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IL-10 produced by CD4+ T cells suppresses inflammation by inhibiting T cell functions

and the upstream activities of antigen presenting cells (APCs). IL-10 was first identified

in Th2 cells, but has since been described in IFNγ-producing Tbet+ Th1, FoxP3+

CD4+ regulatory T (Treg) and IL-17-producing CD4+ T (Th17) cells, as well as many

innate and innate-like immune cell populations. IL-10 production by Th1 cells has

emerged as an important mechanism to dampen inflammation in the face of intractable

infection, including in African children with malaria. However, although these type I

regulatory T (Tr1) cells protect tissue from inflammation, they may also promote disease

by suppressing Th1 cell-mediated immunity, thereby allowing infection to persist. IL-10

produced by other immune cells during malaria can also influence disease outcome,

but the full impact of this IL-10 production is still unclear. Together, the actions of this

potent anti-inflammatory cytokine along with other immunoregulatory mechanisms that

emerge following Plasmodium infection represent a potential hurdle for the development

of immunity against malaria, whether naturally acquired or vaccine-induced. Recent

advances in understanding how IL-10 production is initiated and regulated have revealed

new opportunities for manipulating IL-10 for therapeutic advantage. In this review, we will

summarize our current knowledge about IL-10 production during malaria and discuss

its impact on disease outcome. We will highlight recent advances in our understanding

about how IL-10 production by specific immune cell subsets is regulated and consider

how this knowledge may be used in drug delivery and vaccination strategies to help

eliminate malaria.
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INTRODUCTION

Malaria remains a major public health problem in tropical and sub-tropical regions of the world
despite substantial efforts to reduce associated morbidity and mortality. There are still around 250
million cases and 500,000 deaths annually, with young children in sub-Saharan Africa being most
affected (1). A major unmet medical need for malaria is an effective vaccine. No vaccine tested to
date in malaria endemic areas has performed as well as when tested in healthy volunteers, including
RTS,S/AS01 (2–4).

CD4+ T cells play critical roles in coordinating immune responses during infection by
differentiating into functional subsets best suited to control pathogen growth (5). Diseases
caused by intracellular protozoan parasites, such as Plasmodium species, require the generation
of IFNγ-producing, Tbet+ CD4+ (Th1) cells to promote antigen capture and presentation by
dendritic cells (DCs) and macrophages, as well as stimulate phagocytic cells to kill captured
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or resident pathogens (6). However, the inflammatory cytokines
produced by Th1 cells can also damage tissues. In addition, recent
data suggests that Th1 cell development may also influence the
development of T follicular helper (Tfh) cells, another important
CD4+ T cell subset in malaria needed for the expansion of
antigen-specific B cell populations and the production anti-
parasitic antibody (7, 8). Hence, a better understanding about
the development of CD4+ T cell responses during malaria
is needed to improve strategies aimed at improving anti-
parasitic immunity.

The development of a robust host immune response is
essential to eliminate parasites that cause malaria and protect
against re-infection. Concurrently, these responses need to be
tightly regulated to avoid immune-mediated damage to host
tissue. This requires the establishment of immunoregulatory
networks which ultimately determine the magnitude of immune
response following infection. However, if these networks over-
power anti-parasitic immunity too early, parasites can persist
and cause associated disease. Many molecules and cell types
contribute to these immunoregulatory networks, including
anti-inflammatory cytokines such as interleukine-10 (IL-10)
and transforming growth factor (TGF)β, immune check point
molecules such as PD-1, CTLA-4, and LAG-3, as well as CD4+

FoxP3+ regulatory T (Treg) cells. However, our understanding
about how immunoregulatory networks develop following
Plasmodium infection and are maintained after resolution of
infection is still incomplete.

One possible explanation for the failure of RTS,S/AS01
vaccine is the early imprinting of potent, pathogen-specific
immunoregulatory networks in children following first exposure
to malaria that prevents the generation of robust, vaccine-
induced anti-parasitic immunity (9). Hence, targeting these
networks may be critical step needed for malaria vaccines
to stimulate long-lasting, anti-parasitic immunity in disease-
endemic areas.

IL-10 has emerged as an important regulatory molecule
in malaria that protects tissues by preventing excessive
inflammation (10). It suppresses inflammation not only
by directly dampening pro-inflammatory cytokine and/or
chemokine production, but also by down-regulating the
expression of MHC-II and co-stimulatory molecules on antigen
presenting cells (APCs) and increasing expression of immune
checkpoint molecules (11–13). IL-10 is secreted by many
different cells, including B cells, Th1, Th2, Th17, and Treg cells,
as well as innate immune cells such as macrophages and DCs
(14). More recently, IL-10-producing Th1 (type 1 regulatory;
Tr1) cells were found to develop relatively quickly in healthy
volunteers participating in controlled human malaria infection
(CHMI) studies and children living in malaria-endemic areas
(15–18). Results from both pre-clinical malaria models and
human studies show that IL-10 not only protects against severe
disease, but also inhibits protective anti-parasitic immunity.
In this review, we will discuss the role of IL-10 during the
blood stage of experimental and human malaria, as well as
describe the cellular sources of IL-10 and how the production
of this potent anti-inflammatory cytokine is regulated. We will
also examine how IL-10 mediated immune response may be

manipulated to improve vaccine efficacy and/or current drug
treatment regimes.

IL-10 AND MALARIA

The balance between host pro- and anti-inflammatory immune
responses plays a critical role in determining the outcome of
Plasmodium infection. A weak pro-inflammatory response may
result in uncontrolled replication of parasites, while an excessive
pro-inflammatory response may cause tissue damage, such as
occurs in severe malaria syndromes, including cerebral malaria
and multi-organ failure. Studies from mice have identified a
clear role of IL-10 in controlling inflammatory responses and
preventing tissue damage (14). IL-10-deficient mice infected
with P. chaubadi chaubadi AS displayed exacerbated disease
pathology, including hypoglycemia, hypothermia, and a loss in
body weight, along with enhanced pro-inflammatory cytokine
(IFN-γ, TNF-α, and IL-12) production (19). The excessive
pro-inflammatory conditions in P. chabaudi AS-infected IL-10-
deficient mice were also thought to cause parasite sequestration
to the brain, associated with cerebral edema and hemorrhages
(20). IL-10 has also been reported to play a protective role
in experimental cerebral malaria (ECM) caused by P. berghei
ANKA (21). In this model, decreased expression of IL-10 mRNA
in spleen and brain tissue was associated with susceptibility to
ECM. Sequestration of parasitized RBC (pRBC) in brain was
mediated by ICAM-1 expressed by endothelial cells, and IL-10
inhibited expression of ICAM-I on these cells, thus providing a
potential mechanism for the prevention of pathology associated
with ECM. In a lethal P. yoelii infection in mice, production
of IL-10 and TGF-β were thought to inhibit pro-inflammatory
responses, and this was correlated with high parasitemia and
severe anemia (22, 23). IL-10 has also been reported to promote
hyper-parasitemia in mice infected with P. chabaudi adami (24).
Therefore, data from mouse models of malaria indicates that IL-
10 is required to protect host tissue from inflammation, but by
doing so, can also promote growth of parasites and associated
disease manifestations.

In a prospective longitudinal study conducted in a malaria
endemic area, IL10 gene polymorphisms associated with high
IL-10 production were found to increase the risk of developing
clinical malaria in young children (25). High levels of circulating
IL-10 have been reported in patients with mild, severe and
cerebral malaria (26, 27). Similar to studies in pre-clinical models,
African children with severe anemia had lower plasma IL-10
levels than patients with moderate anemia or cerebral malaria,
suggesting that IL-10 plays an important role in preventing
severe anemia (28). However, a case control study in an African
population with mild or severe malaria showed that both IL-
10 and TNF-α were elevated in severe malaria and positively
correlated with parasitemia (29). In another study with children
living in a holo-endemic area of Western Kenya, higher ratios
of plasma IL-10 to TNF levels were strongly associated with
protection against severe malaria anemia, providing evidence
that IL-10 may be protective by inhibiting TNF activity (30). This
was supported by data from pre-clinical malaria models that have

Frontiers in Immunology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 229

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kumar et al. IL-10 and Malaria

shown over-expression of TNF can suppress haematopoiesis in
the bone marrow and promote RBC destruction (31), while IL-
10 is thought to enhance hematopoietic activity (32). High levels
of plasma TNF have also been associated with anemia and high-
density P. falciparum infection in Zairian children (33), as well
as being associated with other severe malaria complications such
as renal failure (34). Thus, IL-10 appears to play a critical role in
regulating the pathogenic effects of TNF during malaria, but in
performing this important role, IL-10 may promote high-density
infections that can result in other complications of malaria,
including accumulation of pRBC in tissue that can cause hypoxia
and direct damage to the vasculature.

IL-10 suppressed IL-12 production by monocytes (35), which
was required for the development of protective immunity against
malaria and skewing the cytokine production pattern toward a
pro-inflammatory response (36, 37). A study in patients with
severe malaria anemia living in a holo-endemic region of western
Kenya showed that ingestion of Plasmodium-derived pigment
(hemozoin; [PfHz]) by monocytes, suppressed IL-12 production
in an IL-10-dependent manner (38). IFNγ signaling is critical
for the development of hematopoietic progenitor subsets during
acute experimental malaria (39), and given the important role for
IL-12 in IFNγ production, reduced levels of IL-12 would likely
impact hematopoiesis during malaria.

IL-10 can also augment antibody production and B cell
maturation (37, 40). In experimental malaria caused by P.
yoelli infection of C57BL/6 mice, B cell intrinsic IL-10 signaling
enhanced germinal center (GC) B cell responses by limiting
IFNγ activity and subsequent Tbet expression by these cells,
thereby promoting antibody production and parasite clearance
(41). Hence, IL-10 may be beneficial for the development of
humoral immunity, but detrimental for cell-mediated immune
responses during malaria.

CELLULAR SOURCES OF IL-10 DURING
PLASMODIUM INFECTION

IL-10 production was initially identified in Th2 cells (42),
but has since been shown to be produced by many immune
cells, including Th1 cells (43, 44), Treg cells (45), IL-17-
producing CD4+ T (Th17) cells (46), Tfh cells (47), CD8+

T cells (48), B cells (49), including regulatory B cells (50),
NK cells (51), and γδ T cells (52, 53). Additionally, innate
immune cells such as macrophages and DCs (12) have also
been shown to produce IL-10. In both lethal and non-lethal
mouse models caused by P. yoelii infection, the major source
of IL-10 were FoxP3-negative CD4+ T cells that didn’t produce
Th1, Th2, or Th17-associated cytokines, and these cells not only
prevented hepatic immunopathology but also suppressed the
effector T cell response, preventing parasite clearance (54). These
regulatory cells are amongst several specialized CD4+ T cell
sub-populations which emerge from the thymus as conventional
CD4+ T cells and acquire regulatory functions in the periphery
following exposure to inflammatory conditions (55–57). The
most well-studied of these subsets are IL-10-producing Th1
(Tr1) cells that have been identified in many infectious diseases,

including visceral leishmaniasis (58), tuberculosis (59), and
human immunodeficiency virus (60). Importantly, they have also
be identified as an important immunoregulatory cell population
in African children with P. falciparum malaria (16–18, 61), as
well as in healthy volunteers participating in CHMI studies
(15). A high frequency of antigen-specific Tr1 cells were also
found in neonates whose mothers had active placental malaria
during pregnancy, suggesting that these cells might be able to
influence anti-parasitic immunity from very early in life (62).
Hence, the rapid generation of Tr1 cells during malaria may
play a critical role in determining the outcome of infection.
Furthermore, because these cells are likely to be generated prior
to vaccination in malaria endemic areas, they are also likely to
impact the efficacy of malaria vaccines, and their presence and
function may be an important factor contributing to the failure
of these vaccines to date.

γδ T cells play several different roles in host defense against
Plasmodium infection (63), including their rapid expansion upon
exposure to P. falciparum antigen in malaria naïve individuals
(64). However, studies in children with chronic malaria exposure
showed that the Vδ2+ subset of γδ T cells declined in number
and switched from a predominant pro-inflammatory response to
an anti-inflammatory response that was postulated to contribute
to clinical tolerance during malaria (52). Another recent study
in a malaria endemic area found a subset of γδ T cells from
uncomplicated malaria patients expressing Vδ9 T cell receptor
that expanded and produced IFNγ and IL-10 when cultured in
presence of P. falciparum antigen (53). Given that these γδ T
cells produce IL-10 and can provide help to B cells for antibody
production (65), they may play a role in the acquisition of natural
immunity against malaria.

NK cells have also been reported to produce IL-10 during
many systemic infections (66, 67). A recent study inmice infected
with P. berghei ANKA showed that systemic inflammation during
ECM stimulated NK cell IL-10 production but was induced too
late to prevent inflammation-mediated disease pathology (51).
However, in the same study, treatment of mice with recombinant
IL-15 complexed with antibody to extend cytokine half-life and
target NK cell induced IL-10 production which protected against
disease without affecting the parasite burden.

REGULATION OF IL-10 BY CYTOKINES

Tr1 cells are an important immunoregulatory CD4+ T cell subset
that not only prevent immune pathology during Plasmodium
infection but can also promote establishment of infection by
suppressing Th1 cell-mediated anti-parasitic immunity. The
manipulation of this regulatory T cell subset is being considered
for a wide range of immunotherapeutic applications, including
in organ transplantation, rheumatoid arthritis, colitis, and cancer
(68–71). Therefore, a better understanding about how IL-10
production is initiated and maintained by Tr1 cells is required
for the development of new therapeutic approaches targeting this
cell population. Tr1 cells are Tbet+ Foxp3− CD4+ T cells that
are most likely derived from Th1 cells, and acquire an ability
to co-produce IL-10 and IFNγ under inflammatory conditions
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(72). IL-27 has been identified as a critical regulator of T cell
IL-10 production in humans and mice (46, 73–76). Generally,
IL-27 produced by APC’s, such as DC’s and macrophages, can
induce expression of the transcription factors c-Maf and aryl
hydrocarbon receptor (Ahr) via STAT1 and STAT3-dependent
mechanisms, which in turn, stimulated IL-21 production by
CD4+ T cells which acted in an autocrine manner to expand
IL-10-producing Tr1 cells (77–79) (Figure 1). In mouse models
of malaria, a critical role for IL-27 signaling in the regulation
of pro-inflammatory Th1 cell responses and suppression of
immune-mediated pathology has been reported (80–83). A study
with P. chaubadi AS infection showed that although Treg cells
produced IL-10 during infection, Tr1 cells were the important

source of IL-10 for protection against severe immune-mediated
pathology, and that although the generation of these Tr1 cells
was dependent on IL-27 signaling, it was independent of IL-
21 (84). Similarly, another study with mice infected with P.
yoelli confirmed that Tr1 cell generation was dependent on IL-27
receptor signaling during blood stage malaria (85). Thus, IL-27 is
a critical regulator of IL-10 producing Tr1 cells in mouse models
of malaria. The involvement of IL-27 in Tr1 cell generation
in human malaria has not been fully established, although
patients with severe malaria were reported to have reduced IL-
27 plasma levels, compared to uncomplicated malaria patients
and endemic controls, suggesting a potential role in controlling
pathology (86). Additionally, many of the intracellular signaling

FIGURE 1 | Key regulators of the Th1/Tr1 cell axis in mouse malaria models. Following blood-stage infection with Plasmodium parasites, dendritic cells (DC’s)

recognize parasite molecules and produce IL-12 to drive the expansion of antigen-specific CD4+ T cells into IFNγ-producing Th1 cells. Soon after, type I interferon

(IFN) and IL-27 production is initiated by macrophages and DC’s, presumably in response to activation of pattern recognition receptors by parasite molecules. Type I

IFNs promote the development of IL-10-producing Th1 (Tr1) cells by T cell-independent and T cell-dependent activities (dashed red line), depending on the

Plasmodium species. IL-27 stimulates STAT1 and STAT3-dependent transcription of c-Maf and aryl hydrocarbon receptor (AhR) in Th1 cells, which then drive IL-10

and IL-21 gene transcription. T cell receptor signaling of Th1 cells promotes expression of the transcription factor Erg2, which in turn, induces Prdm1 (encoding

Blimp1) transcription and IL-10-production by Th1 cells in a STAT3-dependent manner. IL-21 acts as an autocrine growth factor for IL-10-producing Th1 (Tr1) cells.

IL-10 produced by these cells can suppress the activity of Th1 cells and phagocytes, as well as the antigen presenting capacity of DC’s and macrophages. However,

the Bhlhe40 transcription factor can also be upregulated in Th1 cells to block IL-10 gene transcription and promote IFNγ production and IL-12 receptor β (IL-12Rβ)

chain expression, which both re-enforce Th1 cell development and activity. Thus, Bhlhe40 has an important role in determining the balance between Th1 and Tr1 cell

development. The small red ellipsoids in DC’s and macrophages represent captured parasites and associated antigens. The question marks (?) indicate pathways not

yet validated in Plasmodium infections.
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pathways described above and below (Figure 1) have yet to be
confirmed in samples from experimental malaria or malaria
patients. This is clearly an important gap in our knowledge.
It should also be noted that Tr1 cells are likely to represent a
heterogenous cell population (87), and cytokine production and
responsiveness may be regulated distinctly, depending on local
immune conditions.

More recently, type I interferons (IFNs) have emerged as
important regulators of IL-10 production by Tr1 cells. Type
I IFNs comprise a large family of cytokines that includes
several types of IFNα and two types of IFNβ proteins which
all signal through the common IFNα receptor (IFNAR) that
consists of IFNAR1 and IFNAR2 chains which signal via STAT-
1 and STAT-2 (88, 89) to mediate diverse functions during
many infections (90). Polymorphisms in the IFNAR1 gene have
been associated with increased risk of severe malaria in The
Gambia (91, 92), while a whole-brain transcriptional analysis in
genetically resistant and susceptible inbred mice infected with P.
berghei ANKA identified type I IFN-dependent transcriptional
program associated with the pathogenesis of severe malaria
ECM (93). Type I IFNs suppress CD4+ T cell-dependent
parasite control during experimental blood-stage malaria by
modulating the function of CD8α− cDC following P. berghei
ANKA infection, rather than acting directly on CD4+ T cells
(94, 95). Another study inmice infected with P. yoelliYM showed
that type I IFNs produced by plasmacytoid DCs (pDCs) activated
conventional DCs (cDCs) and macrophages for generating B and
T cell responses which are required for controlling parasitemia
and mortality during late phase of infection (96). However,
another study in mice infected with P. yoelli showed that
type I IFNs directly promoted the expansion of Tr1 cells (97)
(Figure 1). Significantly, in CHMI studies, type I IFNs produced
by several different cell sources were found to be important
regulators of developing anti-parasitic immunity. Type I IFNs
not only suppressed innate immune cell function and parasitic-
specific CD4+ T cell IFNγ production, but also promoted the
development of parasitic-specific Tr1 cells (9). Thus, IL-27 is
a major mediator of Tr1 cell development in mouse models
of malaria, but to date, the main driver of Tr1 cell generation
identified in humans infected with P. falciparum are type I IFNs.
Whether these results point to separate pathways for Tr1 cell
generation in humans and mice is still not clear, but if so, this has
significant ramifications for developing strategies to modulate
Tr1 cells for clinical advantage.

TNF is a potent pro-inflammatory cytokine that has been
implicated in malaria pathogenesis. As mentioned above, the
ratio of plasma IL-10 to TNF plays an important role in
determining whether children with malaria develop anemia.
It is often assumed that the relationship between these
two cytokines is characterized by IL-10 dampening the pro-
inflammatory activity of TNF. However, TNF can also promote
IL-10 production, as demonstrated by TNF playing a major
role in lipopolysaccharide-induced IL-10 secretion by human
monocytes (98). Similarly, TGFβwas reported to play a protective
role against severe malaria in mice (99), and TGFβ can drive IL-
10 production by several different CD4+ T cell subsets, including
Treg, Th17 and other FoxP3-negative cells (100). Therefore,

modulation of IL-10 production in malaria may be achieved by
targeting the activities of upstream activating cytokines, such as
IL-27, IL-21, type I IFNs, TNF, or TGFβ. However, as indicated
previously, the precise roles for these cytokines in clinical malaria
still needs to be fully elucidated before these strategies can be
developed and implemented.

TRANSCRIPTIONAL REGULATION OF
IL-10

As discussed earlier, IL-10 can be produced by most CD4+ T
cell subsets in various inflammatory settings, but whether IL-
10 production is mediated by common transcription factors
or cell lineage-specific transcription factors is unclear. Many
transcription factors, including c-Maf, have been shown to
modulate IL10 gene expression in vitro (77, 101, 102). The ligand-
activated transcription factor Aryl hydrocarbon Receptor (AhR)
has also been shown to promote the development of Tr1 cells in
humans (102). During IL-27-mediated Tr1 cell differentiation,
AhR physically associates with c-Maf and trans-activates the
IL10 and IL21 promoters (78) (Figure 1). A recent study in
mice infected with P. chabaudi AS showed that c-Maf regulates
T cell IL-10 production and T cell-specific c-Maf-deficiency
was associated with greater acute-phase pathology, compared to
control mice, but had little effect on blood parasitemia, similar
to the phenotype observed in IL-10-deficient mice (103). Thus,
although c-Maf-dependent T cell IL-10 production protected
against the detrimental impact of inflammation, it had a minimal
effect of the development of anti-parasitic immunity in this
non-lethal, mouse malaria model.

Another transcriptional regulator, B lymphocyte induced
maturation protein (BLIMP)1, has been shown to play an
important role in IL-10 production by Treg cells (104). BLIMP1
is induced by IL-12 in a STAT4-dependent manner and was
shown to control IL-10 expression by Tr1 cells in mice
infected with Toxoplasma gondii (105). In chronic lymphocytic
choriomeningitis viral infection, as well as in central nervous
system-related autoimmunity, BLIMP1 was identified as a critical
regulator of IL-10 production by Tr1 cells (106, 107). IL-27-
dependent production of the early growth response gene 2
(Egr2), a transcription factor required for T cell anergy induction,
was also required for IL-10 production by Tr1 cells in a
BLIMP1-dependent manner (108, 109). BLIMP1-mediated IL-10
production by Tr1 cells was recently reported in experimental
malaria (97), and BLIMP1-dependent IL-10 production by Tr1
cells protected against IFNγ-dependent, TNF-mediated splenic
tissue damage, but also limited the control of P. chabaudi AS
blood parasitemia (110).

More recently, basic helix-loop-helix family member e40
(Bhlhe40) has been identified as a negative transcriptional
regulator of IL-10 production duringMycobacterium tuberculosis
(111) and T. gondii infection (112). Interestingly, Bhlhe40
regulated IL-10 production in both T cells and DCs during
M. tuberculosis infection by binding directly to the Il10 gene
promoter in both cell populations (111). In the case of T. gondii
infection, Bhlhe40 promoted Tbet-dependent IFNγ production
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by CD4+ T cells, while also suppressing IL-10 production in
this cell population (112). Given the many similar mechanisms
of T cell IL-10 generation between these two infectious diseases
and malaria, it will be important to establish the role of this
transcription factor in IL-10 production during Plasmodium
infections. Another basic helix-loop-helix family member Twist-
1 also regulates IL-10 production (113), although little is
currently known about its role in infectious diseases settings.

Therefore, key transcriptional regulators of IL-10 production
have been identified with potentially important roles in malaria
(Figure 1), although as mentioned previously, many still need to
be validated with samples from pre-clinical models of malaria or
malaria patients. However, this area of research is still at an early
stage and it will be necessary to carefully elucidate the specific
cell populations in which these transcription factors operate, the
range of genes they regulate and whether their modulation can
change IL-10 activity to improve anti-parasitic immunity without
causing tissue damage.

THERAPEUTIC MANIPULATION OF IL-10

IL-10 plays a critical role in the immunoregulatory networks
that protect tissue from infection-mediated inflammation during
malaria, and there is convincing mechanistic evidence form
pre-clinical malaria models and associative data from malaria
patient samples showing key roles for IL-10 is preventing several
severe manifestations of malaria, including the development of
anemia and damage to organs. These actions of IL-10 are like
a double-edged sword, cutting both ways, as they can both
suppress important anti-parasitic immune responses, and in
particular, the functions of Th1 cell responses, but also protect
the host from tissue damage. Furthermore, as mentioned above,
IL-10 may also promote anti-parasitic antibody production
by B cells. Therefore, given these beneficial and detrimental
roles for IL-10 during malaria, it is critically important that
we improve our understanding about how IL-10 production
is regulated and the specific roles for IL-10 produced by
different cell populations. We know that parasite-specific Tr1
cells develop early in children living in malaria endemic areas,
as well as in healthy volunteers participating in CHMI studies
with P. falciparum. However, given the important roles these
cells play in preventing disease pathology, as outlined above,
modulation of their activity to improve vaccine efficacy or the
development of immunity after anti-parasitic drug treatment
may be dangerous. However, if modulation of IL-10 production
by specific cell populations or subsets can be achieved, leaving
in place mechanisms to protect tissue from inflammatory
mediators, then clinical benefits may be achieved. This will
require the identification of unique cellular signaling pathways
that regulate IL-10 production in different cell populations. In

addition, strategies to target specific cell signaling pathways will
need to be developed.

CONCLUDING REMARKS

IL-10 is a critical immunoregulatory molecule with both
positive and negative roles during malaria. Blocking IL-10
activity may promote anti-parasitic immunity by enhancing
APC functions and associated T cell activity. However, this
will likely result in concomitant tissue pathology and related
disease. Therefore, a more selective strategy for IL-10 modulation
will be needed. As we identify the cell subsets producing this
cytokine, and learn more about upstream regulators, the cell
signaling pathways, transcription factors and post-translational
modifications controlling IL-10 production, we may be able to
manipulate IL-10 activity to improve anti-parasitic immunity in
response to vaccination or drug treatment. Although IL-10 is
a promising target for immune modulation, it is not the only
such target for trying to improve outcomes in malaria. Immune
checkpoint molecules, other anti-inflammatory cytokines and
alternative host-directed therapies have also been identified (9,
57, 114). Ideally, different approaches should be tested in parallel
to establish the safest and best approach to take. However,
robust pre-clinical and clinical models will be required, as
well as appropriate resourcing. The development of effective,
long-lasting immunity to malaria through vaccination or drug-
mediated strategies is an important priority, and our increasing
knowledge should help make this possible.
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