytokines and,
as shown in Figure 5D, the increased levels of intracellular TNF-
α and IL-1β were completely abolished upon GSH-C4 treatment
with respect to LPS-stimulated cells, suggesting a broad effect of
this compound in counteracting NFκB activation.

GSH-C4 Reverts Activation and Cytokine
Production in Cell Autonomous Induced
Inflammation
Many diseases and disorders, such as type 2 diabetes,
atherosclerosis, obesity, sarcopenia, and myopathies myopathies
are accompanied by inflammation or increase of the
inflammatory cytokines (25, 28, 46–48). In this context, we have
previously demonstrated a significant IL-6 and TNF-α increase
in visceral adipose tissue of 24 month-old mice and in vitro
aged adipocytes (25). Moreover, we have also shown the same
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activation in skeletal muscle of old mice (28). Thus, we evaluated
whether GSH-C4 also affects cell autonomous inflammation-
associated processes in these experimental systems. In particular,
3T3-L1 murine pre-adipocytes were differentiated for 8 days
and then treated with 10mM GSH-C4 for 12 and 24 hrs. C2C12
murinemyoblasts were differentiated for 4 days and subsequently
treated with 10mM GSH-C4 for 12 and 24 hrs. Similar to our
above results with macrophages, treatment with GSH-C4
efficiently inhibited the production of cytokines (IL-1b, IL-6, and
TNF-α), compared to undifferentiated 3T3-L1 and C2C12 cells,
both at 12 and 24 hrs (Figures 6A,C). Similar significant effects
were also detected at the cytokine mRNA levels (Figures 6B,D).
These results confirmed the anti-inflammatory capacity of
GSH-C4 also in cell autonomous mediated inflammation.
We then investigated whether the NFkB signaling pathway
detected in macrophages, was also induced in cell autonomous
systems, by measuring protein levels of inhibitory/activator
intracellular signaling mediators. For this reason, we analyzed

the protein levels of inhibitory/activator partners. In particular,
we evaluated the transcriptional phosphoactive form of NFκB
and its inhibitory partner IKB-α, which sequestrates NFκB in the
cytoplasm (49). Moreover, we analyzed the IκB kinase (IKKα/β),
which by phosphorylating IKB-α leads to its degradation (50).
GSH-C4 decreased levels of p-NFkB (p65), NFkB (p65), NFkB
(p50) in myotubes, and adipocytes relative to baseline levels
detected in control cells (Figure 7C). Interestingly, this was
paralleled by increased inhibitory protein p-IKB-α and decreased
p-IKK-α/β (Figures 7A,B).

The potential anti-inflammatory role of GSH-C4 was
additionally tested on MCP-1, a chemokine autonomously
released by adipocytes. Indeed, it has been demonstrated
that an increase of MCP-1 in adipose tissue determines
a greater infiltration of macrophages into the tissue (51).
Supplemental Figure 2D demonstrates that during adipocytes
differentiation MCP-1 mRNA levels were easily detectable and
that GSH-C4 treatment resulted in a significant reduction of

FIGURE 6 | GSH-C4 treatment abrogates the production and expression of pro-inflammatory cytokines in C2C12 myotubes and 3T3-L1 adipocytes. (A) C2C12 cells

were differentiated for 4 days. Subsequently, 10mM GSH-C4 was added to the myotubes for 12 or 24 hrs. IL-1β, IL-6, and TNF-α production in culture supernatants

were detected using Luminex Assay (Bio-Rad). Data are expressed as means ± S.D. (n = 4; **p < 0.001). (B) Total RNA was isolated and relative mRNA levels of

IL-1β, IL-6, and TNF-α were analyzed by RT-qPCR. mRNA levels were normalized to RPL. Data are expressed as means ± S.D. (n = 6; **p < 0.001). (C) 3T3-L1 cells

were differentiated for 8 days. Subsequently, 10mM GSH-C4 was added to the adipocytes for 12 or 24 hrs. IL-1β, IL-6, and TNF-α production in culture supernatants

were detected using Luminex Assay (Bio-Rad). Data are expressed as means ± S.D. (n = 3; **p < 0.001). (D) Total RNA was isolated and relative mRNA levels of

IL-1β, IL-6, and TNF-α were analyzed by RT-qPCR. mRNA levels were normalized to RPL. Data are expressed as means ± S.D. (n = 4; **p < 0.001). All the images

reported in the figures are representative of at least three experiments that gave similar results.
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FIGURE 7 | GSH-C4 treatment prevents the induction of NFκB-signaling

pathway in C2C12 myotubes and 3T3-L1 adipocytes. (A,B) C2C12 and

3T3-L1 cells were differentiated for 4 and 8 days, respectively. Subsequently,

10mM GSH-C4 was added to the cells for 12 or 24 hrs. Twenty micrograms of

total proteins were loaded for Western blot analysis of the phosphorylated and

total form of NFκB [p-NFκB (p65), NFκB (p65)], NFκB (p50), TNF-α, p-IKB-α,

p-IKK-α/β, IKB-α, and IKK-α/β. Sp1 was used as loading control. (C) Total

RNA was isolated and relative mRNA levels of NFκB were analyzed by

RT-qPCR. mRNA levels were normalized to RPL. Data are expressed as

means ± S.D. (n = 4; **p < 0.001). All the immunoblots reported are from one

experiment representative of three that gave similar results.

those levels with respect to control cells, confirming its anti-
inflammatory role also in adipose tissue-related inflammation
charactering obesity (52).

DISCUSSION

A strong connection exists between accumulation of free
radicals (ROS/RNS) and the modifications of the immune
response and inflammation (53). In particular, GSH depletion
is envisaged as one of the first events of inflammatory
response activation (8, 10, 54). Therefore, we evaluated the
outcome of restraining intracellular GSH homeostasis in different
inflammatory conditions, as a potential anti-inflammatory
strategy. Indeed, the use of GSH precursor or antioxidants

was previously reported to restore cytokine synthesis and the
activation of inflammatory pathways. In particular, treatment
with NAC reestablished GSH levels and pro-inflammatory
cytokines production in different experimental systems (55, 56).
Contrarily, treatment with buthionine sulfoximine (BSO), an
inhibitor of γ-glutamyl-l-cysteinyl-ethyl ester (γ-GCS), the rate-
limiting enzyme in the biosynthesis of GSH, has the potential
to enhance cytokine secretion by up-regulating ROS level (57).
So, it is clear that the maintenance of GSH homeostasis may
represent a therapeutic treatment in many diseases where
oxidative/nitrosative stress and thiols alterations play a key role
in the pathophysiology.

In the current study, in line with other works demonstrating
a significant decrease of GSH levels in LPS-treated mice
(54, 58–61), we demonstrated that GSH-redox balance and
pro-inflammatory cytokines production were affected in LPS
stimulated macrophages.

GSH-C4, a permeable GSH derivative, previously used as
an antiviral and immune-modulator in different models (62–
65), efficiently counteracted the LPS-mediated inflammatory
response. Preliminary experiments fixed at 10mM the non-toxic
concentration of GSH-C4 able to restore different levels of GSH
depletion, induced by various GSH-depleting agents, ranging
from moderate depletion (about 50%) to severe depletion (about
80%). Indeed, the results obtained indicate that 10mM GSH-
C4, as such, reached 30% of the intracellular thiols content,
confirming its ability to easily enter the cell; moreover, GSH-
C4 was able to restore the LPS-depleted intracellular GSH levels.
We also showed that GSH-C4 addition significantly inhibited
LPS-induced IL-1β, IL-6, and TNF-α production. GSH-C4 anti-
inflammatory capacity was higher than that exerted by the
antioxidant NAC as demonstrated by the very efficient inhibition
of pro-inflammatory cytokine production, confirming its strong
anti-inflammatory action. We speculate that the stronger anti-
inflammatory activity observed in GSH-C4-treated cells is due
to the thiol species supplemented. More exactly, both NAC
(data not shown) and GSH-C4 can restore GSH content in
GSH-depleted cells; the excess of thiol species measured in
NAC-treated and GSH-C4-treated cells were NAC and GSH-C4
respectively. Thus, we propose that the action exerted by GSH-C4
may be ascribed to the GSH-C4 itself. However, further studies
are required to address the exact mechanism.

It is well-established that the canonical inflammatory
signaling transduction pathway includes NFκB activation (66).
NFκB induces cytokine production that modulate the immune
response (such as TNF-α, IL-1, IL-6, and IL-8) as well as the
production of adhesion molecules, which drive the recruitment
of leukocytes to the inflammation sites (67). NFκB resides
in the cytoplasm as an inactive heterodimeric form of two
subunits (p50 and p65). In particular, NFκB heterodimer
is sheltered by an inhibitory subunit, IKB-α that prevents
its nuclear translocation. Under specific stimulation, IKB-α
can be phosphorylated, ubiquitinated, and degraded via the
proteasome, thus releasing NFkB, which can then translocate
to the nucleus to drive transcription of genes involved in
the inflammatory response (66, 68). Our results confirmed
that, upon LPS treatment, p-NFkB (p65) translocates to the
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nucleus to support the inflammatory response. In this context,
GSH-C4 inhibits the expression and release of IL-1β, IL-
6, and TNF-α through blocking p-NFkB (p65) activation.
Indeed, we showed that GSH-C4 acts as a transcriptional
inhibitor of NFkB (p65), further interfering with its nuclear
localization. In our experiments, the involvement of NFkB
appeared preponderant over that of other intracellular signaling
mediators involved in inflammation. For instance, as MAPKs
play a central role in signal transduction pathways during
inflammation (42, 43), we tested the possible activation of p38
and ERK1/2 in LPS-mediated inflammatory response. However,
no significant changes in the phosphorylated active forms of
these kinases were detected, excluding their involvement in this
process.

TNF-α increased expression is a hallmark in numerous
inflammatory diseases and also in the inflammatory response
to LPS (69–71). NFκB had a direct role in the stimulation
of TNF-α gene transcription, demonstrated by the presence
of NFκB binding motifs in the TNF-α promoter, which are
recognized by the transcription factor in response to different
stimuli (44, 72). In the present work we demonstrated the ability
of p-NFκB (p65) to bind the +382 RE on the murine TNF-
α promoter allowing increased TNF-α expression. Our results
indicated that GSH-C4 can reverse this process thus inhibiting
inflammation. Indeed, it was previously reported that specific
residues of cysteine of NFkB are implicated in recognition of
specific DNA regions and that redox-mediated mechanisms have
regulatory role in the NFκB-mediated gene expression (73, 74).
In fact, we previously found that 2 hrs-pre-treatment with
GSH-C4 regulated NFκB DNA binding activity favoring and
prolonging its association with IL-12 p40 promoter sequence
(18). In this paper, the prolonged GSH-C4 treatment for 24 hrs
may create an altered oxidized/reductive state that may hinder
NFκB binding activity decreasing NFκB association with TNF-α
promoter sequence.

The most intriguing aspect of our work was the ability of
GSH-C4 to block inflammatory response even in cells that
do not belong to the immune system, such as adipocytes
and myotubes. In fact, it is known that inflammation is not
limited to immune cells and can involve also adipose, and
skeletal muscle tissues (75). Systemic inflammation is observed,
accompanied by production of pro-inflammatory cytokines
that can inhibit adipocyte differentiation (23, 76). Moreover,
we have previously reported a significant production of pro-
inflammatory cytokines (IL-6 and TNF-α) in visceral adipose
tissue of 24 month-old mice and in 21 day-old adipocytes
compared with 1 month-old mice and 8 day-old adipocytes,
respectively (25). Similarly, increasing evidence supports that
inflammation can also occur in skeletal muscle tissue during
aging or in obesity, potentially driving immune cell infiltration,
pro-inflammatory cytokine production, insulin resistance, and
inability to complete the myogenesis process (77, 78). Indeed,
we previously demonstrated an increase of IL-6 and TNF-
α production in skeletal muscle of old mice paralleled by

increased hallmarks of oxidative damage (28). In line with
this evidence, we found that the treatment with GSH-C4, by
altering the intracellular redox state, counteracted the activation
of p-NFκB (p65), its nuclear translocation, and consequently
the transcription of the inflammatory cytokine genes, such
as TNF-α in both experimental systems used. Moreover,
we previously published that the GSH/GSSG ratio decreases,
shifting the redox balance toward oxidizing conditions, both
during adipogenesis of 3T3-L1 cells (30) and in aged muscle
tissue (28). These effects are of particular importance due
to the systemic/detrimental role of inflammation in obesity
and related diseases and in skeletal muscle degeneration.
Moreover, for adipocytes we demonstrated a remarkable
inhibition of the chemokine MCP-1 that is produced by
white fat depot and functions as a potent chemotactic factor
for monocytes (51) infiltrating the adipose tissue of obese
mice (79), identified as molecular factor concurring to insulin
resistance (52).

Overall our findings support an underlying role of GSH
in the inflammatory response of both immune and non-
immune cells, via the pivotal role of NFkB. Further, we
propose that GSH-C4 may work as a promising candidate
drug (particularly used in low doses) to prevent or treat
the onset and progression of inflammatory diseases
(i.e., cancer, aging, cystic fibrosis, cardiovascular, and
neurodegenerative diseases) where oxidative/nitrosative
stress and alterations of GSH balance have a predominant
role (80).
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