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Exosomes and microvesicles are two major categories of extracellular vesicles (EVs)

released by almost all cell types and are highly abundant in biological fluids. Both the

molecular composition of EVs and their release are thought to be strictly regulated

by external stimuli. Multiple studies have consistently demonstrated that EVs transfer

proteins, lipids and RNA between various cell types, thus mediating intercellular

communication, and signaling. Importantly, small non-coding RNAs within EVs are

thought to be major contributors to the molecular events occurring in the recipient

cell. Furthermore, RNA cargo in exosomes and microvesicles could hold tremendous

potential as non-invasive biomarkers for multiple disorders, including pathologies of

the immune system. This mini-review is aimed to provide the state-of-the-art in the

EVs-associated RNA transcriptome field, as well as the comprehensive analysis of

previous studies characterizing RNA content within EVs released by various cells using

next-generation sequencing. Finally, we highlight the technical challenges associated

with obtaining pure EVs and deep sequencing of the EV-associated RNAs.

Keywords: apoptotic bodies, microvesicles, circulating RNA, next generation sequencing, exosomes, extracellular

vesicle (EV)

INTRODUCTION

The “Extracellular Vesicles (EVs)” is a general term used to describe various types of
spheroid structures, encircled by a lipid membrane bilayer, which are secreted by mammalian cells
either passively or upon certain stimuli (1). Since their initial discoverymore than 30 years ago (2, 3)
EVs have been purified from nearly all mammalian cell types including cells of the immune system
(1). Furthermore, EVs have been detected in almost all human biological fluids, and shown to
mediate cell-cell communication, thus playing a key role in the regulation of various physiological
processes in the body (4) including the immune response (5–8). Finally, it becomes increasingly
evident that EVs may contribute to carcinogenesis, as well as the spread of viruses, toxic proteins,
and prions (1, 9).

There are three distinct types of EVs (as classified by their origin and biogenesis)—apoptotic
bodies (ABs), microvesicles (MVs, also known as shedding vesicles), and exosomes (Figure 1A).
The ABs are on average 1–5µm in diameter and are by-products of cell disassembling
during the apoptosis (10, 11). The MVs are formed by outward budding of the plasma
membrane and are between 100 and 1,000 nm in diameter (8). The exosomes are the smallest
type of EVs, having a diameter of 30–150 nm, and are primarily formed as intraluminal
vesicles (ILVs) within multi-vesicular bodies (MVBs). Upon fusing of MVBs with the
plasma membrane, the ILVs are released as exosomes into the extracellular space (8). Both
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FIGURE 1 | Extracellular membrane vesicles. (A) The mechanisms of generation, size distribution, and common protein markers of different EVs types; (B) Different

populations of EVs could be released depending on the side of the plasma membrane of a polar cell.

MVs and exosomes contain various cytoplasmic and membrane-
associated proteins as well as lipids, sugars, and nucleic acids
(9), while ABs may in addition include nuclear fractions and
cell organelles (1, 10, 11). Well-characterized protein markers
for exosomes include various tetraspanins such as CD9, CD63,
and CD81; while the MVs contain transmembrane proteins
common for the plasmalemma such as integrins and selectins
(8). Concurrently, ABs could be differentiated by the presence
of histones (10, 11). Recently, large oncosomes (LOs) have been
identified as the fourth type of EVs which are generated by
shedding of membrane blebs from tumor cells and have a size
similar to ABs (12).

Importantly, multiple research reports have demonstrated
that various RNA species (including mRNA, miRNAs, and
lncRNAs) entrapped within EVs can be transferred from donor
to acceptor cells and interfere in gene expression in the latter
(13, 14). This mini-review is aimed to provide a state-of-the-
art in the EVs field, focusing primarily on the reported RNA
cargo in different subtypes of EVs as well as the methodological
challenges associated with purification of membrane vesicles
and deep sequencing of their RNA content. Furthermore, we
elaborate on a putative contribution of vesicular RNA to the
functioning of the immune cells.

THE CHALLENGES IN PURIFICATION OF
EVS AND CHARACTERIZATION OF
EXTRACELLULAR RNA

The techniques widely used so far for isolating EVs
include ultracentrifugation, density gradient flotation,
ultrafiltration, chromatography, polymer-based precipitation,
and immunoprecipitation (15). Differential ultracentrifugation
is the most commonly used approach for EVs purification and,
in particular, for separating exosomes from ABs andMVs (16). A
biological fluid is first depleted from living cells, cell debris, ABs,
and MVs with a series of lower-speed centrifugation, and the
exosomes fractions are ultimately pelleted by ultracentrifugation.

However, the final exosomes pellets can be contaminated with
low-sized MVs, large protein aggregates as well as viruses
(17, 18). The method of density gradient flotation harnesses
differences in size, shape, and density of different EVs types
and allows much higher purity of isolated EVs especially
when combined with ultracentrifugation. However, high-density
lipoproteins (HDL) and low-sizedMVs are ultimately co-isolated
with exosomes when using density gradient ultracentrifugation
(19). Size exclusion chromatography generally allows recovery
of EVs populations free from ribonucleoproteins and other
soluble contaminants, however, different EVs types with a
similar size could co-elute (20). While, ultrafiltration can also
efficiently remove soluble components from EVs preparations,
the similarly sized particles (both membrane vesicles and protein
aggregates) will co-purify (21). An alternative approach that is
increasingly being applied is the use of co-precipitants such as
polyethylene glycol combined with low-speed centrifugation to
aggregate and pellet exosomes for subsequent processing (22).
However, while precipitation techniques have generally very
high exosomes recovery rates, they also co-precipitate various
proteins (23). Finally, immunoprecipitation techniques utilize
antibodies against certain proteins located on the surface of
EVs and can specifically isolate CD63, CD9, and CD81 positive
exosomes (24). However, large-scale separation of exosomes with
immunoprecipitation is challenging due to their highly diluted
state in the biological fluids.

While each of the above-mentioned approaches harnesses

certain differences in biophysical or molecular properties of EVs
(including the size, the density, and the content of the surface

proteins), neither method can recover a pure material and allows

only an enrichment for certain subpopulations of EVs in a sample
(15, 25). As a result, the characterization of EV type-specific RNA

cargo remains highly challenging and strongly depends on the
purification method. In addition, the bovine serum that is used
as a component of most cell culture media could be a source of

contaminating extracellular RNAs in a sample that mask human-
derived RNA species having a sequence similar to bovine RNAs
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(e.g., miR-122) (26). The accuracy of the subsequent analysis of
EV-associated transcriptome is also highly dependent on an RNA
qualification method, including a DNA library preparation for
deep sequencing (15). For instance, widely used commercial kits
for RNA sequencing, by default, capture only 5′-phosphorylated
3′-OH short RNA molecules representing only a fraction of total
RNA in the sample (27). Likewise, most whole-transcriptome
sequencing techniques can incorporate only relatively long RNAs
and, thus, overlook small RNAs.

Finally, certain cell types (e.g., cells of retinal pigmented
epithelium and the intestine) exhibit a membrane polarity
(Figure 1B). Therefore, EVs secreted by such cells might have
distinct properties and molecular content depending on whether
they derive from basal or apical parts of the membranes (28).
While MVs and exosomes of polar cells have not yet been
properly studied, the differences in structure, size, and lipid
composition of apical and basal membranes could determine
the features of the secreted EVs (28). The polarized trafficking
machinery in certain cells suggests that additional care should be
taken for isolating apical exosomes, including a careful control
of the functional integrity of cell monolayers during preparation
of conditioned media (29). On the contrary, an apical-only
isolation approach risks missing important basolaterally released
vesicles (28).

THE REPORTED RNA CONTENTS WITHIN
DIFFERENT EVS CLASSES

The presence of mRNAs, miRNAs, and lncRNAs within
exosomes and MVs have been consistently shown with
microarrays and RT-qPCR techniques in multiple early (13, 30–
36) as well as more recent reports (37–40). The application
of more advanced high-throughput RNA sequencing methods
revealed the presence of various other RNA species within
subpopulations of EVs isolated from biological fluids and cell
conditionedmedia (Table 1). Those RNA species include snRNA,
snoRNA, piRNA, vault RNA, Y-RNA, scRNA, SRP-RNA, and
7SK-RNA; as well as short fragments originating from rRNA,
tRNA, mRNA, lncRNAs, and various intergenic repeats (40–57).

In a pioneering work, Nolte-’t Hoen et al. characterized small
RNA content in EVs released by the immune cells in culture
using deep sequencing. Interestingly, the majority of total RNA
isolated from EVs consisted of small RNAs (<200 nt), withminor
amounts of 18S and 28S rRNA. Those short RNA fragments were
primarilymapped to protein-coding regions and genomic repeats
including SINE, LINE, and LTR sequences (Table 1). On the
contrary, the majority of sequences present in the cellular small
RNA population represented miRNAs, while the proportion of
miRNAs in the daughter EVs was dramatically lower. Besides
protein coding mRNA and repeats, the EV fractions contained
all types of structural RNAs (such as vault RNA, Y-RNA, snRNA,
snoRNA, SRP-RNA, and tRNA) as well as fragments deriving
from lncRNAs and pseudogenes. Furthermore, many of the
small non-coding transcripts were enriched in EVs relative to
cellular RNA, indicated that cells might destine specific RNAs
for extracellular release (41). A significant underrepresentation
of miRNA over other RNA species in the exosomes released by

various cultured cells have been also confirmed by multiple other
studies (40, 42, 46, 50, 52, 55, 57). These data go in accordance
with the previous observation that most individual exosomes
does not carry any biologically significant number of miRNA
copies (58). Nevertheless, other RNA sequencing experiments
indicated that a significant proportion of small RNA-seq reads
still correspond tomiRNA in exosomes released by some cell lines
(51, 53, 54, 57). Interestingly, several independent groups have
observed a significant enrichment (15–50% of total reads) of RNA
fragments mapped to genomic repeats comprising retroviral
sequences, LTR, SINE, and LINE sequences (41, 42, 47, 50, 55).
It has to be mentioned that the authors did not specify whether
the small RNA library preparation protocols used in the above
studies included the modifications to allow capturing 5′-OH
and/or 3′-phosphorylated RNAs. Therefore, it remains unclear
whether they actually characterized the full spectrum of small
RNA in the corresponding EVs.

The sequencing of total (both long and small) RNAs in the
EVs was reported by Jenjaroenpun et al. (46) and Miranda
et al. (49) in the EVs present in conditioned media from MDA-
MB cells and the urine, respectively, and showed a significant
proportion of rRNA reads (87–97%) that was similar to the rRNA
content in the cytoplasm. Out of the remaining 3–13% reads,
approximately half was mapped to protein-coding transcripts
while another half aligned to non-coding RNAs and genomic
repeats. In another report by Beradrocco et al. the authors
used both total RNA and small RNA sequencing protocols
separately to characterize a spectrum of long RNAs encapsulated
within the EVs released by four different liver cancer cell lines
(55). The largest proportion (32–66%) of total RNA reads were
mapped to rRNA, while 15–44% corresponded to the genomic
repeats, and only 11–25% of reads were mapped to protein-
coding and non-coding RNA genes. The small RNA sequencing
performed on the same EVs preparations revealed only a slightly
different distribution of RNA classes: rRNA (16–54%), genomic
repeats (24–40%), and transcriptome (24–51%) (55). In another
whole-transcriptome RNA-seq study paralleled with small RNA
sequencing, Lasser et al. demonstrated that human mast and
erythroleukemic cell lines release two exosomes populations (as
separated by flotation on a density gradient into HD and LD
fractions) (40). A clear lack of correlation between both long
and short RNA cargo in HD and LD fractions suggests that
extracellular RNA in these two fractions are associated with
distinct pathways. Thus, readsmapped tomRNA transcripts were
more abundant percentage-wise in the HD as compared to LD
exosomes (75 vs. 20%), while the distribution of non-coding RNA
reads was opposite (25 vs. 80%). In short RNA libraries, the HD
fractions were enriched in mature miRNA (23%), while the LD
fractions were dominated by tRNA (28%), and mature miRNA
(10%) (40).

Another study investigated RNA content in three separate EVs
types released by melanoma cells in culture and identified some
non-coding RNAs to be enriched in every EV samples (53). Thus,
RNA profiles indicated the presence of prominent 18S and 28S
rRNA peaks in ABs and MVs with relatively moderate levels
of small RNA. By contrast, exosomes contained predominantly
small RNA and much less rRNA as compared to both ABs and
MVs (53). Interestingly, a similar number of different miRNAs
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have been identified in every EV type. Overall, a close relationship
between miRNA profiles was found in ABs and MVs (R = 0.91),
MVs and exosomes (R = 0.86), as well as MVs and parental cells
(R = 0.86). While a less strong correlation was found between
ABs and exosomes (R = 0.79) and exosomes and cells (R =

0.75). Despite the fact that EVs subsets were different only to a
minor degree from the aspect of their miRNA cargo, a significant
number of miRNAs were detected only in exosomes and were
absent in both ABs and MVs, supporting the concept of specific
RNA loading into exosomes. It has to be mentioned that other
ncRNA species were not only significantly more abundant as
compared tomiRNA but also selectively enriched in different EVs
subtypes released by melanoma cells, which adds another level of
complexity to investigating extracellular vesicle RNA cargo and
its function (53).

Only a few reports have so far investigated small RNA cargo in
EVs isolated from human biological fluids with next generation
sequencing (44, 45, 48). These studies indicated that exosomes
isolated from human plasma, saliva, and urine contained a
significant proportion of miRNA reads (35–76% of total). The
rest RNA species in the EVs from the above mentioned biofluids
included fragments of rRNA, lncRNAs, tRNA, mRNA, repeated
regions as well as small noncoding RNA such as piRNA, snRNA,
and snoRNA. It is important to mention that exosome isolations
from biofluids may contain much higher amounts of large
protein aggregates, including miRNA-loaded AGO complexes
that are normally released upon cell death (59), as compared to
“few-days” cell conditioned media. Therefore, it remains to be
validated whether the miRNAs detected in human biofluids were
indeed associated with the EVs. Interestingly, deep sequencing of
total RNA purified from urea exosomes (49) revealed drastically
different transcripts distribution than that observed by Cheng
et al. (48). Specifically, a substantial proportion (∼87%) of
total RNA reads was mapped to rRNA and only about 8% of
reads aligned to non-coding RNA and DNA repeats, while the
remaining ∼5% of reads corresponded to protein-coding RNA
(49). Conversely, the mapping statistics and reads distribution
reported by Miranda et al. were similar to those obtained
upon total RNA sequencing of exosomes from cell conditioned
media (46, 55).

To conclude, the collective evidence evolving from the
above mentioned studies (Table 1) argue that EVs released by
most cells indeed carry significant amounts of non-coding and
protein-coding transcripts, as well as their parts, that should
be considered when studying the effects of extracellular RNA
on recipient cells. The differences in EVs RNA cargo content
among the reported studies might be explained in part by: (1) cell
type-specific RNA expression differences; (2) different EVs and
RNA isolation methods; and (3) the use of different NGS library
preparation protocols and sequencing platforms.

THE ROLE OF THE EVS RNA CONTENT
FOR THE IMMUNE SYSTEM

While it was consistently shown that the exchange of exosomes
and microvesicles among different immune cells contribute
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to both adaptive and innate immune response, the impact
of the EVs RNA cargo onto immune cells function remains
obscure (60). Mittelbrunn et al. demonstrated that exosomes
originating from T cells are loaded with certain miRNAs (e.g.,
miR-335) can be internalized by the antigen-presenting cells
APCs at the immune synapses and that subsequently led to
the reduction of target mRNA SOX4 expression (61). Likewise,
miRNA transfer from one dendritic cell (DC) to another via
EVs led to alterations in recipient-cell gene expression (62), and
regulatory T cells reduce Th1 (CD4+ IFNg+) inflammatory
responses by EV transfer of miRNA (especially let-7d) to Th1
cells (63). The discovery of the variety of different RNA species
in MVs and exosomes secreted by the immune cells as well
(41), added another level of complexity to the theory of cell-cell
communication via cell-free RNA. In particular, very marginal
levels of EVs-encapsulated miRNAs as compared to other RNA
species not only question the contribution of miRNA to cell-cell
communication but also suggests that other RNAs might play
much more determining biological role.

Thus, previous experiments revealed that extracellular
miRNA can activate Toll-like receptor (TLR) 8 signaling, which
induces cytokine secretion, presumably by mimicking viral RNA
(64). The TLRs are a family of innate immune system receptors
which recognize various molecular patterns of microbial
pathogens and induce antimicrobial immune responses (65, 66).
Specifically, both free-floating AGO protein bound miRNAs
and miRNA encapsulated in EVs have been hypothesized to
mediate communication between immune cells via binding to
extracellular or intracellular Toll-like receptors (TLRs) (64, 67).
Among the major effects of the nucleic acids-mediated activation
of intracellular TLRs is the induction of certain cytokines
essential for the innate immune response. While multiple other
reports link activation of TLR pathways and exosomes, it remains
unclear whether the observed effects were indeed mediated by
the encapsulated RNAs. However, the finding that intracellular
TLRs located within endolysosomal compartments can bind
both double-stranded and single-stranded nucleic acids derived
from viruses and bacteria (68) strongly suggest that various
RNA classes incorporated within the EVs could also activate the
corresponding TLRs. Due to the largely sequence-independent
impact of nucleic acids on the TLRs, it is feasible that more
abundant non-miRNA classes could significantly contribute

to such activation. Overall, it remains feasible that combined
interactions of vesicular RNAs and TLRs within and between
diverse immune and non-immune cells could contribute to the
regulation of the complex nexus of immune responses.

CONCLUSION AND FUTURE
PERSPECTIVES

Massive parallel sequencing has enabled characterization of
the whole spectrum of nucleic acids in a given sample,
and was consistently applied to demonstrate the presence of
the complex RNA cargo within EVs populations released by
various cells. Interestingly, the intravesicular miRNAs (which
were well-documented previously using microarray and qPCR-
based methods) represented only a very marginal proportion
as compared to other RNA species including various small
non-coding RNAs, lncRNAs, and mRNA fragments. A putative
biological impact of the EVs-associated transcriptomes remains
to be validated; however, multiple studies indicated that, at
least, exosomal miRNA could mediate communication among
various cell types including the immune cells. In addition,
EVs-encapsulated miRNAs have been shown to serve as highly
specific biomarkers for various pathological conditions and
correlate with the presence of malignant tumors. Indeed,
exosomes carrying a tumor-specific miRNA repertoire have been
consistently detected in the venous blood of cancer patients and
mouse models. The collective finding that non-miRNA species
are in fact much more abundant in the isolated EVs populations,
suggests that they could serve as even more promising non-
invasive biomarkers for cancer and/or other disorders.
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