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The role of interleukin-1 in the regulation of humoral responses is poorly documented, in

contrast to its role in inflammation. Recent findings suggest there is an interleukin-1 axis

in the follicular T cell control of B cell responses, involving interleukin-1 receptors (IL-1R1

and IL-1R2) and receptor antagonists (IL-1Ra). Here, we revisit the literature on this topic

and conclude that targeting the interleukin-1 pathway should be a valuable therapeutic

approach in many diseases involving excessive production of (auto)antibodies, such as

autoimmune diseases or allergy.

Keywords: plasma cell, antibody production, immunoregulation, immunotherapy, germinal centers, Tfr cells,
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INTRODUCTION

Interleukin-1 (IL-1) is known as the key cytokine of innate immune responses and has been
described as the “quintessential inflammatory cytokine” (1). IL-1 is predominantly produced
by monocytes and macrophages (2, 3) following an external stimulus such as through Toll-
Like Receptor (TLR) activation. IL-1 pleiotropic functions have so far mainly been linked to
inflammation, orchestrating a first line of defense against pathogens (4). IL-1 has systemic effects
that trigger fever, cortisol production, and liver stimulation (with production of C-reactive and
complement proteins) and local effects on innate and adaptive immune cell stimulation. The
effects of IL-1 on innate immunity have been extensively studied and reviewed (4, 5). Those
on adaptive immunity have been ascribed to a general amplification of T-cell responses (6) and
to modulation of T cell plasticity toward Th17 cell differentiation (7, 8). Except for the known
role of IL-1 in adjuvanticity (9), the involvement of IL-1 in the regulation of humoral response
is poorly documented. Indeed, a thorough check of the literature, including multiple PubMed
queries such as various combinations of “interleukin-1,” “IL-1,” “IL-1Ra,” “IL-1R1,” “IL-1R2,” “Tfh,”
“Tfr” “follicular cells,” “humoral immunity,” “antibody production,” “autoantibody production,”
and “germinal centers” did not identify relevant publications. We review here recent findings that
highlight a key role of IL-1 in the regulation of follicular helper and follicular regulatory T cells,
thereby controlling B cell responses.

THE IL-1 ACTIVATION PATHWAY

IL-1ß is part of a wide family of cytokines (IL-1α, IL-1ß, IL-18, IL-33, IL-36), receptor antagonists
(IL-1Ra, IL-36Ra, IL-38) and the anti-inflammatory IL-37. The IL-1 activation pathway has been
reviewed elsewhere (10). Briefly, IL-1 is produced as an inactive precursor, pro-IL-1ß, in response
to pathogen-specific signals. This stimulation of innate immune cells induces the formation of the
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inflammasome, a molecular scaffold composed of many
molecules such as NLRP3 (11). This key system activates caspase
1 (also called ICE for Interleukin-1 Converting Enzyme), an
enzyme able to cleave pro-IL-1ß (12). It is worthy of note
that the mechanism of IL-1ß secretion is not the conventional
endoplasmic reticulum and Golgi route (13), but is not well
understood yet and may depend on many parameters, such as
stimulus strength and IL-1 requirement (14).

The signaling pathway following the interaction of IL-1 with
its agonist receptor IL-1R1 has been described to be the same
as many other signaling pathways, such as those triggered by
the interaction of pathogenic components with TLR or of IL-
33 with its receptor (10, 15). The first step consists of the
recruitment of MyD88 to the receptors (16), and the cascade
that follows—called the “canonical pathway”—which leads to the
final activation of NF-kB. This ultimately activates the expression
of pro-inflammatory genes such as cytokines, chemokines and
adhesion molecules (17).

IL-1R2 and IL-1Ra regulate the IL-1ß / IL-1R1 interaction.
IL-1R2 has an extracellular domain structurally similar to that
of IL-1R1 but which lacks the intracellular domains allowing
signaling. It thus acts as a decoy receptor, capturing the IL-1ß and
thereby preventing IL-1R1 stimulation (18). IL-1R2 is expressed
at high levels by macrophages, neutrophils and B-cells (19). IL-
1Ra is a cytokine that inhibits IL-1 function by binding to IL-1R1
without producing any agonist effects, thereby preventing IL-1
binding (20, 21).

IL-1 AND THE REGULATION OF TFH AND
TFR CELLS

Antibody production by plasma cells is tightly regulated by
follicular helper T (Tfh) cells. Help by Tfh cells is essential for
the differentiation of B cells into antibody-producing plasma cells
(22, 23). In contrast, follicular regulatory T (Tfr) cells negatively
control humoral immune responses (24, 25). These cells are
thought to be derived from regulatory T (Treg) cells (26, 27).
Their mechanisms of action are poorly known and they are
thought to act by regulating the help provided by Tfh cells to B
cells. However, recent findings have shown that few Tfr cells are
located within the germinal centers (GCs) of LNs, where Tfh cells
and plasma cells interact. Most Tfr cells are found surrounding
the GCs and are likely not in contact with Tfh cells (28).

In contrast to Treg cells from which they are derived, we
observed that Tfr cells do not respond to interleukin-2 (IL-2)
(29). This led us to reexamine their phenotype thoroughly. In
contrast to Treg cells and to previous description of the Tfr-
cell phenotype, we showed that Tfr cells do not express IL-2Ra
(CD25), the essential component of the high-affinity IL-2R. This
is important because most previous investigations of Tfr cell
biology actually reported the biology of mixtures of Tfr and Treg
cells. The stringent characterization of Tfr cells allowed us to
reveal a striking distribution of IL-1 receptor expression on Tfh
and Tfr cells. We observed that Tfh cells express the IL-1R1
agonist receptor while Tfr cells express both the IL-1R2 decoy
receptor and the antagonist IL-1Ra. The lack of CD25 expression

by Tfr cells and this distribution of IL-1 receptors have also been
observed by others (30, 31).

This striking distribution of the agonist receptor on Tfh
cells and of the antagonist receptors/inhibitors on Tfr cells
led us to hypothesize and explore a possible IL-1 axis in the
regulation of humoral responses. We observed that, in vitro,
IL-1ß activated the production of IL-4 and IL-21 by Tfh cells.
These cytokines have been shown to be crucial for the T-cell
help to B cells (32). This cytokine production was suppressed
by Tfr cells to the same extent as by recombinant IL-1Ra
(Anakinra), indicating that the suppressive effect was likely
dependent on the blocking of IL-1 by IL-1R2 on the surface
of Tfr cells, or on IL-1Ra produced by Tfr cells. Eventually,
we showed that, in vivo, IL-1ß induced proliferation of Tfh
cells while Anakinra significantly reduced the proportion of
Tfh cells.

Altogether, we revealed an IL-1 axis regulating the germinal
center responses (29) and suggested the existence of a dual
regulation of T cells in secondary lymphoid organs, one between
Treg and effector T cells regulated by IL-2 outside GCs and the
other between Tfh and Tfr cells regulated by IL-1 inside GCs.

IL-1 AND REGULATION OF THE HUMORAL
RESPONSE (FIGURE 1)

There are no or few experiments that have investigated a
direct link between IL-1 and antibody production. However,
revisiting the literature, there are actually many observations
indirectly supporting the involvement of an IL-1 axis in the
control of humoral immunity (summarized in Table 1). First,
IL-1 administration during an immunization enhanced humoral
responses and led to greater antibody production (9, 38, 39), a
phenomenon referred to as the “adjuvanticity of IL-1,” which
was mostly thought to act by stimulation of innate immune cells
that in turn would stimulate helper T cells to help B cells better.
Interestingly, this observation is itself indirectly supported by
the fact that many adjuvants used for immunization, such as
the widely used alum, trigger enhanced IL-1 production (34).
Similarly, stimulation by pathogens, which ultimately triggers
antibody production, is also a strong IL-1 enhancer (35).
Altogether, it appears that there is some positive correlation
between production of IL-1 during immunization and the
efficacy of the resulting B cell response.

Experiments using genetically modified mice not expressing
the IL-1 gene or its receptors further support the importance of
an IL-1 axis in the control of humoral responses. Following
appropriate stimulation, IL-1-deficient mice produced
significantly reduced amounts of antibodies compared to
wild-type mice (36, 37). Conversely, mice deficient in the
expression of IL-1Ra, an antagonist of the IL-1R1 receptor,
showed increased antibody production in the same conditions
(36, 37). In these studies, the effect of IL-1 on humoral immunity
enhancement was shown to act through induction of co-
stimulatory molecules on T cells, such as CD40L and OX40 (37),
which were later found to be highly expressed on the surface of
Tfh cells (40) (Table 1).
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FIGURE 1 | IL-1 and the regulation of the humoral response. (1) Immunization enhances IL-1 production. (2) IL-1 stimulates tfh cells through the IL-1R1, can be

captured by IL-1R2 on Tfr cells, and IL-1Ra produced by Tfr cells can block the action of IL-1 on IL-1R1. (3) IL-1 stimulates IL-4/IL-21 production by Tfh cells through

its binding to IL-1R1. (4, 5) IL-4/IL-21 helps B cells to become either memory B cells or antibody-producing plasma cells.

IL-1 AND THE PATHOPHYSIOLOGY OF
HUMORAL RESPONSES

Some evidence for the involvement of IL-1 in the humoral
response can also be found by looking at diseases associated with
excessive levels of antibodies and/or pathogenic antibodies.

Autoimmune Diseases
Autoantibody production is common in autoimmune diseases
and frequently contributes to their pathophysiology. Much
evidence of the involvement of IL-1 in the control of
autoantibody production can be found in the recent literature.

One of the interesting models for the study of this role
is Myasthenia Gravis (MG), a disease caused by a pathogenic
anti-acetylcholine receptor (AChR) IgG1 (41). (i) IL-1ß gene
polymorphisms have been found in association with MG,
suggesting a possible pathogenic role of this cytokine in the
disease (42); (ii) Anakinra reduced the clinical symptoms of mice
with experimental autoimmune MG (EAMG) and suppressed
the pathogenic anti-AChR IgG1 (41); (iii) inhibition of proteins
involved in the production of IL-1ß, such as caspase-1, can
regulate the humoral response in EAMG (43). In the classification
byMcGonagle andMcDermott (44),MG ismore an autoimmune
than an auto-inflammatory disease. This suggests that the

consequences of blocking IL-1 in this disease should mostly be

due not to the blocking of IL-1 inflammatory effects, but to the
contribution of IL-1 to the regulation of antibody production.

Thyroid gland autoimmune disorders also appear
informative. (i) A recent large-scale study found an association
with the IL-1 RN (gene encoding the IL-1Ra) receptor antagonist

variable number of tandem repeats (VNTR) polymorphism
in Hashimoto Thyroiditis (HT) patients (45); (ii) increased
percentages of circulating Tfh cells have been found in patients
with autoimmune thyroid disorders, with a positive correlation

between the percentages of circulating Tfh cells and the serum
concentrations of anti-TSH receptor-Ab/thyroperoxidase-
Ab/thyroglobulin-Ab (46); (iii) a study suggested that both

promoter and exon polymorphisms of IL-1β gene have a

significant role in the risk of developing Graves’ disease (GD)
(47); (iv) although no significant differences in IL-1β levels
were found between serum from patients with HT or GD and
normal controls. IL-1β mRNA and protein levels in peripheral
blood mononuclear cells of HT patients were found to be
significantly higher than those of patients with GD, which
were in turn higher than the level in normal controls; (v)
IL-1β mRNA was also increased in thyroid gland tissue from
patients with HT compared to those with GD, and this was
accompanied by increased local infiltration of monocytes into
thyroid tissues; correlation analysis validated the association of
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TABLE 1 | Experiments supporting a correlation between IL-1 production during immunization and resulting antibody production.

Experiment Effect Comment References

IL-1 as an adjuvant Enhanced antibody response Dose- and time-dependent adjuvanticity of interleukin 1 in vivo.

IL-1 given 2 h after the priming dose of antigen enhanced antibody

response

(9)

IL-1 as an adjuvant Enhanced antibody response IL-1 is an effective mucosal vaccine adjuvant when

coadministered with protein immunogens, and is as effective as

cholera toxin in inducing Ag-specific serum IgG

(33)

Alum induces release of IL-1 Enhanced antibody response (alum

effect)

Considering the immunostimulatory activities of these cytokines

and the ability of IL-1β to act as an adjuvant, the results suggest a

mechanism for the adjuvanticity of alum

(34)

Cholera toxin induces release of IL-1 Enhanced antibody response Cholera toxin (CT) is a strong systemic and mucosal adjuvant that

greatly enhances IgG and IgA immune responses. It stimulates

IL-1 production

(35)

IL-1α/β-deficient mice Reduced antibody production Primary and secondary antibody production against T-dependent

antigen was significantly reduced in IL-1α/β−/− mice after

immunization

(36, 37)

IL-1Ra-deficient mice Increased antibody production Primary and secondary antibody production against T-dependent

antigen was significantly increased in IL-1Ra−/− mice after

immunization

IL-1 effects on CD40L Increased CD40L expression CD40L expression on T cells was affected in IL-1−/− mice, and

the reduced Ag-specific B cell response in IL-1−/− mice was

recovered by treatment with agonistic anti-CD40 mAb both in vitro

and in vivo. IL-1 enhances T cell-dependent Ab production by

augmenting CD40L

(37)

high IL-1β levels with the pathogenesis of HT and led to the
suggestion that IL-1β may be an active etiologic factor in the
pathogenesis of HT and thus represent a new target for novel
diagnostics and treatment (48).

Rheumatoid or systemic diseases could also be studied from
this point of view. For instance, in rheumatoid arthritis, anti-
CCP antibodies were more frequently found in the rheumatoid
arthritis subgroup with high levels of cytokines, including IL-
1 (49). In systemic lupus erythematosus (SLE) models, mice
deficient in the IL-1ß gene were found to be resistant to induction
of experimental SLE and developed lower levels of anti-dsDNA
antibodies, as compared to control mice (50). Bay11-7082—
a broad-spectrum inhibitor with anti-inflammatory activity
against multiple targets (51)—reduced autoantibody production
and renal immune complex deposition in MRL/lpr mice via
inhibiting NLRP3 inflammasome and NF-κB activation (52).
Compared to wild-type mice, caspase-1−/− mice had significant
reductions in both anti-dsDNA and anti-RNP autoantibody
titers, abrogation of a type I IFN signature and were protected
from both renal immune complex deposition and kidney
inflammation (53). A few studies reported efficacy of IL-1
blockers in SLE patients (54–56), with documented decrease in
anti-dsDNA antibody levels (54, 55).

In multiple sclerosis (MS), some antibodies may be involved
in the pathophysiology of some form of the disease via
demyelination (57). Among these antibodies, autoantibodies
directed against lipids present in myelin (58), myelin
oligodendrocyte glycoprotein (MOG) (59) or myelin basic
protein (60) could be pathogenic, possibly through antibody
deposition and complement activation, which are frequently
found in chronic active lesions (61). Supporting this, new brain

lesions were reduced in MS patients receiving rituximab, an
anti-CD20 drug that depletes B cells (62). Therapeutic plasma
exchange has also been used to treat the disease, with success
in the MS pattern involving prominent immunoglobulin and
complement (63). On the other hand, IL-1ß expression in the
central nervous system and in blood has been shown to be
associated with disease activity, though direct mechanisms have
not been established (64). IL-1R1-deficient mice were resistant
to experimental autoimmune encephalomyelitis (EAE) (65), the
mouse model of MS. Furthermore, treatment with IL-1Ra has
some protective effect on rat EAE as it reduces the duration and
severity of the disease (66). Altogether, this could be suggestive
of an effect of the IL-1 axis on the disease through limitation of
pathogenic antibody production in MS.

In celiac disease, individuals develop an immune reaction to
gluten, mainly composed of IgA antibodies. Polymorphism of
IL-1 has been associated with susceptibility to celiac disease (67)
and IL-1ß is associated with the disease, though its mechanism
of action is unknown (68). Finally, we recently showed that the
TCR repertoires of Tfh and Tfr cells from spleens of immunised
mice were surprisingly diverse and mostly composed of mildly
expanded clonotypes suggesting a major bystander activation
during the immune response in the GCs (69). It remains to
investigate the contribution of IL-1 to this bystander activation
and its possible relation to autoantibody formation.

Hypersensitivity and Allergy
Allergy also appears of interest in supporting the involvement
of IL-1 in antibody production. In 2012, preliminary results
suggested that IL-1ß was involved in the development of antigen-
specific Tfh cells in the airways (70). Since these results, it
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has been shown that exposure to IL-1ß in conjunction with
ovalbumin leads to significant increases in the levels of specific
anti-OVA IgE and IgG (71, 72). Mice that are deficient in the IL-
1R1 receptor and sensitized to peanut for 4 weeks showed a large
decrease in serum levels of peanut-specific IgE antibodies, as well
as anti-peanut IgG1 antibodies. Numbers of Tfh and GC B cells
were also dramatically decreased in IL-1R1−/− mice compared
to wild-type mice (73). The role of IL-1 in the pathogenesis of
allergies was also suggested by studies showing, for instance,
that administration of IL-1Ra to pigs reduced IgE production.
Finally, in humans, polymorphisms of IL-1-related genes have
been associated with susceptibility to allergic rhinitis (74).

LESSONS FROM THERAPEUTIC TRIALS

Different molecules targeting IL-1 have been or are currently
being developed. Among them are monoclonal antibodies
directed against IL-1 (Canakinumab, Gevokizumab for instance),
a human recombinant IL-1Ra (Anakinra) or a soluble decoy
receptor (Rilonacept) (75). Despite widespread use of these IL-
1 inhibitors in patients with autoimmune disease, very little
has been reported concerning a modification of the humoral
response. The only possibly relevant findings are of an increased
incidence of infection compared with placebo, but no data have
been presented that could support a link with regulation of
humoral responses (76).

CONCLUSIONS–PERSPECTIVES

The notion that an IL-1 axis might control humoral immune
responses by Tfh and Tfr cells is just emerging. Although it was
well known that IL-1 has an important role in immune responses
that lead to antibody production, this role was mostly assigned to
direct stimulation of an innate immune response, which in turn
would control the T and B cell response independently of IL-1.
The discovery of a peculiar distribution of IL-1 receptors and IL-
1 antagonists on Tfh and Tfr cells led us to revisit the role of IL-1
in the control of antibody production. It is now clear that most
Tfh cells from the GCs express IL-1R1 and that in a pure in vitro
system the addition of IL-1 directly stimulates Tfh to produce
the twomain B-cell activation cytokines. Furthermore, IL-1 alone

expands Tfh in vivo. Thus, a direct role of IL-1 in the activation
of Tfh cells appears important for antibody production.

The role of Tfr in controlling this regulation is less well
documented. Tfr cells express IL-1R2 and IL-1Ra and are
thus equipped to interfere with IL-1-mediated activation of
Tfh cells. Recent work has localized most Tfr cells around
and not inside GCs, which would be compatible with a role
in capturing/neutralizing IL-1 before it can act on Tfh cells
(27). Further studies, notably assessing mice knockout for the
different receptors on specific cell populations should clarify the
mechanistic aspects of the IL-1 axis in Tfr/Tfh cell control of
antibody production.

Meanwhile, an existing and large body of evidence indicates
that targeting the IL-1 pathway should be an important, although
so far ignored, therapeutic approach to many autoimmune
diseases. It could work not just by reducing inflammation, which
can be fueled by the antibody response, but also by directly
reducing this antibody response, thus playing both sides for
greater efficacy. By reducing inflammation, it can also improve
the efficacy of Tregs which suppressive ability is decreased
in high inflammatory context (77–80). We believe that these
results should stimulate the investigation of the regulation of
IL-1 in many experimental models, from autoimmunity and
inflammation to allergy. Furthermore, given the availability of
many drugs targeting the IL-1 pathway, and acknowledging
that our experimental models of diseases do not reflect human
settings of diseases well, innovative clinical trials should play
a role in further elucidation of the IL-1 pathway and its
therapeutic potential.
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