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The last decades have produced a plethora of evidence on the role of glycans, from

cell adhesion to signaling pathways. Much of that information pertains to their role on

the immune system and their importance on the surface of many human pathogens.

A clear example of this is the flagellated protozoan Trypanosoma cruzi, which displays

on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like

glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase

(TS) family. Among the latter, different and concurrently expressedmolecules may present

or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members.

Over the last thirty years, it has been well described that T. cruzi is unable to synthesize

sialic acid (SIA) on its own, making use of aTS to steal the host’s SIA. Although iTS

did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3

SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS

members act as virulence factors in mammals coursing the acute phase of the T.

cruzi infection. However, recent findings have demonstrated that iTS may also play a

pathogenic role during T. cruzi infection, since it modulates events related to adhesion

and invasion of the parasite into the host cells. Since both aTS and iTS proteins share

structural substrate specificity, it might be plausible to speculate that iTS proteins are able

to assuage and/or attenuate biological phenomena depending on the catalytic activity

displayed by aTS members. Since SIA-containing glycotopes modulate the host immune

system, it should not come as any surprise that changes in the sialylation of parasite’s

mucin-like molecules, as well as host cell glycoconjugates might disrupt critical

physiological events, such as the building of effective immune responses. This review
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aims to discuss the importance of mucin-like glycoproteins and both aTS and iTS for

T. cruzi biology, as well as to present a snapshot of how disturbances in both parasite

and host cell sialoglycophenotypes may facilitate the persistence of T. cruzi in the infected

mammalian host.

Keywords: Trypanosoma cruzi, trans-sialidase, mucin-like molecule, sialic acid, glycan-binding protein, infectious

disease, T-cell response

A SNAPSHOT OF THE NATURE OF
TRYPANOSOMA CRUZI SURFACE COAT

Trypanosoma cruzi presents a complex life cycle spanning
two hosts, the hematophagous triatomine, and susceptible
mammals (1). Throughout evolution, T. cruzi developed the
capacity to adapt to hostile environments in both kinds of
hosts. An important feature that was certainly decisive for the
parasite adaptation to different hosts, as well as different niches
within each host, was its ability to remodel its own surface coat
(2, 3). It is well established that the cell surface of T. cruzi
is composed by a wide variety of glycosylphosphatidylinositol
(GPI)-anchored glycoconjugates expressed on a developmental
stage-specific manner[(4–7).

Regarding the cell coat of the T. cruzi forms found in
mammals, several studies revealed that it is mainly composed
by both glycoinositolphospholipids (GIPLs) and heavily O-
glycosylated mucin-like molecules (8, 9).

In addition, proteins belonging to trans-sialidase (TS) family
(10–14); trypomastigote small surface antigen (TSSA) (15–17)
and members of a multigenic family identified during the
sequencing of the T. cruzi CL Brener genome, named mucin-
associated surface proteins (MASPs) are found to a lesser
extent (18–22).

SIALIC ACID-CONTAINING GLYCANS
MODULATE THE ESTABLISHMENT OF T.

CRUZI INFECTION IN MAMMALS’ CELLS

Over the last twenty years, it has been known that simple, as well
as complex carbohydrates (glycans) may play major structural,
physical and metabolic roles in biological systems (23). Such
functions include self/non-self-discrimination, ensuring correct
protein folding, cell-to-cell signaling, cell adhesion and even
differentiation, among others (24–27). The immune system, akin
to the legions protecting the Roman Empire, is poised to defend
the body against pathogens and transformed cells alike. One of
the most important carbohydrates when it comes to the immune
system is sialic acid (SIA) (28–30). More specifically the N-
acetyl neuraminic acid (Neu5Ac). Immune responses deflagrated
against T. cruzi are of particular interest, since the parasite
is incapable of synthesizing SIA (31, 32). That would put T.
cruzi squarely in the crosshairs of their mammal hosts’ immune
systems, since they somewhat rely on SIA to identify pathogens
(3, 33, 34). The use of TS provides an elegant mechanism through
which T. cruzi poaches SIA molecules from the hosts’ cells and
covers its own surface molecules, effectively creating a molecular

ghillie suit to hide from mammalian phagocytes, posing a
difficulty for the generation of an effective immune response (35–
37). In addition to the enzymatically activemembers (aTS), which
are able to modify the glycophenotype of both parasite and host
cells (3, 13, 38, 39), TS also presents an inactive form (iTS), due
to the naturally occurring Tyr342→ His substitution, which
completely abolishes TS enzymatic activity (40). Despite the lack
of catalytic function, it still plays an important role in T. cruzi-
host cell interaction due to its lectinic activity (41–45) (Figure 1).
Both extracellular (axenic) amastigote and trypomastigote forms
of T. cruzi are infective to mammal cells (46–48). Regarding
the trypomastigote forms, both iTS and aTS are GPI-anchored
surface proteins (49). Recent findings revealed that sialylated
mucins are present in lipid-raft-domains far away from TS
molecules are found. By using unnatural sugar approach as
chemical reporters, the authors demonstrated that the sialylation
event is orchestrated by micro-vesicle-associated aTS instead of a
membrane-anchored or fully soluble enzyme (34).

The importance of SIA-containing glycans on T. cruzi-
host cell interplay was suggested over twenty-five years ago,
when the authors demonstrated that the parasite’s ability to
penetrate into SIA-deficient cells was reduced when compared
with wild-type cell lines (50). After this finding, many groups
began investigating the events triggered by TS in vitro and in
murine models (3, 37, 51–53).

TRANS-SIALIDASES AS KEY
REGULATORS OF THE IMMUNE EVASION

Studies have shown that T. cruzi can recapitulate transient thymic
aplasia in infected mice. It occurs in an early moment of the
infection and aTS was proven responsible for the induction
of apoptosis, since recombinant aTS alone can induce the
alterations. In other studies, neutralizing anti-TS antibodies
and the use of inhibitors prevented these effects (54). Also,
an earlier study showed that recombinant iTS was incapable
of eliciting these abnormalities (55). A study from Risso and
colleagues demonstrated that the level of thymic damage was
dependent on the parasite strain. More lethal strains (TcVI:
RA, Q501, Cvd, and TcII: Br) present markedly higher levels
of TS than their non-lethal counterparts (K-98, Ac and Hc
- TcI) (56, 57). A different study showed that aTS does not
appear to provoke thymocyte apoptosis directly. Instead, such
effect seems to be centered on the thymic nurse cell complex,
a region of the thymus cortex that contains mainly double-
positive thymocytes, the most affected by TS (58). It is interesting
to point out the studies that showed the pro-apoptotic effect
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FIGURE 1 | Schematic model showing the presence of trans-sialidases and mucin-like molecules on the parasite cell surface. The biological properties of both

GPI-anchored proteins (trans-sialidases [TS] and mucin-like molecules) have been extensively studied over the last years, and their immunobiological functions have

been gradually disclosed. Trypanosoma cruzi expresses on its surface both inactive (iTS) and active (aTS) TS proteins, that present similar substrate specificity (α-2,3

SIA). While iTS displays lectinic-like activity (A), aTS shows the ability to modulate the sialoglycophenotype of both parasite and host cell glycans (B). Since both TS

proteins compete by α-2,3 sialo-containing glycans (C), it may attenuate and or abrogate the process of SIA transfer mediated by aTS (D). Consequently, it might be

able to compromise biological phenomena depend on the catalytic activity displayed by enzymatically active members. In addition, both TS may be found associated

to microvisicles, displaying the same properties mediated by both fully soluble enzyme (E, F). The sialylation of glycoproteins found in the parasite cell surface besides

to promote protection against soluble factors of the host immune system, may also provide ligand for SIA-binding proteins expressed by host cells, such as Siglecs

(G). Since this phenomenon compromises the effective function of immune cells, it may represent an interesting mechanism to guarantee the perpetuation of the

parasite in their infected host.

was due to the alteration of the sialylation profile of target
cells. By using lactitol, a competitive inhibitor that compromises
the transfer of the sialyl residue to endogenous acceptors, but
not the hydrolase activity of the enzyme, disallowed ex vivo
and in vivo apoptosis caused by aTS (54). Years later, Lepletier
and colleagues proposed that the apoptosis provoked by TS
activity might also be capable of provoking an imbalance in
the hypothalamus-pituitary-adrenal axis of T. cruzi-infected
mice, leading to increased release of glucocorticoids, notorious
immunossuppressants (59).

Early studies in the 90’s already provided evidence of
how aTS modulates the host immune system. Chuenkova
and Pereira demonstrated that sensitizing mice with TS from
conditioned supernatants, as well as recombinant aTS lead
to higher parasitemia levels, and increased mortality rates.
They also proposed that since animals with severe combined
immunodeficiency, which lack functional T and B lymphocytes,
were not affected. The logical conclusion was that TS was
somehow affecting essential effector components of the adaptive
immune system (60).

T lymphocytes must be activated to build up an effective
response against invading organisms (61). This process

involves loss of SIA residues in α-2,3 bonds from O-linked
oligosaccharides, exposing free β-1,3 galactose (Gal) residues
(62, 63). Such residues can be detected by the use of Peanut
agglutinin lectin (PNA), which binds to terminal nonreducing
Galβ1,3-GalNAc containing-sequences (64). That said T.
cruzi’s flagship enzyme unique ability to transfer SIA residues
springs to mind as the perfect candidate to interfere with
this process. Our group demonstrated this by showing that
in a TS-free infection, i.e., Plasmodium berghei-infected mice,
activated CD8+ T cells exhibited a great number of terminal
β-Gal residues, while in the presence of aTS, such residues
were re-sialylated (37) (Figure 1). While further investigation
is necessary, it is safe to say that such an effect would be a
great help to the parasite, as dampening the cellular response,
would help ensure the protozoa’s survival within the host.
Further evidence of that statement is found in the work of
Pereira-Chioccola et al. (65). The authors describe how anti-
alpha-Gal antibodies, purified from chronic Chagas disease
patients, strongly bind to α-Gal terminals in mucins, causing
severe structural perturbations that lead to parasite lysis,
while sialylation by TS activity diminishes the damage. The
authors proposed that the negative charge provided by SIA
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helps stabilizing the T. cruzi surface coat by electrostatic
repulsion (65).

Although it has been known for more than twenty years that
both iTS and aTS have almost identical structures and compete
for the same substrate (40, 42, 44), little is known about the
biological effects triggered by iTS during T. cruzi infection.

In an interesting report, Pascuale et al. (45) demonstrated
that the expression of iTS gene in iTS-null parasites was able
to improve T. cruzi invasion into Vero cells and increased
their in vivo virulence as shown by histopathologic findings
in skeletal muscle and heart tissue of T. cruzi-infected mice
(45). Although the molecular mechanisms have not been
elucidated, the authors claim that iTS might play a different
or complementary pathogenic role to aTS (45). Recently, our
group demonstrated that mice treated with an elevated (non-
physiological) concentration of recombinant iTS showed a
compromise of T cells homing to the cardiac tissue during T.
cruzi-infection (44). Since iTS is capable of recognizing SIA-
containing glycans, which are carried by many glycoproteins
involved in leukocyte extravasation through activated venular
walls (66–68) it would be plausible to speculate that iTS,
through its lectinic property, may bind to sialylated peripheral
homing receptors, impairing the homing of inflammatory cells
to the target tissues. The poor development of genetic tools
to directly dissect the biological roles displayed by either
iTS or aTS, leads researchers towards alternative approaches
for this technical deadlock. The use of both recombinant
T. cruzi-iTS and aTS, separately or together, may provide
a good way for studying the effects triggered by both TS
proteins (44). Over the last fifteen years, studies demonstrated
that when administered separately, both iTS and aTS elicit
similar biological effects (42, 69, 70). However, until recently,
there was no published data showing their combined effects.
Immunological studies carried out by our group revealed that
in T. cruzi-infected mice, the intravenous administration of
high concentrations of recombinant aTS was able to modulate
the expression of inflammatory signals by splenic T cells (44).
Nevertheless, when both recombinant iTS and aTS were injected
in equivalent amounts, such phenomena were significantly
compromised (44). Additional studies are necessary to confirm
our previous findings, however, it is plausible to speculate
that when present in a soluble form and/or associated to
microvesicles (34), iTS may compete with aTS by the same
SIA-containing glycotopes and attenuate/abrogate biological
events depending of the addition and/or removal of SIA
residues.

Another question that needs addressing is the degree to
which iTS is able to attenuate or abrogate biological events
induced by aTS. In 2010, Freire-de-Lima and colleagues
demonstrated that CD8+ T cells from T. cruzi-infected
mice treated with a high concentration of recombinant
iTS, became positive for PNA. These results reinforce
the idea that iTS competes with aTS for SIA-containing
glycotopes, then compromising an expected re-sialylation
phenomenon that naturally happens during T. cruzi
infection (37).

TRYPANOSOMA CRUZI MUCINS

Trypanosoma cruzi mucins are the parasite’s most abundant
surface glycoproteins. First described by Alves and Colli in
epimastigotes, these highly glycosylated GPI-anchored mucin-
like proteins were named A, B, and C glycoproteins (71). These
proteins display a great deal of heterogeneity, with the genes
responsible for encoding them being divided into two major
families (3, 9, 72–74). The T. cruzi small mucin gene (TcSMUG)
family encodes proteins that are expressed in the insect stages
of the parasite’s life, being essential to the infectivity on the
insect host (75), while the TcMUC family, comprising from
five to seven hundred genes, encodes the proteins expressed in
the mammalian host. These proteins contain well-conserved N-
and C-terminal regions, corresponding to ER and GPI anchor
signals, respectively (72, 74, 76). This family can be further
divided into three groups: (i) TcMUC I possesses a central
domain with tandem repeats, with consensus sequences for O-
glycosylation sites and it is more expressed in amastigotes (72,
73, 77); TcMUC II, found in trypomastigotes, displays a smaller
number of repeats but is rich in serine and threonine residues
(9, 72–74). Finally, TcMUCIII refers solely to the expression of
a small surface protein, TSSA, or trypomastigote small surface
antigen, being expressed only on cell-derived trypomastigotes
(15). These mucin-like molecules contain a great number of
O-linked oligosaccharides that are the main acceptors of SIA
in the parasite’s surface (Figure 1) (78–81). Unlike the classical
vertebrate mucins, these oligosaccharides are linked to the
protein core through α-GlcNAc residues, instead of α-GalNAc
(82). Regardless, they contain a great number of free terminal
β-Gal residues, which serve as ideal SIA acceptors (7, 78–81)
(Figure 1). The O-linked oligosaccharides composition and size
vary depending both the parasite strain (9, 78–80, 83–85) and
its sialylation might promote immunosuppressive properties
(please, see below).

The GPI-mucins expressed by T. cruzi, also known as
sialoglycoproteins, are mucin-like molecules that are highly
glycosylated and present a conserved GPI-anchor linked to the
parasite cell surface (9, 80–87). All mucin GPI-anchors are
constituted by a similar glycan core (Manα1-2Manα1-2Manα1-
6Manα1-4GlcN) (9, 80, 85, 87). Except for the cell-derived
trypomastigotes, where a branch of Gal residues can modify the
GPI anchor (9, 84). The GPI-mucin lipid anchor differs according
to the parasite’s stage (80, 81, 85). In non-infective insect-
derived epimastigotes, they are composed of saturated fatty
acids; in metacyclic trypomastigotes, they are mainly inositol-
phosphoceramides, and in the cell-derived trypomastigotes,
they are composed wholly of alkylacyl-phosphatidylinositol (PI)
structures, frequently insaturated (C18:1 or C18:2) (84, 85).

There is abundant data showing that following the early stages
of T. cruzi infection, the patterns of resistance or susceptibility
may be determined before adaptive immunity elements have
a chance to respond, with components of the innate immune
response playing crucial roles for parasite control (88). T. cruzi
makes use of an expanded array of molecular strategies to invade
an extensive range of host cells, as well as to avoid the host’s
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immune defense. In the infection site, T. cruzi triggers the
production of chemokines and pro-inflammatory cytokines, such
as interleukin-12 (IL-12) and tumor necrosis factor-a (TNF-α),
and the highly reactive oxygen and nitrogen species produced
by cells of the Mφ lineage (84, 85, 89–91). Over the last fifteen
years, it has been described that GPI anchors expressed in the
surface of T. cruzi are determinant in this process (85, 92, 93).
In 2006, Bafica and colleagues demonstrated that the activation
of innate immune response by T. cruzi-derived DNA and GPI
anchors from trypomastigote mucins (tGPI-mucins anchors)
forms, was able to promote the production of proinflammatory
signals (84, 94). The authors revealed that the parasite’s DNA
stimulates cytokine production by Mφ in a Toll-Like Receptor-
9 (TLR9) dependent mechanism, and synergizes with parasite-
derived tGPI-mucins, a TLR2 agonist, in the induction of IL-
12 and TNF-α (94). More recently, it has been demonstrated
that both living T. cruzi trypomastigote forms, as well as tGPI-
mucins are able to induce high levels of IL-12 by human
monocytes. Additionally, it has been proven that such effect
depends on CD40-CD40L interaction and IFN-γ (95). In that
work the authors claim that the polarized T1-type cytokine
profile observed in T. cruzi-infected individuals might be a long-
term effect of IL-12 production induced by lifelong exposure to
T. cruzi tGPI-mucins (95).

It is well accepted that a great array of GPI-mucin genes is
responsible for the variability of parasite cell surface (2). In 2004,
an interesting work carried out by Buscaglia and collaborators
demonstrated that the vast majority of the tGPI-mucin molecules
found on the surface of the cell-derived trypomastigotes belong to
the TcMUC II group. In this study, for the first time, the authors
presented high evidence that multiple products of TcMUC II are
concurrently expressed, suggesting that such molecules might
represent a sophisticated strategy for the parasite to dampen the
host immune response (9).

In 2002, Argibay and co-authors transfected higher eukaryotic
cells (Vero cells) with TCMuc-e2 gene, which encodes for a
mucin that is expressed in the blood-circulating stage of the
parasite. The authors demonstrated that when transfected cells
were exposed to human lymphocytes, an event of T cell anergy
was observed. In this study, it was also demonstrated that the
effect could be reversed by the addition of exogenous IL-2 (35). A
different study discussed the effect of the interaction between the
T. cruzi AgC10, a mucin-like molecule expressed by metacyclic
trypomastigotes, as well as on amastigotes (96) and L-selectin
in T cell surface. In an event independent of IFN-γ and nitric
oxide, it was capable of inhibiting T cell proliferation and IL-2
secretion, as well as impairing IL-2mRNA expression in response
to mitogens. In fact, most genes whose expression is controlled
by NFAT (Nuclear Factor of Activated T-cells) were affected and
the overexpression of NFAT refuted the effects mediated by the
parasite’s glycoprotein (97).

The carbohydrate chains of mucin molecules are usually
long extended structures (98). Over the last ten years has been
demonstrated that the O-linked oligosaccharides composition of
T. cruzi mucin-like molecules might exert direct effect on the
host immune system. Since epimastigote forms are easier to be
cultured in vitro, most of the studies investigating the biological

roles triggered by T. cruzi O-linked glycans have been performed
with non-infective forms for mammal cells. In 2013, Nunes and
colleagues showed that a purified preparation of sialylated T.
cruzi glycoproteins is capable of inhibiting clonal expansion as
well as cytokine production by CD4+ lymphocytes. This happens
through cell cycle arrest in the G1 phase and cannot be reversed
by administration of exogenous IL-2, effectively rendering the
cells anergic when stimulated through the T cell receptor (TCR)
(99). The authors suggested that the starting point of this effect
would be the interaction between the sialylated parasite mucins
and Siglecs expressed on the T cell surface (Figure 1). An earlier
study might substantiate this claim. Erdhmann and co-workers
showed that the highly virulent T. cruzi Tulahuén strain was
able to modulate the functionality of dendritic cells, through the
interaction of its sialylated mucins with Siglec-E. The authors
also confirmed that the desialylation of the parasite’s surface
molecules prevents such event (100).

POSSIBLE THERAPEUTIC TARGETS

The mucin-like proteins present in the surface of T. cruzi
bear a distinct characteristic when compared to mucins or
any other O-glycosylated protein on the surface of human
proteins: the presence of galactofuranose (Galf ) residues (79).
The flavoenzyme UDP-galactopyranose mutase (UMG) is not
found in humans, but is essential to the composition of bacterial
and fungal cell walls, as well as an important virulence factor for
protozoa (6, 101, 102). A study in the late 80’s even managed
to show that anti-galactofuranose antibodies lead to a 70%
inhibition of cell invasion (103). It should not come as a surprise
that some groups treat UMG as an ideal therapeutic target, since
the enzyme is not present in humans, and are working towards
the development of UMG inhibitors (104–106). One study shows
promise in halting the growth of some Mycobacterium species
(107). It is important to note that this strategy suffers from a
fundamental problem in the fact that so far Galf residues have
not been found in the mucins expressed in the mammalian host
stages’. The presence of Galf residues in metacyclics has been
demonstrated (81).

trans-Sialidases also comes off as a potential drug target
for the treatment or prevention of Chagas disease, and as
such, many groups have been pursuing different strategies
focused on TS as a target for either therapeutic or prophylactic
methods. Good examples of this are recombinant proteins and
DNA vaccines (108–111). Despite early reports showing that
immunization with TS inhibits Th1 immune response (70), it
was recently demonstrated that such a response can be elicited
by the clever use of adjuvants (112). The same group has
also shown that using the same model, aTS elicits stronger
humoral and cellular responses than otherT. cruzi antigens (113).
Over the last decade, works from many research groups have
demonstrated that vaccines candidates based on TS proteins
are capable of protecting T. cruzi-infected mice (111, 114–118).
Groundbreaking studies carried out by Rodrigues and Tarleton
groups (119–122) have demonstrated that immunodominant
CD8+ T cell immune responses directed to epitopes expressed
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by members of the TS family contribute to control T.
cruzi infection, suggesting that non-antibody mediated cellular
immune responses to the antigens expressed in the mammalian
forms of T. cruzi might be used for the purpose of vaccination.
In 2015, Pereira and collaborators started the development
of both prophylactic and therapeutic vaccine protocols. The
vaccines take advantage of the immunostimulation provided by
a replication-defective human Type 5 recombinant adenoviruses
(rAd) vector carrying sequences of amastigote surface protein-2
(rAdASP2), and TS (rAdTS). This strategy, rather offers a rational
approach for re-programming the host immunity, achieving a
more protective profile, leading to interruption of damage and
even tissue recovery, particularly when it comes to chronic
Chagas heart disease (123).

Another important focus field concerning T. cruzi TS is
the search for effective inhibitors. A di-sialylated N-lactoside
compound was shown to promote a 70% inhibition of TS
activity through a competition mechanism (124). Sulfasalazine,
a first line sulfa drug for rheumatoid arthritis, is also a
moderate TS inhibitor. Although it does not lead to a great
inhibition of the enzyme activity and it is not particularly
toxic to the parasite strains tested by Lara-Ramirez’s group, it
is a good starting point for the development of new drugs,
especially because sulfasalazine has been in use since the early
50s (125).

Several other researches have reported results on promising
drugs, from competitive to non-competitive inhibitors, acting
through reversible or irreversible mechanisms, some of those
reaching up to 50% inhibition in the millimolar range (126–130).

An earlier work from our group has shown that
2-difluoromethyl-4-nitrophenyl-3,5-dideoxy-D-glycero-α-
D-galacto-2-nonulopyranosid acid (NeuNAcFNP) is able to
irreversibly inhibit TS in a time and dose-dependant manner.
More importantly, it is able to produce a 90% inhibition of the
infection of LLC-MK2 cells by T. cruzi Y strain trypomastigotes
(131). Although it provides a unique form of inhibition and a

chance for less major adverse effects, especially since TS bears no
semblance with any human enzyme (132).

CONCLUSION

In this review, we focused on the role of T. cruzi glycoconjugates
and associated proteins in mediating the relationship between
parasite and the human immune system. Throughout the years,
several discoveries illustrated how TS, Tc-mucins and SIA are
fundamental for the parasite to not only survive, but also thrive
in an inhospitable environment like the human body. Mounds of
evidence sustain the idea that TS is an important virulence factor,
especially during the acute phase of the disease and is pivotal in
aiding the parasite in bypassing the immune system. Authors also
agree on the fact that mucins are major players in the balance
between immune response and parasite survival, especially since
it is the primary SIA acceptor in the protozoan membrane.

It is our belief that a better understanding of how T. cruzi
is able to sabotage the human immune response will provide
us with more effective tools to prevent and combat infections.

Moreover, the parasite’s unique system of handling SIA is almost
certainly pivotal, since it involves a one-of-a-kind enzyme and an
equally unique group of mucin-like proteins.
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