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Tuberculosis (TB) is a major infectious disease worldwide, and is associated with several

challenges for control and eradication. First, more accurate diagnostic tools that better

represent the spectrum of infection states are required; in particular, identify the latent

TB infected individuals with high risk of developing active TB. Second, we need to better

understand, from a mechanistic point of view, why the immune system is unsuccessful

in some cases for control and elimination of the pathogen. Host transcriptomics is a

powerful approach to identify both diagnostic and mechanistic immune signatures of

diseases. We have recently reported that optimal study design for these two purposes

should be guided by different sets of criteria. Here, based on already published

transcriptomics signatures of tuberculosis, we further develop these guidelines and

identify additional factors to consider for obtaining diagnostic vs. mechanistic signatures

in terms of cohorts, samples, data generation and analysis. Diagnostic studies should

aim to identify small disease signatures with high discriminatory power across all affected

populations, and against similar pathologies to TB. Specific focus should be made

on improving the diagnosis of infected individuals at risk of developing active disease.

Conversely, mechanistic studies should focus on tissues biopsies, immune relevant cell

subsets, state of the art transcriptomic techniques and bioinformatics tools to understand

the biological meaning of identified gene signatures that could facilitate therapeutic

interventions. Finally, investigators should ensure their data are made publicly available

along with complete annotations to facilitate metadata and cross-study analyses.

Keywords: transcriptomics, infectious diseases, tuberculosis, host immune response, human immunology

INTRODUCTION

Tuberculosis (TB) is a major infectious disease affecting one-third of the world’s population.
Infection withMycobacterium tuberculosis (Mtb) manifests as a spectrum of disease states ranging
from asymptomatic subclinical infection (latent infection, LTBI) to active disease (ATB). Most
latently infected subjects have a persistent immune response to Mtb-specific antigens but do not
show any pathology, and can be considered healthy. Diagnostic tests for latent infection include
the tuberculin skin test and interferon-gamma release assays, both of which essentially detect an
immune response against Mtb. However, positivity to these tests only reflect past Mtb immune
exposure, and thus cannot discriminate between individuals with eliminated or controlled infection
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from those with subclinical active disease. Throughout their
lifetime about 10% of individuals with latent infection will
progress to active disease which has significant morbidity and
mortality. Diagnostic tests for active infection include direct
detection of Mtb organisms in sputum, by smear and/or culture
or by nucleic acid amplification (GeneXpert), and detection of
abnormalities consistent with TB by chest X-ray. In some cases
where microbiological tests are negative, the sole presence of
disease symptoms such as chest pain, coughing up blood or
breathing difficulty can be sufficient for diagnosis, particularly
in areas with a high TB burden. Treatment of ATB requires
prolonged aggressive antibiotic regimen, typically a combination
of a minimum of four drugs over a 6-months period (1). It is
also associated with severe side effects, especially in immune
compromised patients, a high inter-individual variability in terms
of effective dosing and successful drug combinations, and a high
failure rate, due to inefficient patient follow up and the rise
of drug resistant strains (1–3). Overall, there is still a limited
understanding of pharmacokinetics and mechanism of action
of anti-TB drugs, as well as their relationship with disease
phenotype and individual genetic background.

Several challenges in the field of TB are currently being
investigated that would address significant public health
concerns: (1) to develop diagnostics that can more accurately
reflect the spectrum of Mtb infection states, in particular
identify individuals at risk of developing active disease in order
to treat them prior to developing ATB. This would prevent
transmissions and could ultimately eliminate the reservoir of
infections. Whereas, Isoniazid (INH) preventative therapy of
individuals with LTBI is currently the primary prophylaxis for
preventing TB progression, given the costs and side effects of
treatment and the low rate of progression to active disease,
it would be highly beneficial for both social and economic
reasons to identify the individuals that will truly benefit from
it beforehand. (2) Improving the specificity and sensitivity of
diagnostics for active disease. Some ATB patients are reverting
to a negative IFN-γ release assay (IGRA) test or their sputum is
negative forMtb bacilli detection either by culture or GeneXpert.
Other confounding factors for diagnosis of ATB includes the
ubiquitous presence of non-tuberculous mycobacteria (NTMs)
in the environment that present significant immune cross-
reactivity with Mtb (4). However, both GeneXpert and IGRA
can discriminate between Mtb and most NTMs, since they,
in the case of IGRA, lack the antigens included in the test
(ESAT-6 and CFP10). Chest X-rays of lung granuloma forming
diseases such as sarcoidosis or aspergilloma often look very
similar to TB, and in the case of sarcoidosis, immune cross-
reactivity toMtb antigens can also be detected in both blood and
bronchoalveolar lavage (BAL) (5–7). (3) Identify novel targets
for therapeutic interventions. The exact mechanisms driving
inter-individual variability in the pathology and control of TB
are still poorly understood. Progression to active disease is
increased inMtb infected individuals with immune suppression,
such as anti-TNFα treatment or HIV co-infection (8–11),
or other immune regulators used for transplantation (12).
Risk factors for progression also include comorbidities such
as for example type 2 diabetes (13, 14). Conversely, obesity

was associated with lower active TB risk (15–17). Better
characterization of these immune and metabolic dysregulations
and their impact on TB disease progression could provide
novel targets for therapeutic intervention designed for different
subsets of patients. Thus, some of the main needs for TB
control are the improvement of current diagnostic tools to
better discriminate between the different TB disease states
and a better mechanistic understanding of successful immune
responses to control and eliminate the pathogen to develop novel
therapeutic interventions.

Host transcriptomics in TB (and other diseases) is a
powerful approach for the discovery of immune signatures.
Transcriptomic analyses of human samples provide insights into
which genes are expressed in the sampled tissue. By comparing
such transcriptomic profiles in samples from subjects with a
disease vs. those without, it is possible to identify genes that
differ in their expression between the groups, and thus are
part of a disease signature. Identifying such signatures has two
primary benefits: First, transcriptional signatures can be used
as diagnostic tools to identify affected individuals. Second, they
can be used as indicators of which genes, pathways and cells
are affected by a disease, thereby improving the mechanistic
understanding of the disease and enabling the design of new
therapeutic or prophylactic interventions.

Regardless of their purpose, all host transcriptomics studies
of human diseases share these key steps: (1) Enrolling study
cohorts of patients in defined disease states and comparative
controls, (2) Obtaining samples from the enrolled subjects, (3)
Performing assays to determine the transcriptional profile in
these samples, and (4) Analyzing the generated data to identify
disease associated transcriptional signatures (Figure 1). We have
recently reported that actual implementation of these steps in a
given study can significantly impact the utility of the generated
signatures as either diagnostic tools or mechanistic indicators
(18). To gain insights into disease mechanisms it is important
to determine, for example, how changes in gene expression
affect biological processes and which cell types are responsible
for the observed changes. On the other hand, for diagnostic
purposes, the transcriptomics signature must be very specific for
the studied disease state while the mechanism of action is less
important. In addition, the clinical implementations such as ease
of sampling should be straightforward. In this review, based on
already published transcriptional studies of Mtb infection and
our recently published commentary (18), we further develop
these guidelines and envision how future studies can utilize the
transcriptomic tool kit for both better diagnostic andmechanistic
understanding of TB (Figure 1).

STEP 1: STUDY COHORTS

General Considerations
Key variables to consider when enrolling cohorts of patients to
discover transcriptomic signatures of disease are: (1) TB disease
and infection states targeted and how they are defined upon
enrollment; (2) Co-factors, such as presence of co-infection
with HIV that could either be an exclusion criteria or part of
the clinical variables captured; and (3) Cohort study design,
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FIGURE 1 | Key variables to consider for the discovery of diagnostic vs. mechanistic transcriptional signatures of disease.

encompassing cohort structure, number and size, and cross-
sectional vs. prospective cohorts.

In terms of disease states targeted, the most simplistic
study should consider the following three categories: uninfected
subjects (NoTB; who have or have not received BCG vaccination
depending on the location of the study), healthy subjects with
latent infection (LTBI), and subjects with active disease (ATB).
The NoTB group serves as a comparator to identify a TB disease-
specific signature. Subjects in this group are thus enrolled based
on diagnostic criteria that rule out TB infection. The stringency
of these criteria can be adjusted based on the likelihood of having
false negative results. An additional control group can consist
of individuals with diseases that have similar symptoms as TB,
but require a differential diagnosis, such as sarcoidosis or other
lung pathologies. As for the TB infected cohorts, TB is known
to manifest as a spectrum of disease and infection states, so
neither the LTBI or the ATB group should be considered as
a class of homogeneous individuals (19). For instance, LTBI
subjects can be divided into low and high responders based on
the magnitude of their IFNγ response to Mtb antigens (20).
LTBI subjects with high IFNγ responses clustered closer to
active TB individuals, suggesting their LTBI status might actually
represent subclinical active disease (20). Knowledge regarding
co-morbidities may also help determining individuals that are
most likely to progress to ATB (21). For ATB, subjects can
be divided based on their diagnostic test results, not only to
rule out false positives, but also to get an idea of their disease

severity (22), or by distinguishing between pulmonary and extra-
pulmonary TB (23, 24). Further segregating the active disease
cohort will inform physicians on the best treatment regimen to
adopt for each patient or immunologists on the mechanisms
driving TB dissemination. Classification based on drug resistance
will enable physicians to effectively choose second or third-
line therapies. Thus, current diagnostic tests could benefit from
extra segregation within the LTBI or ATB state. Alternatively,
the development of one universal test that could distinguish all
possible infection states across the TB disease spectrum would
greatly improve our current definition of patient cohorts and
treatment options.

In terms of co-factors, in general it is important to get
as much information as possible on subject’s adverse health
status that could impact host transcriptomic signatures, such as
comorbidities, other infections, demographics and geographic
location. Specific attention should be paid to pathologies or
infections that can be highly prevalent where subjects are being
recruited. For instance, type 2 diabetes, which is a known
risk factor for developing TB and has a growing incidence in
TB endemic areas (25), was shown to significantly impact TB
associated blood molecular signatures in co-affected patients
(26–28). Information about prior immune status should also
be reported, since seropositivity to many common viruses such
as herpes virus or CMV might also affect blood transcriptomic
signatures (29) and ATB risk was associated with increased
responses to CMV (30). Demographics are also an important
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factor to take into consideration: children are associated with
distinct TB transcriptomic signatures compared to adults (22,
31). Gender and ethnicity are known to interfere with host
immunity and susceptibility to TB infection (32, 33), but have not
been studied yet in the context of transcriptomics. Additionally,
geographic location of the study cohort is a key parameter
that needs to be considered. Diverse geographical locations
are associated with exposure to distinct microorganisms, which
might impact how the host will react in response to a given
perturbation. There is increasing evidence that microbiome can
also shape TB-specific immunity. Our recent work indicated
differential epitope responses as a function of TB disease history,
with a specific set of peptides whose reactivity is lost early after
treatment. These peptides show high conservancy across NTMs
and other commensal bacteria, and are thus likely targeted by
anti-TB drugs in a non-specific fashion (34). In a mouse model of
infection, commensal microbiota was shown to have a protective
effect on lung colonization byMtb that was partially mediated by
mucosal-associated invariant T (MAIT) cells (35).

Finally, a key variable to consider is the cohort study design
(i.e., structure and size), which is dependent from all previous
variables described in this section. Clearly defining the study
objective from the start will dictate which disease populations
should be studied, the co-factors to be considered and the
appropriate controls to be included. In terms of structure, some
studies contain only one cohort, while others divide their subjects
into training, test and validation cohorts. The training set is used
to build the transcriptional signature, which is then verified in
the test cohort and sometimes in a third independent validation
cohort. The number of subjects within each cohort is highly
variable, ranging from a few samples to hundreds of samples.
The number of cohorts and cohort size depends on human
subject and sample availability, and on the study objective,
diagnostic vs. mechanistic, as described below. The majority
of studies are cross-sectional, but prospective studies including
longitudinal cohorts can be valuable for instance for studies of
treatment efficacy (36–38) or for progression from latent to active
disease (39–41).

Diagnostic Studies
For diagnostic studies, it is crucial to take into consideration
diseases closely related to TB in a separate cohort to ensure
the specificity of the gene signatures identified. A major
breakthrough in TB-related transcriptional studies came with
the identification of an interferon driven gene-signature from
whole blood samples that was able to distinguish subjects with
ATB from NoTB or LTBI (42). However, a follow up work
showed that this interferon signature is not specific to ATB since
patients with sarcoidosis, a lung homing disease that also develop
granulomas, showed that signature as well (43). Additionally, the
major co-factor that can confound the efficiency of diagnostic
signatures are co-infecting diseases that are highly prevalent in
TB endemic areas. Indeed, the transcriptomic signature used to
diagnose active TB obtained from HIV seronegative individuals
cannot be as efficiently reproduced in HIV seropositive subjects
(44, 45). Thus, transcriptomics studies that aim to design novel
TB diagnosis tests to be used in the clinic should include cohorts

with and without important co-factors such as HIV infection
or sarcoidosis to ensure the robustness of newly identified
signatures of TB.

In terms of cohort size, transcriptomic studies for diagnostic
purpose should aim to get large numbers of samples to reach
adequate statistical power and robustness. Since such studies
aim toward highly reliable and reproducible signatures “the
more—the better” rule fully applies here, and appropriate power
calculations must be made to assess the minimum number of
samples to be included in each cohort. Most successful studies
for the identification of transcriptomic signatures of TB for
diagnostic purposes were based on cohorts of hundreds of
cases (22, 42, 44).

Finally, for diagnostic studies, it is crucial to validate any
signature in a study population that mimics the actual patient
population for which the diagnostic would be applied. While it
is possible to define a diagnostic signature in cohorts that exclude
patients with co-morbidities or less clearly defined disease states
in order to identify a stringent disease signature, the diagnostic
utility of such a signature can only be assessed in a general
patient population. Thus, it is especially important to include
subjects from another ethnicity or geographic location as a
validation cohort to test the robustness of the transcriptomic
signature. For instance, Berry et al used an initial training/test set
from UK, and then used a validation cohort from South Africa
(42). Diversifying the geographic location of disease cohorts
can also be important to rule out the influence of disease
transmission rate in host transcriptomic signatures. For instance,
most work in blood TB transcriptomics has been done in South
Africa which has one of the highest TB transmission rates
worldwide, and could explain the lower specificity and sensitivity
of these signatures to classify cohorts from regions with low
TB endemicity, such as the US (46). Indeed, variations in Mtb
exposure rate, BCG vaccination, and circulating NTM strains
will influence TB-associated immune responses, and thus host
transcriptional signatures in areas that are TB endemic vs. low
transmission areas.

Mechanistic Studies
While a diagnostic signature should be present in every
individual, a mechanistic signature might not necessarily be
shared by the entire cohort. Indeed, as aforementioned, TB
is associated with high inter-individual variability in terms of
disease symptoms, diagnostic test results and immune response
patterns. Thus, one might actually gain in information by
dividing cohorts into refined subgroups. Cohort subdivision can
be done based on known clinical or immune parameters (e.g.,
pulmonary vs. extra-pulmonary for ATB, progressors vs. non-
progressors in the case of LTBI) or in an unbiased fashion based
on data clustering tools.

Another important consideration in mechanistic studies is to
differentiate between primary and secondary effects (i.e., cause
vs. consequence) within transcriptional signatures. Although
cause and effect in biological processes (including pathogenesis)
are typically interconnected in circular patterns, it can still be
informative to define whether a dysregulated gene expression
is the direct result of infection (e.g., IFNγ production by
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antigen-specific T cells) or the consequence of the primary
response (recruitment of neutrophils and monocytes to the site
of infection). To tease apart these two effects can be challenging,
especially on cross-sectional studies of mixed cell populations, as
described in the sections below. A way to address this issue is to
obtain longitudinal samples that can account for the kinetics of
the response to infection and help separate cause from effect. For
example, the recent study by Scriba et al. delineates the kinetic
events occurring in the blood transcriptome of healthy LTBI
subjects before progression to active disease (47). By analyzing
the blood transcriptome at repeated times until progression, the
authors were able to develop a hierarchy within overall biological
dysregulations detected, with changes in type I/II IFN modules
preceding any other changes, followed by monocyte and myeloid
inflammation modules and finally lymphocyte modules (47).

STEP 2: SAMPLE COLLECTION

General Considerations
Twomain parameters should be considered for sample collection
in transcriptomic studies: (1) the nature of sample collected (i.e.,
tissue or bodily fluid) and (2) whether the sample will be used as
a whole or separated into cell subsets.

In terms of tissue or bodily fluid, the most readily accessible
samples from humans are blood and urine. Urine is a
non-invasive sample to obtain, but contains very little RNA
information. Conversely, blood collection requires a generally
well-tolerated invasive procedure but contains a high diversity
of cell populations. Because of the constant circulation of cells
between blood and organs, blood-based studies can also give
information on the global health status of a given individual
at the time of collection. The main drawback of accessing cells
from the peripheral circulation is that they are not reflecting
what is happening at the site of infection. In contrast, biopsies of
infected tissues, and/or draining lymph nodes can give precious
information regarding pathology and antigen-specific cells (48,
49). In the case of lung manifested infections such as TB,
bronchoalveolar lavage (BAL) or sputum can be obtained from
a relatively non-invasive procedure and contain information on
immune cells present at the site of infection. As an example,
Garcia et al found both Mtb and host immune related genes
dysregulated in sputum and BAL of ATB patients (50).

The initial sample collected is often further processed,
resulting in the removal or enrichment of specific cell
populations. For instance, blood samples are often processed to
peripheral blood mononuclear cells (PBMC), because PBMC can
be readily frozen and stored for subsequent analysis, while whole
blood has to be stimulated and/or stained for flow cytometry
immediately. PBMC samples no longer contain granulocytes
(neutrophils, eosinophils and basophils) and platelets, which
can contribute to the disease signature. For instance, the whole
blood IFN-inducible gene signature reported by Berry et al. was
dominated by neutrophils (42), which represents 50–70% of
white blood cells in humans (51). While using whole blood might
thus seem advantageous because it contains more cell types,
at the same time, it also means that transcriptional signatures
from less frequent cell types will be “drowned out” by the more

copious RNA from abundant cell types. Thus, in some cases, it
might be more informative to break down samples and generate
transcriptomic signatures of isolated cell subsets of interest. For
instance, while it is not possible to differentiate between LTBI
and NoTB subjects using whole blood (42, 52), differentially
expressed protein- and non-protein-coding RNAs were apparent
in CD4T cells derived from the two subject cohorts (53, 54).
Cell subsets can be isolated by fluorescence activated cell sorting
(FACS) or by negative or positive selection using magnetic based
sorting. FACS yields cell populations with high purity and offers
the possibility to use multiple combinations of surface markers.
However, it is a more complex procedure compared to magnetic
negative isolation that keeps the cell populations of interest and
thus their RNA content “untouched.”

Diagnostic Studies
In diagnostic studies, sample availability is a critical factor
to consider. The ideal diagnostic test should be based on a
small volume (i.e., <5ml of blood sample volume or <5 ×

106 cells) of a biological sample that is readily accessible in
any human subpopulation (e.g., sick individuals and any age-
group; infants to elderly). Thus, blood is a good sample type
for diagnostic transcriptomics, as it is readily accessible and
contains a high RNA and cellular concentration. Several blood-
based transcriptomic studies have been undertaken to improve
TB diagnosis. As mentioned above, the seminal report by Berry
et al. identified a 393-gene signature able to discriminate between
ATB vs. LTBI (42), and was followed by many others. To name a
few, these studies have led to the discovery of gene signatures that
can discriminate ATB from other lung diseases (43, 55), as well as
gene signatures that can differentiate between ATB vs. LTBI in
HIV seropositive adults (44), and in children (22).

Additionally, a good diagnostic test necessitates a robust
workflow that requires minimal resources to ensure feasibility
and reproducibility in the highly variable clinical infrastructures
worldwide. The fewer sample processing steps that are needed,
the easier it is to ensure consistency between sites. Thus ideally,
unfractionated samples, such as whole blood should be used and
FACS sorting or other complicating cell separation techniques
should be avoided.

Mechanistic Studies
Unlike diagnostic studies that aim for the most readily accessible
samples and the least processing steps, for mechanistic studies,
access to biopsies of disease relevant tissues and cell types in
healthy and diseased individuals would be of highest value.
However, obtaining such samples can be associated with complex
ethical and practical hurdles, and will generally only be possible
for a limited number of subjects. Although associated with
reduced statistical power, studies with limited samples from
disease relevant tissues can still have high informative value.
For instance, microarray analysis on a handful of lung biopsies
from TB patients was sufficient to highlight immune and
inflammatory functions/pathways commonly dysregulated in
TB granulomas (48, 56). Furthermore, these data showed little
overlap with previously published whole blood gene signatures
(48), implying that lung specific immune responses might

Frontiers in Immunology | www.frontiersin.org 5 February 2019 | Volume 10 | Article 221

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Burel et al. Transcriptional Immune Signatures of Tuberculosis

be poorly represented in the peripheral blood. In another
study, transcriptomics on infected lymph nodes from 13 extra
pulmonary TB patients compared to uninfected lymph nodes
identified distinct gene expression signatures from granulomas,
enriched in genes involved in Th1/Th2 responses, as well as
IFN-inducible genes (49).

Mixed cell populations samples such as whole blood can still
be informative, but additional work should be performed in order
to assign “cell responsibility” for genes in the observed signature.
Minimally, investigators should use single-cell protein analysis
techniques such as flow cytometry or CyTOF to determine cell
sample composition and correct for this in data analysis, for
instance with the csSAM algorithm (57). A more thorough
approach is to do vast amounts of single cell sequencing, to
account for both variability in cell subset composition and cell
to cell variation within a given cell subset. A cheaper (and less
bioinformatics intensive) alternative is to sequence isolated cell
subsets to provide more focus on specific cell types that are
likely involved in the control (or lack thereof) of the infection.
For instance, transcriptomic analysis of memory CD4T cells
identified novel immune signature of Mtb exposure in the
context of LTBI, and helped identified novel markers of Mtb-
specific T cells (54). Mtb-specific T cells can also be isolated
and further analyzed using tetramers with specific peptide/MHC
combinations (58).

STEP 3: DATA GENERATION

General Considerations
The key two parameters to consider for data generation in
transcriptomic studies are (1) the assay platform and (2) whether
the sample will be stimulated or not.

The different gene expression platforms available have been
discussed in detail elsewhere (59–61), and will thus be only
touched upon briefly here. There are two major methodological
approaches for the generation of transcriptomic data: (i) whole-
transcriptome analysis and ii) targeted gene expression analysis.
Microarray was the traditional method for whole-transcriptome
analysis, but as the costs of sequencing methods are decreasing,
there has been a transition to high-throughput RNA sequencing
(RNAseq). RNASeq has several benefits over microarrays such as:
(i) not requiring probes and thus it can detect in an unbiased
fashion novel transcripts and expression of non-coding RNAs
(which are now acknowledged as being key contributors to
immune responses); (ii) a lower background signal because the
cDNA sequences can be mapped without ambiguity to unique
regions of the genome; (iii) a broader dynamic range to quantify
gene expression levels; and (iv) more flexibility in meta-analysis,
enabling the simultaneous analysis of different datasets (62).
In contrast, targeted gene studies measure a handful of genes
selected either from preliminary data, or belonging to a specific
category (e.g., pathway, function, cell subset). In this case, data is
typically generated by RT-qPCR, or as recently adapted in several
studies, by RT-MLPA (reverse transcriptase multiplex ligation-
dependent probe amplification) (39, 63). An emerging platform
is the Nanostring technology (Nanostring Technologies, WA,
USA) that uses barcoded mRNA-specific hybridization probes

combined in custom or pre-made panels of up to 800 genes (64).
This technique can be performed directly on cell lysates and allow
for direct absolute quantification, and therefore represent an
attractive intermediate approach between whole-transcriptome
and targeted gene expression analysis.

In terms of in vitro stimulation, transcriptomic signatures can
be derived from samples in different states of activation: directly
ex vivo, or after global or antigen-specific in vitro stimulation.
Transcriptomic signatures derived from unstimulated samples
reflect the ex vivo state of the host. On the other hand,
antigen-specific stimulation can give additional information on
the transcriptional changes that could be occurring in vivo
after encounter with the pathogen. Thus, the comparison of
unstimulated vs. stimulated blood transcriptomic signatures will
provide a pathogen specific readout that is more likely to reflect
the disease specific immune response as opposed to blood
signatures directly extracted ex vivo from a subject. The choice
of the stimuli depends on the cell subset of interest: peptide
pools will specifically activate classical CD4 and CD8T cells,
whereas lipid antigens will target non-classical T cells, and heat-
killed Mtb or lysate will induce more global immune responses
by activating a plethora of cell types. Live Mtb preparations
are useful to study the transcriptome of infected cells such
as monocytes.

Diagnostic Studies
Ideally, a diagnostic test should be simple (e.g., PCR detection
of a small number of genes) to ensure reproducibility. Moreover,
a cheap test will enable a broader use, such as in low resource
settings. However, deciding which genes should be included
in a diagnostic test benefits from broad investigation. The
most commonly used approach is to first perform whole-
transcriptome screens to select the best discriminatory genes
between cohorts of interest, which will be then validated at the
individual gene level (23, 31, 41).

In an attempt to reduce logistics associated with a diagnostic
test, direct ex vivo analysis (unstimulated samples) is largely
preferred. However, antigen-specific stimulation can be
considered in some cases, in particular to discriminate between
similar pathologies. For instance, as mentioned above, it has
been proven very difficult to differentiate between sarcoidosis
and active TB when solely analyzing the ex vivo whole
blood signature (43). Stimulation with Mtb antigens will
specifically activate cells that are responsible for combating
Mtb, making the detected transcriptional signature more
specific, and removing potential convoluting signals (e.g.,
co-infections, non-disease specific inflammatory processes).
Additionally, antigen-specific stimulation might be advised
for diseases which have a too “weak” ex vivo signature [e.g.,
transcriptomic analysis of unstimulated whole blood/PBMC
could not discriminate between LTBI and NoTB individuals
(42, 52) whereas ex vivo isolated memory CD4T cells could
(54)]. Because antigen-specific stimulation can enhance disease
specific gene expression compared to unstimulated samples, it
increases statistical power to accurately discriminate between
infected and uninfected samples. Successful examples of the
application of in vitro stimulation in TB transcriptomics for
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diagnostic purposes include the discovery of gene signatures
in blood after 6-day in vitro culture with live Mtb that can
predict relapse after treatment of ATB (38) and candidate genes
in PPD-stimulated PBMC that can distinguish latent TB from
ATB (65).

Mechanistic Studies
For mechanistic studies whole-transcriptome analysis is
definitely the preferred approach for data generation because
limiting analyses to individual gene transcriptomic assessment
would typically not be justified. Additionally, since mechanistic
studies are not restricted by costs associated with data generation,
the use of more sophisticated techniques or emerging platforms
is encouraged to increase the likelihood of discovering novel
disease signatures. As an example, single-cell RNA sequencing is
a promising emerging technique in the field of transcriptomics
that can be used to explore cell to cell heterogeneity within a
population, help re-defining cell subset classifications and reveal
novel signatures of disease [reviewed in (66)]. For mechanistic
studies focused on T cells, single cell TCR sequencing can be
used to track antigen-specific T cells, and study the association
between TCR repertoires, HLA type, and epitopes. A recent
study showed the ability to identify CMV-specific TCR sequences
based on blood immunoprofiling of 666 subjects with known
CMV status (67). These sequences could then be used to infer
the CMV exposure history of individuals and partially predict
their HLA specificity. In the case of TB, TCR sequencing of
TB-specific T cells identified distinct groups of TCR sequences
that shareMtb antigen specificity (68). Moreover, TCR sequences
can be used as a natural “barcode” which can be used to track cell
origin. As single cell sequencing allows to obtain TCR sequence
and transcriptome simultaneously it opens novel opportunities
for profiling TB-specific cells at unprecedented resolution.

Antigen-stimulation can also present lots of advantages over
unstimulated samples for mechanistic studies, in particular for T
cells. T cells specific for a given antigen typically represent only
a small fraction of circulating cells; hence their transcriptomic
profile will be masked when investigating the whole blood
transcriptome. One way to overcome this issue is to perform
antigen-specific in vitro cultures in order to expand the cells of
interest and their associated transcriptomic signal. For instance,
whole blood from ATB patients in vitro cultured with live Mtb
for 6 days identified gene signatures that can predict post-
treatment relapse (38). Similarly, stimulation of PBMC from
NoTB subjects with live Mtb has helped to define novel markers
of antigen-specific T cells (69). Antigen-specific stimulation
can also be combined with cell sorting to isolate antigen-
specific cells. In the case of TB, IFNγ producing T cells
could be successfully identified using either Mtb lysate (70) or
comprehensive peptide pools (71). Mechanistic interpretation of
transcriptomic data after in vitro stimulation should be done
carefully by acknowledging the following two caveats: (i) a lack of
response can be due to either non-responsive cells or migration
of responsive cells from the compartment interrogated to the
site of disease; (ii) in vitro stimulation only unravel the stimuli
potential of specific cell types, but might not reflect what is
happening in vivo.

STEP 4: DATA ANALYSIS

General Considerations
The data analysis workflow is quite different for studies intending
to discover diagnostic vs. mechanistic transcriptional signatures
of disease. The one shared component is a set of initial algorithms
to identify gene sets associated with different disease states.

The two main approaches to identify disease associated
gene sets are: differential gene expression analysis and modular
analysis. Differential expression analysis is a supervised method
aimed at identifying the genes that are expressed significantly
higher or lower in individuals having a certain condition in
comparison to a control cohort. A differential expression analysis
calculates for each gene the fold change in expression between
two pre-defined groups of subjects (e.g., NoTB vs. ATB) and the
associated p-value and multiple testing-corrected p-value as a
measure of statistical significance. Typically, genes with corrected
p-value lower than 0.05 are considered as differentially expressed.
Stringency can also be increased by adding a cut-off in the fold
change in expression to select most prominent genes. The DESeq
package (available through Bioconductor) (72) is one of the most
popular algorithms used for differential expression analysis, as it
can be adapted to datasets with minimal number of biological
replicates. In the case of large numbers of subjects in each cohort
(or disease states), the identification of differentially expressed
genes (DEGs) can be done using more conservative and general
approaches such as for instance, the Student’s t-test.

Modular analysis is an unsupervised method aimed at
identifying clusters of genes that share a similar expression
profile. The output is a list of gene modules of various
sizes, with each gene only contained within one module. The
expression profile of each module can then be compared
between disease cohorts. Modular analysis is statistically more
powerful compared to differential expression analysis as it
partitions the dataset into discrete modules and thus decreases
its dimensionality. Furthermore, modular analysis allows to
evaluate if a given gene module is associated with a clinical or
biological variable of interest (e.g., disease severity, frequency of
a certain cell type, plasma cytokine concentration). This is done
by considering the degree of correlation between the principal
component of a module and the variable of interest. One of
the most used modular analysis algorithms is the Weighted
Correlation Network Analysis (WGCNA) (73). Each module
that shows significant association in its expression between
the different disease cohorts can be considered a separate
transcriptional signature of disease.

Diagnostic Studies
Diagnostic studies aim to identify the smallest possible set of
genes that could serve to discriminate between different cohorts.
Thus, the preferred approach for diagnostic gene selection is
differential gene expression analysis, with stringent fold change
and low p-value cut-offs to identify genes with the highest
discriminatory power. Several strategies based on machine
learning tools can then be applied to further narrow down and
predict a concise set of top classifier genes. Most popular machine
learning tools include random forest algorithms, which generates
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an ensemble of decision trees, support vector machine models
and neural networks. The minimal gene set identified can then
be used in clinical settings for disease assessment. Examples of
promising potential diagnostic tools for discriminating between
ATB and LTBI include a 4-gene signature (74), a 3-gene signature
(75), and BATF2 gene expression (23) in whole blood. In
terms of TB prognostic, a 16-gene whole blood signature was
reported as a good predictor of ATB risk in LTBI individuals,
and could be detected as early as 12 months before disease
development (41). Recent efforts have reduced this 16-gene
signature to a smaller set of 4 genes to efficiently predict
progression to tuberculosis in multiple cohorts across various
geographic location in Africa (76).

An alternative approach to top gene classifiers is to measure
a so-called disease risk score (DRS). In its simplest form the
sum of the expression of upregulated genes is calculated and
then subtracted by the sum of the expression of downregulated
genes. By imposing a certain threshold on DRS value all samples
can be classified to a certain disease group. The main advantage
of this method is that it is easier to use in resource-limited
settings, since less advanced bioinformatic analysis is required.
With certain mathematical elaborations, such approach has been
also termed as “molecular distance to health” (42) or “molecular
degree of perturbation” (27). The DRS score has been applied to
assess response to TB treatment, where its magnitude was shown
to reverse to the level of NoTB controls following successful
treatment (36). One can also imagine the use of a DRS score as
a discriminative parameter for disease risk (e.g., progression of
LTBI to ATB). A common approach to search for genes suitable
for DRS calculation is to employ the elastic net algorithm. This
method was applied by Kaforou et al. to identify a signature of
ATB (44). The authors came up with a 27-transcript signature
distinguishing ATB from LTBI and a 44-transcript signature
distinguishing ATB from other diseases. The same algorithm
was implemented in a pediatric study by Anderson et al. where
the authors identified a 51-gene signature in whole blood that
could discriminate ATB from other diseases in children (22).
Importantly, all these signatures were not significantly distorted
by HIV infection status (22, 44).

Biological relevance of the genes selected in the case of
diagnostics research is secondary. In fact, in many studies
the resulting list of genes is often not easily, if at all,
interpreted biologically [e.g., see (31, 45, 74, 77)]. Indeed,
from the whole plethora of initially identified DEGs (usually
comprising thousands of genes) only those that are robust
and uniform will be selected, which are not necessarily the
most biologically relevant. Minimal discriminating gene sets will
likely contain genes from unrelated pathways, because genes
with shared function would belong to a single module of co-
expression. Effective diagnostics on the contrary requires genes of
unrelated expression pattern allowing for maximum information
gained per gene added. As a result, best candidate genes for
diagnostics are not necessarily related, and unlikely to carry
similar biological information.

Finally, the use of previously published data to perform
comparisons and cross-validations is extremely important
for diagnostic studies aiming for high reproducibility and

robustness. It provides a way to evaluate the efficiency of newly
identified signatures in more diverse cohorts, for instance with
different ethnicity or geographic origin. For instance, Roe et
al identified BATF2 has a potential biomarker to diagnose TB
and confirmed its diagnostic value amongst different ethnicity
groups (23).

Mechanistic Studies
The cornerstone of mechanistic studies is biological
interpretation of the obtained disease signature. This includes
unraveling underlying molecular mechanisms and inferring
their causal relationships. Knowledge of these relationships in
turn can guide the future development of therapeutics that could
intervene with upstream molecular targets.

In terms of identifying disease signatures, differential gene
expression analysis can be performed in less stringent fashion
compared to diagnostic studies, because even slight changes in
expression of regulatory genes can be important markers of cell’s
transcriptional program. Modular analysis can be appropriate to
investigate co-expression patterns and to identify gene clusters
with shared regulation. As an example, modular analysis was
successfully applied by Montoya et al. to gene expression data
of in vitro differentiated macrophages under different conditions
(78). The authors found that M1-type macrophages, known to
be involved in TB immunity, upregulated a specific cluster of
genes in response to IL-15 treatment, and identified IL-32 as a
hub gene regulating that cluster. Further analysis revealed that
IL-32 could induce antibacterial properties in macrophages, and
that the IL-32 gene cluster was consistently upregulated in LTBI
compared to ATB subjects across many datasets and cohorts.
Thus, solely using modular analysis, the authors were able to
uncover the molecular connection of IL-32 with host defense
mechanisms in TB (78). In another example, modular analysis
was used to compare blood signatures of ATB, sarcoidosis and
NoTB controls (43). Pathway and GO enrichment analysis have
also been instrumental to the identification of type I IFN as key
major signature of ATB in many studies (36, 42, 49, 55, 79).

Finally, aforementioned, it is extremely important to
distinguish primary vs. secondary effects in mechanistic studies,
in order to identify the key upstream regulators that will
represent the best candidates to use in the clinic. A way to
address this is to consider gene expression signatures as a
network of disease associated dysregulations rather than a
simple list of genes. There are many algorithms that have been
developed for network analysis of gene expression data (also
called gene network inference), including RN (80), ARACNE
(81), or C3Net (82). Regardless of the algorithm used, gene
network analysis aims to infer the physical and/or biological
interactions between genes in a given system (e.g., cell type
or disease state) based on the transcriptomic data derived
from this system. The derived networks can then be further
refined by comparison with biological interactions databases.
For instance, a genome-wide analysis of more than 100 samples
from cancerous and non-cancerous prostate tissue samples
predicted 18,583 gene-gene interactions, of which 54 were
previously validated as direct physical interactions in the
literature, significantly narrowing down the set of genes as
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potential targets for intervention (83). Systems biology studies
(which encompass also proteomic and/or metabolomics data
collection) can also be extremely useful to improve the accuracy
of the molecular networks. For instance, a recent study combined
plasma metabolite and cytokine concentration with whole blood
gene expression to effectively depict molecular dysregulations
occurring in TB-diabetes co-affected patients that were not
apparent at the transcriptomic level only (27). Promising targets
derived from the network analysis can then be further assessed
for biological function in vitro using genetic interference or in
vivo using knockout animal models.

FUTURE PERSPECTIVES

While there is still a long way to tackle all the obstacles
associated with the control and eradication of TB, clearly host
transcriptomics provide an invaluable tool to advance toward this
goal. Host transcriptomic studies have not only identified novel
targets for diagnostic and prognostic tests, but also improved
our knowledge on TB-specific immune mechanisms. At the same
time, these studies have highlighted issues such as the need to
take in consideration similar pathologies and co-infection status
in disease cohorts, the importance to compare whole blood vs.
cell subsets and other tissues, and the versatility of bioinformatics
tools available for the identification of gene signatures.

We have recently identified universal guidelines to consider
when using the transcriptomic tool kit for the identification
of diagnostic or mechanistic gene signatures (18). Here, by
analyzing and compiling previously published TB transcriptomic
studies, we further developed these guidelines for the optimal
design and analysis of future transcriptomic studies to tackle
the outstanding needs in the TB field. Future diagnostic studies
should aim to identify disease signatures of very few genes,
but with high sensitivity across all human populations affected,
and high specificity against similar pathologies to TB, such as
sarcoidosis. Additionally, there is a need to improve the accuracy
of current infection state definitions (and associated diagnostic
tests) that better reflect the TB disease spectrum. Additional work
on prospective cohorts of LTBI progression to ATB is needed
to improve the diagnosis efficacy of infected individuals at risk

of developing active disease. The ultimate goal of mechanistic
studies is to gather knowledge about cell types and gene networks
that are relevant in a given disease. This could serve to determine
dysregulated genes, paving the way for the identification of novel
therapeutic procedures.

Finally, all studies should ensure their data is made publicly
available, along with all required annotations for interpretation,
to facilitate re-use by the research community (84). Such
metadata analyses have already shown promising success in
identifying both diagnostic and mechanistic signatures of TB.
By re-analyzing all publicly available blood TB transcriptomics
datasets together, Blankley et al. identified five genes that were
consistently differentially expressed in active TB compared
to LTBI or NoTB across all datasets, and thus represent
promising candidates for blood based mRNA TB diagnosis
(79). Using a similar approach, Sweeney et al identified a
3-gene set that distinguishes active TB from LTBI or other
diseases, and validated its discriminatory power across 14
datasets with a total of more than 2,500 samples (75).
Combining modular and gene-set enrichment analysis on
publicly available data from 8 studies of whole blood/PBMC
transcriptomics, Joosten et al. highlighted the importance
of TREM1 signaling in active TB over the more typically
reported type I IFN signaling (85). Thus, metadata analyses
can provide robust diagnostic gene candidates and guide
the choice of biological processes to focus on for future
mechanistic studies.
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