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Scaffold proteins are defined as pivotal molecules that connect upstream receptors

to specific effector molecules. Caspase recruitment domain protein 10 (CARD10)

gene encodes a scaffold protein CARMA3, belongs to the family of CARD and

membrane-associated guanylate kinase-like protein (CARMA). During the past decade,

investigating the function of CARMA3 has revealed that it forms a complex with BCL10

and MALT1 to mediate different receptors-dependent signaling, including GPCR and

EGFR, leading to activation of the transcription factor NF-κB. More recently, CARMA3

and its partners are also reported to be involved in antiviral innate immune response and

DNA damage response. In this review, we summarize the biology of CARMA3 in multiple

receptor-induced NF-κB signaling. Especially, we focus on discussing the function of

CARMA3 in regulating NF-κB activation and antiviral IFN signaling in the context of recent

progress in the field.
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INTRODUCTION

Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3
(CARMA3), also known as CARD10, is one of CARMA family members that include
CARMA1, CARMA2, and CARMA3. CARMA proteins conserved across many species which
are characterized by the different functional domains shared by all members of the family:
the N-terminal CARD domain, following with a coiled-coil domain, a linker region, a PDZ
domain, a SH3 domain, and the C-terminal guanylate kinase-like domain (GUK) (Figure 1) (1, 2).
Although CARMA family proteins share a high degree of sequence and structural homology,
they are transcribed by different genes and expressed in different tissues. Specifically, CARMA1
is primarily expressed in the hematopoietic system, including the spleen, thymus and peripheral
blood leukocytes; CARMA2 is expressed in themucosal tissues and skin; and CARMA3 is expressed
in a broad range of tissues, particularly at high levels in lung, kidney, liver and heart, but not in
hematopoietic cells (3).

CARMA proteins are also known as CARD11, CARD14, and CARD10, because they were
originally identified as CARD domain-containing proteins by bioinformatics approaches. In spite
of distinct tissue distribution, CARMA proteins mediate different signaling pathways but utilize a
similar mechanism to activate downstream effector molecules (Figure 1) (4, 5). Upon signaling,
CARMA proteins, through their CARD domain, recruit two signaling molecules: Bcl10 (B cell
lymphoma protein 10), and MALT1 (mucosa-associated lymphoid tissue lymphoma translocation

gene 1) to form the CARMA-Bcl10-MALT1 (also known as CBM complex), and then activate
the downstream IKK complex, leading to the activation of NF-κB (6–8). Considering that Bcl10
and MALT1 are expressed in all tissues, the different tissue distribution indicates that CARMA
proteins may function upstream of Bcl10 and MALT1 to mediate the certain receptor-induced
NF-κB activation in different cells.
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FIGURE 1 | Schematic model of CBM complex-induced NF-κB activation.

(A) Structures of CARMA1,2,3 and their interactors. Each CARMA member

shares similar structures: caspase-recruitment domain (CARD), followed by a

coiled-coil domain (CC), a linker region, a PDZ domain, an SH3 domain, and a

GUK-like domain. BCL10, B-cell lymphoma/leukemia 10; S/T-rich,

serine/threonine-rich region; MALT, mucosa-associated lymphoid tissue; DD,

death domain; Ig, immunoglobulin-like domain; (B) Conserved Bcl10-Malt1

complexes interact with different CARMA proteins to link various receptors to

NF-κB signaling.

Early studies have showed that CARMA1 is required for
antigen receptor-induced NF-κB activation in T cells and
B cells, leading to lymphocyte activation and proliferation
(9, 10). Recently, Wang et.al shows that CARMA2 plays a
critical role mediating IL-17RA signaling in keratinocytes, and
CARMA2 gain-of-function mutations result in constitutively
activated IL-17RA signaling, leading to the development of
skin inflammation and psoriasis (11). Previously, several studies
indicate that CARMA3 functions as an indispensable adaptor
protein in modulating NF-κB signaling downstream of some
GPCRs (G protein-coupled receptors), including angiotensin
II receptor and lysophosphatidic acid receptor, as well as
receptor tyrosine kinases (RTKs), such as epidermal growth
factor (EGF) receptor and insulin-like growth factor (IGF)
receptor (12–14). Recent studies indicate that besides NF-κB
signaling, CARMA3 also serves as a modulator in antiviral RLR
signaling, providing a new understanding of CARMA3 (15).
In this review, we summarize the biology of CARMA3 and
discuss the roles of CARMA3 and its related proteins in different
signaling pathways.

MECHANISM OF CARMA3 ACTIVATION

Upon receptor activation, CARMA proteins may be recruited
to the cytoplasmic membrane by adaptor proteins and then be
further phosphorylated by upstream kinases, which results in
the recruitment and activation of downstream effector proteins.
In particular, in response to antigen receptors activation, PKCs
are activated, which phosphorylate serine at S564/649/657
and S552 on the linker region of CARMA1, and triggers
CBM complex oligomerization (16–19). Similar to CARMA1,
phosphorylation of CARMA3 at Ser520, an analog to Ser552
of CARMA1, might be crucial for CARMA3 activation (16).
Future studies are still needed to determine if other residues
in CARMA3 can be phosphorylated by PKC, as well as
other kinases may also contribute to CARMA3 activation.
Upon phosphorylation, CARMA3 forms a CBM complex
with Bcl10 and MALT1, contributing to downstream NF-κB
activation by regulating the IKK complex activity throughNEMO
polyubiquitination (20).

Besides Bcl10 and MALT1, some other molecules are also
reported to be involved in CARMA3 mediated NF-κB activation.
D’Andrea et al. utilized a two-hybrid screening to identify a
DEP domain-containing protein DEPDC7 as a cellular binding
partner of CARMA2 and CARMA3 but not CARMA1, which
serves as a specific mediator of GPCR-induced NF-κB activation
(21). Upon GPCR activation, β-arrestin 2, but not the β-
arrestin 1, associates with CARMA3 and most likely recruiting
CARMA3 into the receptor complex to mediate LPA-induced
NF-κB activation and subsequent IL-6 expression (22, 23).
More recently, Jiang et al. identified a transmembrane protein,
TMEM43 (also known as LUMA) as a new CARMA3-associating
protein that contributes to EGFR-induced NF-κB activation in
cancer cells (24).

CARMA3 IN EGFR SIGNALING AND GPCR
SIGNALING

Since receptor tyrosine kinases (RTKs), integrins, and G protein-
coupled receptors (GPCRs) have been reported to activate NF-
κB signaling through PKCs (14), Grabiner BC et al. found that
CARMA3-deficient mouse embryonic fibroblasts (MEFs) failed
to trigger NF-κB activation upon stimulation with endothelin
(ET-1) (20) and lysophosphatidic acid (LPA) (20), which are
ligands for two different GPCRs. Specifically, CARMA3 is
mainly required for GPCR-induced NF-κB activation (Figure 1),
because this activation induced by other cell surface receptors
such as TNFR or TLR4 do not require CARMA3 (20). Similar
to CARMA1 in antigen receptor-induced NF-κB activation,
CARMA3 also controls NF-κB activation by forming the CBM
complex. Several laboratories showed that GPCR-induced NF-
κB activation is also defective in Bcl10-deficient cells (25, 26). In
addition, Malt1 is also critically required for the degradation of
IκBα and the subsequent NF-κB induction in response to LPA
stimulation (27, 28). Moreover, Bcl10 and Malt1 are selectively
for LPA-induced NF-κB activation but are dispensable for the
activation of the JNK, p38, ERK MAP kinase, and Akt signaling
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pathways (25). By analyzing angiotensin II (Ang II)-induced
NF-κB activation, blocking the function of any components
in the CARMA3-Bcl10-Malt1 signalosome, through the use of
either RNAi, dominant-negative mutants, effectively impairs
Ang II-induced NF-κB activation (27). In endothelial cells, the
angiotensin II receptor AGTR1 induces NF-κB-dependent pro-
inflammatory responses, which is relied on PKC-dependent
assembly of a signaling complex comprised of CARMA3,
Bcl10, and MALT1, contributing to endothelial dysfunction and
vascular disease (29–32). In some breast cancers, aberrantly
overexpressed AGTR1 induces both ligand-dependent and
ligand-independent NF-κB activation, mediated by CARMA3,
Bcl10, and MALT1, driving cancer cell-intrinsic responses that
include proliferation, migration and invasion, as well as cancer
cell-extrinsic effects to promote tumor angiogenesis through
impacting endothelial cells of the tumor microenvironment (33).
In airway epithelial cells (AECs), Causton et al. showed that
CARMA3 contributed to NF-κB activation and the production
of proasthmatic mediators in response to a panel of asthma-
relevant GPCR ligands. Through genetically modified mice with
CARMA3-deficient AECs, they demonstrated that CARMA3 in
AEC is involved in allergic airway inflammation and bridges the
innate and adaptive immune responses in the lung (34, 35). More
studies have further indicated that the CARMA3-Bcl10-Malt1
signalosome plays a critical role in other GPCRs-induced NF-κB
activation in different cellular context (27, 33, 36, 37). Together,
these studies suggest that CARMA3-Bcl10-Malt1 signalosome
is an essential signaling complex linking GPCRs to NF-κB
activation (Figure 2).

Receptor tyrosine kinases (RTKs), a family of cell surface
receptors, are key players in mediating multiple cellular
responses upon the stimulation of growth factors, cytokines,
and polypeptide hormones. Multiple growth factors, including
insulin-like growth factor (38), epidermal growth factor (39),
and fibroblast growth factor (40), can induce notable NF-κB
signaling through their receptors that belong to the RTKs family.
Since PKC is required for EGFR-induced NF-κB activation and
given the importance of CBM complex in IKK activation (14),
Jiang et al. explored a possibility whether EGFR-induced NF-
κB activation involves the CBM complex. Consistent with this
hypothesis, their data indicate that CARMA3 and Bcl10 are
required for EGFR-induced NF-κB activation in both EGFR-
expressing human cancer cell lines and mouse embryonic
fibroblasts (41). Using biochemical and genetic approaches, Pan
et al. found that CBM complex is required for HER2-inducedNF-
κB activation and functionally contributes to multiple properties
of malignancy, including proliferation, migration and invasion,
both in vitro and in vivo (42). Upon stimulation, the CBM
complex recruits E3 ligase TRAF6 to provide a positive signal
to activate IKK complex via Lys63-linked polyubiquitination
(43). Therefore, these studies indicate that stimulation of RTKs,
including EGFR and HER2, induces NF-κB activation through
CARMA3-associated complex (Figure 2).

However, it remains to be determined the mechanism
by which the CBM complex is linked to EGFR signaling
pathway. To address this question, Jiang et al. performed a
high-throughput and functional genomic screen (also named

FIGURE 2 | Schematic of GPCR/EGFR-CARMA3 signaling pathway leading

to NF-κB activation. In cancer cells and endothelial cells, stimulations of the

surface receptor EGFR and GPCR trigger the proximal signaling, leading to

activation of phospholipase C (PLC) and protein kinase C (PKC). The activated

PKC further phosphorylates CARMA3 and enables CARMA3 to form the CBM

complex through interaction with the downstream Bcl10 and MALT1.

Formation of the CBM complex leads to activation of the IKK complex through

NEMO polyubiquitination. Ub, ubiquitination; p, phosphorylation.

Bi-molecule fluorescence complementation assay, BiFC) to
identify potential CARMA3-binding proteins, and found that
TMEM43 (also known as ARVD5 or LUMA) might be
a critical component in EGFR signaling network through
interaction with CARMA3 and its associating complex to induce
downstream NF-κB activation following EGF stimulation, but
not on TNF-α stimulation (24). Mechanically, they revealed
that TMEM43 inducibly interacted with EGFR and mediated
the formation of CARMA3 and Bcl10 complex (24), which
may bridge EGFR and CBM complex, leading to the activation
of IKK. Regarding to the intracellular protein tyrosine kinase
activity of EGFR, it still need to be investigated whether the
inducible association between EGFR and TMEM43 may lead
to TMEM43 or its binding proteins being phosphorylated by
EGFR, which may enable TMEM43 to interact with CARMA3/
Bcl10 complex.

CONTRIBUTION OF CARMA3 TO DNA
DAMAGE RESPONSE

NF-κB is a family of transcription factors that induce the
expression of multiple anti-apoptotic genes (44, 45). Although
NF-κB is activated as part of DNA damage responses, which
protects cells from DNA damage-induced program cell death
(46), the molecular mechanism by which DNA damage activates
NF-κB remains to be determined. Zhang et al. showed
that the CBM complex not only responds to extracellular
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stimuli by various receptors, but also mediates intracellular
signal elicited from ATM-mediated DNA damage response
(47). PKC is generally considered regulating CARMA1 or
CARMA3 activation through phosphorylation of the linker
region of CARMA proteins (17, 48). However, Zhang et al.
found that PKC activity is dispensable for Doxorubicin-
induced NF-κB activation (47), indicating that other kinases
may phosphorylate CARMA proteins, or alternatively, CAMRA
proteins may be activated through different mechanisms, such
as ubiquitination upon DNA damage. Interestingly, this study
revealed that CARMA3 could be modified by K63-linked
ubiquitination upon Doxorubicin stimulation (47). In addition,
CBM complex is linking TRAF6 to IKK complex in response
to EGF stimulation in A431 cells (49). Consistent with the
role of TRAF6 in activation of IKK, Zhang et al found that
DNA damage triggered the association between CARMA3
and TRAF6, suggesting that TRAF6 may function to activate
CBM complex by K63-linked polyubiquitination of CARMA3
(Figure 3) (47).

The anti-tumor effect of many chemotherapy drugs relies
on their ability to induce cell apoptosis due to the DNA
damage response (50, 51). However, cancer cells can induce

FIGURE 3 | The CARMA3-BCL1-MALT1 (CBM) complex contributes to DNA

damage-induced NF-kB activation. Upon chemotherapy drug in HeLa cells

and MEF cells, DNA damage-induced NF-kB activation involves the

recruitment of TRAF6 to CARMA3, which leads to formation of the

CARMA3/Bcl10/MALT1/TRAF6 complex, which finally results in a

CARMA3-dependent, but PKC-independent polyubiquitination of IKK

complex.

NF-κB activation as a mechanism to avoid DNA damage-induced
apoptosis and develop drug resistance for chemotherapy (52).
Since Doxorubicin induces more cell apoptosis in CARMA3-
and Bcl10-deficient cells than WT cells, this result suggests
that the CBM complex might contribute to the resistance of
chemotherapy-induced cell death (47). Although irradiation-
induced damage can be repaired, damage to normal tissue is one
of main side effects for cancer radiotherapy. In their study, Zhang
et al. found that the tissue repair and cell proliferation were
impaired in CARMA3-deficient mice exposed to irradiation,
indicating the protective role of CARMA3 in cell survival (47).
Together, this study revealed the molecular mechanism by which
DNA damage activates NF-κB is mediated by CBM complex,
therefore, providing a molecular basis for targeting the CBM
complex to block DNA damage-induced NF-κB pathway (47).

ROLE OF CARMA3 IN ANTIVIRAL
RIG-I-MAVS SIGNALING

It has been an important question why different individual
displays highly variable responses and infectious outcomes
to influenza virus infection. To explore the host genetic
polymorphisms contributed to this variation, Ferris et al.
identified quantitative trait loci (QTL), Hrl4, contains 13 genes
(53). Among of these genes, Card10 gene, which encodes
CARMA3, may have a potential link to the antiviral innate
response. To determine the functional role of CARMA3 in
antiviral innate immune response, Jiang et al. challenged
CARMA3-deficient mice with influenza virus or vesicular
stomatitis virus and found that CARMA3-deficient mice showed
more resistance to virus infection, which was characterized
by less weight loss, lower viral yield, and greatly attenuated
lung injury, suggesting that CARMA3 plays a negative role in
antiviral response against virus infection (15). Transcriptional
factors NF-κB and IRFs induce the expression of multiple
antiviral pro-inflammatory cytokines and type I interferon
expression. Interestingly, following influenza virus or vesicular
stomatitis virus infection, the production of pro-inflammatory
cytokines, such as IL-6, IL-1β, and TNF-α in the lung or sera of
CARMA3-deficient mice was significantly reduced compared to
wild-type mice, while more type I IFN was induced in CARMA3
KO mice, indicating that CARMA3 plays a negative role in
regulating antiviral responses in the host, but it plays a positive
role in regulating the expression of pro-inflammatory cytokines
in response to viral infection (Figure 4) (15). Mechanically,
they found that CARMA3 is a regulator of RIG-I-MAVS
signaling pathway, which modulates MAVS-mediated NF-κB
and TBK1-IRF3 activation in a two-phase mechanism (15).
Upon RIG-I activation at the early time of viral infection, MAVS
is firstly activated on mitochondrial, activating downstream
IKKα/IKKβ/NEMO signaling in a CARMA3-dependent manner
(Figure 4). However, in the early phase of post-infection, the
CARMA3-BCL10 complex interacts with MAVS, therefore,
preventing the formation of high-molecular weight MAVS
aggregates that is required for downstream TBK1-IRF3
activation (Figure 4). Unlike other reported molecules including
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FIGURE 4 | CARMA3 Is a host factor regulating the balance of inflammatory

and antiviral responses against viral infection. Upon RNA virus infection in

airway epithelial cells, CARMA3 sequesters MAVS from forming

high-molecular-weight aggregates, thereby suppressing TBK1/IRF3 activation.

Following NF-kB activation upon virus infection, CARMA3 undergoes

K48-linked ubiquitination and is targeted for proteasome-dependent

degradation, which releases MAVS to activate IRF3.

A20, CYLD, and NEMO, which are either positive or negative
mediators for both TBK1-IRF3 signaling and NF-κB activation
(54–56), CARMA3 contributes to RNA virus infection-induced
NF-κB signal but prevented TBK1/IRF3 activation through
disruption of MAVS oligomerization. However, RNA virus
infection also activates an unknown E3 ubiquitin ligase
that induces CARMA3 polyubiquitination and degradation
(Figure 4), leading to releasing the CARMA3-dependent
inhibition on the MAVS-TBK1-IRF3 signaling in the late phase
of RNA virus infection (15).

Since CARMA1, instead of CARMA3, is expressed in
hematopoietic cells, it will be interesting to determine whether
CARMA1 functions in mediating RIG-I/MAVS signaling in
myeloid cells. However, our unpublished data revealed that
CARMA1 was not involved in the regulation of neither RIG-
I/MAVS in anti-RNA virus nor cGAS/STING in anti-DNA virus
signaling (data was not shown here). In addition to CARMA1,
CARD9, a protein structurally related to CARMA family but only
expressed in myeloid cells, resulted in defects in NF-κB activation
and production of pro-inflammatory cytokines, including IL-6
and IL-1β, in response to 5′ppp dsRNA treatment and DNA
virus infection (57, 58). However, it did not alter the production
of type I IFN. In contrast to the CARMA family that are
differentially expressed in different tissues and cells, BCL10 is
ubiquitously expressed. Similar to the role of CARD9 in dendritic
cells, BCL10 mediated NF-κB activation and production of pro-
inflammatory cytokines in response to 5′ppp dsRNA treatment
or DNA virus infection (57, 58), whereas, in primary MEF cells,
BCL10 functions similarly to CARMA3 upon VSV infection or

poly(I:C) treatment (15), suggesting that BCL10 may regulate
RIG-I/MAVS signaling in a cell-type-specific manner.

During the past decade, it has been shown that
posttranslational modifications including phosphorylation,
ubiquitination, and SUMOylation, play important roles in
fine-tuning innate immunity by either modulating the stability of
key proteins in the immune system (59). Recent studies indicate
that ubiquitination may also regulate the function of CBM
complex. Several laboratories showed that in lymphocytes, TCR
activation induces the ubiquitination of lysine residues in the
SH3 and GUK domains of CARMA1, leading to a proteasome-
dependent degradation of CARMA1; while in natural killer
T cells, the E3 ligase Cbl-b mediated the agonistic ligand
α-galactosylceramide-induced ubiquitination and degradation
of CARMA1 (60, 61). Similar processes also regulate BCL10
as shown that PKC or TCR/CD28 co-stimulation signaling in
primary T cells results in ubiquitination of Bcl10 and degradation
by the autophagy-dependent proteolysis machinery but not by
the proteasome complex (61). Thus, these studies indicate a
feedback mechanism in which E3 ubiquitin ligases mediate
ubiquitination and degradation of CARMA1-BCL10 complex
following the stimulation of antigen receptors. However, whether
the CARMA3-BCL10 complex also undergoes ubiquitination
and proteasomal degradation is still unclear. Jiang et al. revealed
that the stability of BCL10 was not significantly altered following
VSV infection, indicating that posttranslational modification
of BCL10 is a signaling-specific manner. In contrast to BCL10,
CARMA3 is gradually targeted for K48-linked ubiquitination
and degradation following VSV infection (15), which may
serve as a new mechanism to attenuate NF-κB signaling, and
meanwhile, it releases MAVS from CARMA3-BCL10-MAVS
complex to form functional aggregates to trigger TBK1-IRF3
activation (Figure 4) (15). Altogether, it suggests that CARMA3
is a key factor that regulates the balance of inflammatory and
antiviral responses against viral infection. However, it remains
to be determined how CARMA3 is targeted for K48-linked
ubiquitination and degradation, which may help to design
therapeutic agents for reducing inflammation but enhancing the
antiviral response.

CONCLUSIONS AND OUTSTANDING
QUESTIONS

During the past decade, many progress has been made in the
understanding of CARMA3 functions in the NF-κB signaling
pathways. These studies demonstrate that CARMA3-dependent
IKK activation is involved in GPCR-, RTK-, ATM-, and RLR-
induced NF-κB activation. However, further investigation is
still needed to reveal the mechanism by which CARMA3 are
linked to the different receptors. Therefore, it is important to
determine whether CARMA3 is associated with other proteins
following different stimuli. Identifications of such proteins
will provide the molecular basis of how CARMA3-containing
complexes are involved in mediating NF-κB activation induced
by different stimuli.
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Several groups have shown that CARMA3 was overexpressed
in several tumor cells and correlated with tumor progression (42,
62, 63), indicating that CARMA3 may serve as a potential drug
target for cancer treatment. Moreover, Zhang et al. highlights
the role of CARMA3 in DNA damage-induced NF-κB activation,
which may explain the resistance of some tumor cells to
chemotherapy or radiation-therapy (47). Thus, more studies are
required to define the regulation of CARMA3-mediated signaling
transduction and the role of CARMA3 or its interacting proteins
in cancers.

Given that Card10, CARMA3 encoding gene, might
contribute to the host susceptibility to influenza virus (53),
and since CARMA3 plays a positive role in RIG-I-induced
NF-κB activation, leading to the induction of pro-inflammatory
cytokines, but negatively regulates MAVS-induced TBK1/IRF3
signaling and production antiviral Type-I IFN (15), it will be
interesting to investigate the role of CARMA3 in influenza virus
pathogenesis. Considering the ubiquitination and degradation
of CARMA3 upon VSV infection, it will be interesting to
determine whether some virus, such as influenza virus, Ebola,
SARS, and MERS, may modulate the mechanism of proteasomal
degradation of CARMA3, which may regulate the expression
of pro-inflammatory cytokines and type I IFN expression, and

result in virus infection-associated cytokine storm, thereby

contributing to the pathogenesis of virus infection.
Until now, no missense mutations of CARMA3 have been

reported to contribute to the pathogenesis in human disease,
besides some studies suggest that CARMA3 is overexpressed
in several tumors (63), which may affect the onset and
progression of tumorigenesis. Therefore, it will be interesting
to investigate whether there are CARMA3 polymorphisms that
affects the ubiquitination and degradation of CARMA3, resulting
in variations of individuals to tumor development, chemotherapy
resistance, and susceptibility to virus infection. This kind of
study will provide the new molecular insight for designing the
therapeutic agents for cancer and infectious diseases.
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