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Multiple sclerosis (MS) is an inflammatory and degenerative disorder of the central

nervous system with unknown etiology. It is accompanied by demyelination of the

nerves during immunological processes in the presence of oxidative stress, hypoxia,

cerebral hypo-perfusion, and dysregulation in matrix metalloproteinases (MMPs). Human

amniotic mesenchymal stem cells (hAMSCs) as pluripotent stem cells possess some

conspicuous features which could be of therapeutic value in MS therapy. hAMSCs

could mimic the cascade of signals and secrete factors needed for promoting formation

of stable neovasculature and angiogenesis. hAMSCs also have immunomodulatory

and immunosuppressive effects on inflammatory processes and reduce the activity

of inflammatory cells, migration of microglia and inhibit recruitment of certain immune

cells to injury sites. hAMSCs attenuate the oxidative stress supported by the

increased level of antioxidant enzymes and the decreased level of lipid peroxidation

products. Furthermore, hAMSCs enhance neuroprotection and neurogenesis in brain

injuries by inhibition of inflammation and promotion of neurogenesis. hAMSCs could

significantly increase the expression of neurotrophic factors, which prevents neurons

from initiating programmed cell death and improves survival, development, and function

of neurons. In addition, they induce differentiation of neural progenitor cells to neurons.
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hAMSCs could also inhibit MMPs dysregulation and consequently promote the survival of

endothelial cells, angiogenesis and the stabilization of vascular networks. Considering the

mentioned evidences, we hypothesized here that hAMSCs and their conditionedmedium

could be of therapeutic value in MS therapy due to their unique properties, including

immunomodulation and inflammation suppression; angiogenesis promotion; oxidative

stress inhibition; neurogenesis induction and neuroprotection; matrix metalloproteinases

regulation; and remyelination stimulation.

Keywords: angiogenesis, anti-inflammation, antioxidant, amniotic membrane, mesenchymal stem cell, multiple

sclerosis, neurogenesis

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory disorder of the central
nervous system which is accompanied by neural demyelination,
axonal loss, and disability. Although the main etiology of MS is
unknown, genetic, environmental and infectious agents may be
among the factors that play a role in the development of MS (1).
The main pathologic processes of MS include inflammatory and
degenerative phases (2). The presence of inflammatory cells and
their secreted molecules in the demyelinating lesions supports
the notion that pathogenic T cells that react with myelin antigens
play a key role in MS, which then results in the degeneration of
neurons (3). In addition, the migration of autoreactive T cells
to the central nervous system results in destroying the central
neurons and their myelin sheaths, which is mediated by matrix
metalloproteinases (MMPs) (4). Furthermore, oxidative stress,
hypoxia and cerebral hypo-perfusion may lead to increased
demyelinating lesions in MS (5, 6).

Although various pharmacological and non-pharmacological
therapeutic approaches have been used in the treatment of MS,
no definite cure of MS has been discovered to date. Moreover,
all the approved therapeutic approaches are expected to be
life-long, while their potential adverse effects may compromise
their safety or patients’ adherence to treatment. Therefore, it
is imperative yet challenging to find new safe therapies with
fewer delivery concerns and less adverse effects that are more
effective in slowing or preventing MS progression, have the
potential to reverse patients’ disability, and consequently improve
patients’ adherence.

Cell-based therapy by mesenchymal stem cells (MSCs) is
one of the therapeutic approaches that has drawn attention as
a potential approach to address these challenges, considering
initial promising research results (7). Nevertheless, there are
uncertainties regarding the use of MSCs in MS treatment
including tissue source, route of delivery, cell number,
dosing, adverse effects, safety monitoring, and duration of
action (8).

Human amniotic membrane is considered a potential

source for MSCs which possesses unique biological properties,
including anti-inflammatory, anti-fibrosis, anti-scarring and

low immunogenicity characteristics (9, 10). Human amniotic

mesenchymal stem cells (hAMSCs) are pluripotent stem cells
that could be isolated from the fibroblastic layer of human
amniotic membrane.

Altogether, it seems that hAMSCs have potential therapeutic
features that could be promising in MS therapy. There
is some evidence for some hAMSCs properties including
immunomodulation and inflammation suppression
(11); angiogenesis promotion (12, 13); oxidative stress
inhibition (14); neurogenesis induction and neuroprotection
(15); matrix metalloproteinase regulation (16); and
remyelination stimulation.

SUPPORTING EVIDENCE FOR
HYPOTHESIS

Immunomodulation and Inflammation
Suppression
Inflammation in the central nervous system is one of the
major pathogenic processes in MS. Although the trigger
of the inflammatory response in MS is still not clear, it is
suggested that MS is developed when auto-reactive T cells
target proteins which exist predominantly in myelin and
on axons (17, 18). Besides T cells, B cells, macrophages,
activated microglia, and dendritic cells act as key players in
the pathogenesis of multiple sclerosis (19). When dendritic
cells are exposed to myelin-derived antigens, they secrete
cytokines which induce the differentiation of naive T
cells into effector T cells in secondary lymphoid tissues
(2). Inflammatory cells migrate across the blood-brain-
barrier to the central nervous system and thus cause the
inflammatory lesions which are characterized by an area of
demyelination of nerves and axonal loss. In addition, poor T-
regulatory functioning enhances the expansion of inflammatory
responses (20).

Efficient treatment of MS depends on developing a
therapeutic method that can specifically target and regulate
immune responses. A number of immunomodulatory or
immunosuppressive drugs including Interferon-β, Glatiramer
acetate, Natalizumab, and Fingolimod have been designed
to target the immune component of MS. Although these
drugs have displayed beneficial effects for halting MS, they
have shown little impact on its progression (21). On the
other hand, mesenchymal stem cells could be applied as
therapeutics in MS through imposing their immunomodulatory
effect by inducing a shift in T cells from a pro-inflammatory
to an anti-inflammatory state (22); inhibiting naive and
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memory T cell proliferation and maturation (23); inhibiting
proliferation, secretion of proinflammatory cytokines, and
cytotoxicity of natural killer cells and natural killer T cells;
inhibiting B cell proliferation, and antibodies production;
inhibiting the initial differentiation of monocytes to
dendritic cells and impairing their activation, and antigen
presentation (24); and inhibiting the chemotactic activity of
neutrophils (25). In addition, they promote the generation
of regulatory T cells (23), preserve neutrophil viability and
function (26), and regulate macrophage recruitment (27) and
function (28).

hAMSCs could lead to a decrease of peripheral blood
mononuclear cells, interferon-gamma and interleukin-17
production (29). They might also reduce migration, recruitment,
and activity of a broad range of immune cells, including T cells,
natural killer cells, natural killer T cells, dendritic cells, B cells,
neutrophils, monocytes, and macrophages at injury sites (30).
The secretion of nitric oxide by hAMSCs could be the main
cause of their immunosuppressive effect (11). Currently, several
soluble factors, either produced constitutively by hAMSCs or as
a result of cross-talk with target immune cells, have been shown
to exert the immunomodulatory properties of MSCs, including
indoleamine2,3- dioxygenase, prostaglandin E2, interleukin-10,
interleukin-6, HLA-G, transforming growth factor-b1, and
hepatocyte growth factor (23, 31–33). In addition, hAMSCs have
shown a positive effect on immunosuppression in mice models
of MS (2, 18).

Angiogenesis Promotion
Cerebral hypoperfusion as well as vascular factors are involved
in neurovascular dysfunction, vascular oxidative stress, and
relative tissue hypoxia, which could increase the risk of
developing demyelinating lesions as observed in MS. Therefore,
cerebral hypoperfusion may represent pathologic factors or
neuroprotective processes involved in recovery or progression
of MS (6).

Although various therapeutic approaches have been utilized
to promote angiogenesis, most approaches still cannot fully
mimic the process of natural vessel development. The use of
hAMSCs has been explored to mimic the cascade of signals
needed for enhancing viability and promoting formation of
stable neovasculature (16). We also showed the inducing
effects of hAMSCs conditioned media on the sprouting of
endothelial cells (12, 13). MSCs’ potential for angiogenesis
relies on their ability to differentiate to smooth muscle cells
and endothelial cells as well as their paracrine effects by
angiogenetic factors. Angiogenic factors secreted by MSCs vary
based on the source and include VEGF, bFGF, MCP-1, SDF-
1, angiopoietin, monocyte chemoattractant protein, interleukin-
6, placental growth factor, and cysteine-rich angiogenic inducer
61, which could regulate vascular network remodeling (34).
Moreover, hAMSCs could promote angiogenesis by inducing
the extracellular signaling-regulated kinase 1/2-MAPK signaling
pathway (35). Therefore, conditioned medium from hAMSCs
could be beneficial for promoting angiogenesis and would
probably enhance tissue repair.

Oxidative Stress Inhibition
The inflammatory processes play a significant role in neural tissue
injury (36) and in MS pathogenesis critically involve Reactive
Oxygen Species (ROS). Infiltrated immune cells, macrophages
and activated microglia could generate immense amounts of
oxidizing radicals including superoxide, hydrogen peroxide and
nitric oxide. In addition, the activation of immature myeloid cells
induce synthesis of nitric oxide and reactive oxygen species (5).
Free radicals can also activate nuclear transcription factor-kappa
B (NF-κB). NF-κB upregulates the expression of genes involved
in MS, including tumor necrosis factor-α (TNF-α), nitric oxide
synthase (iNOS), intracellular adhesion molecule 1 (ICAM-1)
and vascular-cell adhesion molecule 1 (VCAM-1) (37).

Treatment of mice model of MS with antioxidant enzymes
markedly suppressed the severity of MS (38). In addition,
mitochondrial stabilization and ROS-mediated phagocytosis of
myelinmay reduce axonal damage inmicemodels ofMS (39–41).

The utilization of MSCs in mice models of MS can inhibit
the production of inflammatory factors, including nitric oxide
(NO), tumor necrosis factor, IL1-β and reactive oxygen species
by activated microglia and preventing neuronal damage. The
intravenous injection of MSCs showed a string antioxidant
effect in a mice model of MS through the high expression of
antioxidant enzymes including catalase, superoxide desmutase
and poly (ADP-ribose) polymerase-1 duringMSC treatment (42).

In addition, hAMSCs transplantation into transgenic mice
increased the level of antioxidant enzymes and decreased the level
of lipid peroxidation and oxidative stress (14).

Neurogenesis Induction, Neuroprotection,
and Remyelination Stimulation
Neurodegeneration is considered as a major contributor to
neurological disability in MS and might be the dominant
underlying process of progressive MS. Whether the
neurodegeneration is an independent process or due to
inflammatory processes remains unknown (43). There are
studies that report the mechanisms of neurodegeneration
in MS, including the accumulation of amyloid precursor
protein in neurons and a reduction in the N-acetyl-
aspartate/Creatine ratio (2). In addition, damage to
mitochondrial DNA and mitochondrial enzyme complexes
may lead to neurodegeneration (44). Axonal density reduction
in the white matter and spinal cords of MS patients is another
probable mechanism of neurodegeneration (45).

Another process involved in pathogenesis of MS is
demyelination. Demyelination causes myelin-producing
oligodendrocytes to undergo apoptosis and thus results in
myelin loss (46). In response to demyelination, activated resident
oligodendrocyte progenitor cells proliferate, migrate to affected
areas, and differentiate to replace lost oligodendrocytes, which
might lead to myelin reconstitution and functional recovery
(47, 48). However, remyelination is typically incomplete or
defective and many lesions remain demyelinated (48, 49).
This could be either due to the limited ability of mature
oligodendrocytes to compensate for myelin loss (50) or to
the failure of oligodendrocyte progenitor cells to successfully
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generate new myelinating cells (48). Therefore, oligodendrocyte
progenitor cells cannot often compensate myelin loss on
their own.

Treatment of MS with hAMSCs could significantly increase
the expression of neurotrophic factors including NGF, CNTF,
and BDNF (51). Neurotrophins prevent neurons from initiating
programmed cell death and improve survival, development, and
function of neurons (15, 52, 53). In a study, hAMSCs promoted
neurological recovery in rats after intracranial hemorrhage.
It was concluded that the mechanism of action was mediated
by inhibition of inflammation and apoptosis, increasing
neurotrophic factors expression, and promoting neurogenesis
and angiogenesis (54). hAMSCs induce differentiation of
progenitor cells to neurons (52). In addition, hAMSCs have
the ability to differentiate neural and glial cells in response
to induction medium (55). The level of neurotrophins
significantly decreases in the CNS of MS patients and is
correlated with neuron damage. Therefore, increasing the levels
of neurotrophins—or at least maintaining their physiological
levels—in MS patients might be of therapeutic value (56, 57).
The therapeutic effects of hAMSCs were able to improve the
motor functions of neurodegenerative diseases in mice models
significantly (58), which indicates that hAMSCs have the
potential to differentiate into neural cells. Therefore, hAMSCs
could potentially promote neurogenesis, neuroprotection,
and remyelination.

Matrix Metalloproteinase Regulation
MMPs are a family of a large number of proteolytic enzymes
that have received much attention in neuro-inflammatory
diseases. Leukocyte infiltration through the blood-brain-barrier
is dependent on several factors including secretion of tumor
necrotizing factor-α, gelatinase B/MMP-9 and gelatinase
A/MMP-2 (59). It has been shown that the expression of
MMPs leads to degradation of extracellular matrix proteins of
the basal lamina which surrounds blood vessels (60). MMP-9
is a major matrix metalloproteinase in the pathogenesis of
multiple sclerosis and experimental autoimmune encephalitis,
which could enhance leukocyte migration, blood-brain-barrier
disruption and myelin lysis (4). Different attempts have been
made to develop inhibitors of MMPs for the potential treatment
of diseases in which MMPs play a major role. In one study,
treatment of MS patients with Natalizumab decreased the
risk of progressive multifocal encephalopathy by inhibition of
MMP-9 (61).

Mesenchymal stem cells application in inflammatory diseases
resulted in decreased levels of MMPs or reduced MMPs
activity. In another study, a conditioned medium of MSCs
decreased disease severity by inhibition of the MMPs activity
rate in inflammatory arthritis (62). In another study, MSCs
were introduced as robust sources of MMPs inhibition that
were mediated by Tissue Inhibitors of Metalloproteinase
(TIMPs). This may have therapeutic effects in inflammatory
and vascular diseases (63). It has been shown that treatment
with mesenchymal stem cells inhibited dysregulation of both
MMPs and TIMPs after focal ischemic stroke, which facilitated
neurological and functional recovery after stroke (64).

HYPOTHESIS

Considering the supporting evidences, we hypothesize that
hAMSCs have potential therapeutic features in multiple sclerosis
via angiogenesis promotion, inflammation suppression, oxidative
stress inhibition, neurogenesis induction, neuroprotection,
MMPs regulation, and remyelination stimulation (Figure 1).

Evaluation of Hypothesis
The hypothesis will be evaluated by conducting in vitro and in
vivo experimental studies to address the building block questions
of the hypothesis.

In vitro Studies

To evaluate the in vitro effects of hAMSCs conditioned medium,
oligodendrocyte cell lines such as the OLN-93 will be cultured. To
determine neuroprotection and oxidation inhibition of hAMSCs
conditioned medium, first oxidative stress and cell death will
be induced by using H2O2 or cuprizone. Afterwards, viability,
qualitative and quantitative levels of apoptotic markers as well as
neurotrophin levels will be measured and mitochondrial assays
will be conducted before and after treatment with hAMSCs
conditioned medium. The concentration-dependence to exert
the immunomodulatory actions of hAMSCs will be investigated
by mixed lymphocyte reaction assay.

In vivo Studies

To evaluate the in vivo effects of hAMSCs conditioned medium,
the toxic model of multiple sclerosis will be created in C57BL/6
mice by cuprizone. To measure the motor coordination and
balance among mice, rotarod performance testing will be carried
out before and after treatment with hAMSCs conditioned
medium. To determine the effect of hAMSCs conditioned
medium on angiogenesis, VEGF levels will be evaluated by
ELISA kit. To determine inflammation suppression by hAMSCs
conditioned medium, inflammatory and anti-inflammatory
cytokines will be measured before and after treatment with
hAMSCs conditioned medium by ELISA kits.

To evaluate direct injection of hAMSCs, the cells would be
locally injected in the affected regions of the brain tissue. In
addition, as MSCs express a variety of chemokine receptors
including CXCR4 and CCR2, and cell adhesion molecules
including CD44, integrins α4 and β1, and CD99 (65), they could
be delivered via intravenous administration. Therefore, we aim
to compare the effectiveness of the ways of administration of
hAMSCs in MS models in future studies. In addition, to evaluate
the effect of the number of cells administered in future studies,
1 × 106 hAMSCs (66) will be injected into the tail vein of rat
and the number of cells will be adjusted if necessary. Results will
be evaluated after 6 weeks for investigation of the acute phase of
inflammation and 12 weeks to evaluate the chronic phase of the
MS model.

To evaluate oxidative stress inhibition by hAMSCs, the
reactive oxygen species and glutathione reduction is measured
before and after treatment with hAMSCs conditioned medium
by glutathione assay kit.
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FIGURE 1 | Human Amniotic Mesenchymal Stem Cells (hAMSCs) have potential therapeutic features in multiple sclerosis via supporting evidences illustrated above.

ROS, Reactive Oxidative Species; ECM, Extracellular Matrix; MMPs, Matrix Metalloproteinases.

To evaluate the effects of hAMSCs conditioned media
on OPC differentiation for neurogenesis and remyelination,
oligodendrocyte precursor marker, Olig2, and adult myelin
markers, PLP, MBP, MOG, will be measured by real-time
PCR and Western blot analyses. To further investigate
the effects of hAMSCs, cellular and molecular tests using
immunohistochemistry, Western blot and real time-PCR
analyses on the myelin genes and proteins as well as microscopic
examinations will be carried out. Finally, to determine the effect
of hAMSCs conditioned medium on MMPs regulation, MMPs
activity will be determined by MMPs activity assay.

DISCUSSION

hAMSCs have unique properties including inflammation
suppression, angiogenesis promotion, oxidative stress inhibition,
neurogenesis induction, neuroprotection, MMPs regulation, and
remyelination stimulation, which are of potential therapeutic
value for MS therapy. The anti-inflammatory feature of
hAMSCs, along with their ability to promote neurogenesis and
differentiation of progenitor cells to neurons, could make them
valuable sources for prevention and therapy in both early and
advanced stages of MS. hAMSCs possess other conspicuous
characteristics to make them practical sources for cell-based
therapies against MS, which are discussed further here in
brief. The amniotic membrane, which will be obtained from
elective Cesarean sections to eliminate contaminations, is an
attractive source of MSCs since large quantities of hAMSCs
could be cost-effectively collected without invasive procedures
and ethical concerns (67). Although hAMSCs are capable of
self-renewal and differentiation to all the three embryonic layers,
they are not tumorigenic and thus could be considered safe
and easy-to-access sources for cell-based MS therapy (68). As
we have shown previously, cryopreservation could be used as a
viable system for banking human amniotic cells with low cost
in terms of expense, time and personnel involved and its ease
of implementation. Therefore, they are suitable for banking and

establishing ready-to-use sources for cell therapy (13). Since
hAMSCs retain their reproducible biologic characteristics, they
can be sufficiently expanded for use in regenerative medicine
(69). In addition, the differentiation of hAMSCs to different cell
lines relies on growth factors provided in the medium which can
be altered in the laboratory. Amniotic stem cells can differentiate
to neuron and glial cells (55); therefore, by regulating the
growth factors, hAMSCs could potentially be applied in various
neurological disorders. Neurological disorders occur among the
elderly, and MSCs are affected by the aging process as indicated
by the decrease in the bone marrow MSC pool and also reduced
capacity to handle oxidative stress (70). Therefore, allograft
transplantation of hAMSCs and the ability to provide large
quantities of hAMSCs might make them the choice to substitute
allogenic source of MSCs among the elderly. hAMSCs have low
immunogenicity, which makes them suitable for transplantation
(70). hAMSCs have the ability to pass the blood-brain-barrier
and enter the central nervous system (71). Thus, they can be
administered intravenously and there is no need for more
invasive routes of administration. In addition, intravenous
administration of hAMSCs enhances their global access to sites
of inflammation and damage to secrete the required factors to
alleviate MS considering that MS lesions are disseminated in
space, meaning that patients have lesions in several areas of
the CNS (72). A question that needs to be clarified is whether
hAMSCs give the same effect regardless the degree of MS. The
pathogenesis of MS is seemingly different in the early and late

stages of the disease. There is less inflammation in the brain
in primary progressive MS than in secondary progressive MS.
In addition, increased blood T-cell reactivity to myelin sheaths
was found in relapsing–remitting MS and secondary progressive

MS (73). Therefore, anti-inflammatory and immunomodulatory

qualities of hAMSCs could be effective in secondary progressive
and relapsing–remitting MS. Acute axonal injury occurs
focally in secondary progressive MS and diffusely in primary
progressive MS (73). Therefore, neurogenesis, neuroprotection,
and remyelination imposed by hAMSCs could be of value via
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systemic administration in primary progressive MS and via
local injection in secondary progressive MS. Taken together, the
anti-inflammatory feature of hAMSCs, along with their ability to
promote neurogenesis and differentiation of progenitor cells to
neurons, could make them valuable sources for prevention and
therapy in both early and advanced stages of MS.

To the best of our knowledge, no studies have focused on
the unique properties of hAMSCs for MS therapy. Therefore,
it is essential to investigate the potential therapeutic values of
hAMSCs for MS.

CONCLUSION

hAMSCs and their conditioned medium could be of
therapeutic value in MS therapy due to their unique
properties including immunomodulation and inflammation

suppression; angiogenesis promotion; oxidative stress inhibition;
neurogenesis induction and neuroprotection; MMPs regulation;

and remyelination stimulation. Therefore, it is required to
evaluate the hypothesis in future in vitro and in vivo studies.
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