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Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic

inflammation of synovium (synovitis), with inflammatory/immune cells and resident

fibroblast-like synoviocytes (FLS) acting as major players in the pathogenesis of this

disease. The resulting inflammatory response poses considerable risks as loss of bone

and cartilage progresses, destroying the joint surface, causing joint damage, joint failure,

articular dysfunction, and pre-mature death if left untreated. At the cellular level, early

changes in RA synovium include inflammatory cell infiltration, synovial hyperplasia, and

stimulation of angiogenesis to the site of injury. Different angiogenic factors promote

this disease, making the role of anti-angiogenic therapy a focus of RA treatment. To

control angiogenesis, mesenchymal stromal cells/pericytes (MSCs) in synovial tissue

play a vital role in tissue repair. While recent evidence reports that MSCs found in joint

tissues can differentiate to repair damaged tissue, this repair function can be repressed by

the inflammatory milieu. Extremely-low frequency pulsed electromagnetic field (PEMF), a

biophysical form of stimulation, has an anti-inflammatory effect by causing differentiation

of MSCs. PEMF has also been reported to increase the functional activity of MSCs

to improve differentiation to chondrocytes and osteocytes. Moreover, PEMF has been

demonstrated to accelerate cell differentiation, increase deposition of collagen, and

potentially return vascular dysfunction back to homeostasis. The aim of this report is

to review the effects of PEMF on MSC modulation of cytokines, growth factors, and

angiogenesis, and describe its effect on MSC regeneration of synovial tissue to further

understand its potential role in the treatment of RA.

Keywords: pulsed electromagnetic field (PEMF), rheumatoid arthritis (RA), mesenchymal stromal cells/pericytes

(MSCs), osteogenesis, chondrogenesis, angiogenesis

INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disease affecting over 1.3 million Americans,
and as much as 1% of the population worldwide (1). Although RA predominantly affects large and
small joints, it can affect other organs in the body, including those of the cardiovascular, pulmonary,
and ophthalmologic systems (2). The pathophysiology of RA includes abnormal activation of blood
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cells, namely macrophages, T-cells, and B-cells, which produce
pro-inflammatory mediators (e.g., cytokines and growth factors)
that initiate an inflammatory cascade that leads to joint damage
(i.e., bone erosions) and systemic complications (3). Current
treatments include corticosteroids, traditional disease-modifying
anti-rheumatic drugs (DMARDs), and anti-cytokines (biologics);
however, these drugs have adverse effects which can be severe,
including osteoporosis, alterations of metabolism, infection,
bone marrow suppression, hepatitis, and an increased risk of
malignancies (4–6). As the disease progresses, joints are damaged
resulting in impaired range of motion, joint deformity, and
dysfunction (7). Although the currently approved drugs are
known to prevent further joint damage, the effect of these drugs
in repairing bone erosions has yet to be demonstrated, and
pro-anabolic agents are needed to promote bone formation at
the erosion sites (8). Therefore, innovative and safe strategies
aimed at both reducing inflammation and promoting tissue
regeneration are urgently needed to inhibit the progression
of RA.

A promising novel strategy for the treatment of RA is the
local or systemic delivery of extremely low frequency pulsed
electromagnetic fields (PEMF) to target mesenchymal stromal
cells/pericytes (MSCs) to improve their ability to modulate
immune responses and repair tissue. PEMF are physical stimuli
that affect biological systems through the production of coherent
or interfering fields that modify fundamental electromagnetic
frequencies generated by living organisms (9, 10). PEMF activate
multiple intracellular pathways, including numerous processes
and biochemical mechanisms within both the immune and
microvascular systems. There are two methods in which PEMF
can be applied to biological tissues: capacitive or inductive
coupling. In direct capacitive coupling, an electrode must be
placed on the tissue (11); however, in non-direct capacitive
coupling/inductive coupling, electrodes do not have to be in
direct contact with the tissue because the electric field produces a
magnetic field that, in turn, produces a current in the conductive
tissues of the body (11–13). PEMF therapy is based on Faraday’s
law, a basic law of electromagnetism that predicts how a
magnetic field will interact with an electric circuit to produce
an electromotive force known as electromagnetic induction. This
law dictates the more charge that is needed, the higher the
intensity of the PEMF signal needs to be. This is represented by
the equation dB/dT, where B is peak magnetic intensity, T is time,
and d is the derivative (or change) in these units. Since the PEMF
signal needs to be able to pass deep enough through the tissue
to produce healing results, field intensity, frequency, and time of
exposure are all important components in the dosimetry. PEMF
follows the inverse square law, so it drops off exponentially from
the distance of the surface of the coil; therefore, the closest tissue
to the coil (applicator) gets the maximum intensity, and furthest
tissue from the coil gets the least intensity.

PEMF can alter cell function by triggering the forced vibration
of free ions on the surface of the plasma membrane, causing
external oscillating field disruptions in the electrochemical
balance of transmembrane proteins (ion channels) (9, 14). It has
been suggested that PEMF may be propagated and effectively
amplified along the entire signal transduction pathway, thereby

modifying cell behavior (15–17). Indeed, several studies have
reported that PEMF can modulate both cell surface receptor
expression/activation, and downstream signal transduction
pathways, thereby restoring homeostatic cell functions such
as viability, proliferation, differentiation, communication with
neighboring cells, and interaction with components of the
extracellular matrix (ECM) (18–23).

By modulating the expression of various signaling cascades
and cellular information processing networks to potentially
restore them to homeostatic (healthy) production levels, PEMF
is showing promise as a treatment for autoimmune diseases
such as RA (24–27). Changes in the cells’ microenvironment
are integrated into a survival response by complex signal
transduction mechanisms (28). Lipid nanopores forming stable,
ion channel conduction pathways in the plasma membrane of
cells (29), explain the conduction of ions into the cell from
the extracellular space, specifically calcium (Ca2+) ion flux (17,
30, 31). It has been postulated that a direct effect of PEMF
on phospholipids within the plasma membrane stimulates the
production of secondmessengers, initiatingmultiple intracellular
signal transduction pathways (32–34).

PEMF intensity is dependent upon wave amplitude/field
strength measured in units of Tesla (T), or Gauss (10,000 T).
In order to deliver a therapeutic PEMF, it is necessary to
optimize three important parameters: frequency, intensity, and
duration/time of exposure (9). Previous studies have conclusively
shown that optimization of the frequency, intensity, and time
of exposure is helpful in attaining consistent beneficial results
in experimental arthritis in rats (35–37). A 5Hz frequency, 4
microT (µT) intensity, applied for 90min to the rat paw was
reported to be the optimal dosimetry for lowering edema, and
reducing swelling, inflammatory cell infiltration, hyperplasia,
and hypertrophy of cells lining the synovial membrane (37).
Preliminary studies in humans have also reported that PEMF
can reduce chronic joint swelling and pain in patients with RA
(25). Further, the beneficial effects of PEMF have been reported
to last up to 3 months or longer in human patients with chronic
inflammatory/autoimmune disorders (38) with no evidence of
adverse effects (39).

PEMF MODULATES RA TISSUE
PATHOGENESIS VIA MODULATION OF
MSCS AND FLS

Normal synovium composition consists of a well-organized
matrix of fibroblast-like cells (FLS) and macrophage-like cells
known as synovial cells or synoviocytes. The joint-lining
synovial membrane consists of a layer of macrophage-like
(type a) synoviocytes, fibroblast-like synoviocytes (FLS–type
b), and mesenchymal stromal cells (MSCs) (40). In RA, the
synovium becomes infiltrated by cells of lympho-hematopoietic
origin, namely T-helper cells, B cells, and macrophages, which
cause synovial hyperplasia and neoangiogenesis (7, 41, 42).
The resulting inflammatory response poses considerable risks
for joint damage, and articular dysfunction if left untreated
(43). Type A synoviocytes are CD163+, CD68+, CD14+/lo
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cells that localize to the intima and the subintimal layers
of the synovial membrane and proliferate in response to
inflammatory conditions. Under pathological conditions,
Type A (macrophage-like) synoviocytes contribute to cartilage
destruction by producing pro-inflammatory cytokines. They
originate in the bone marrow, like other mononuclear
phagocytes, and are constantly replaced via the circulation.
In rheumatoid synovium sections, 80–100% of the synovial
lining cells are macrophage-like cells functioning as antigen
processing- and antigen-presenting cells to T lymphocytes (44).
Type A synoviocytes also induce the formation of osteophytes
through the release of transforming growth factor-beta (TGF-β)
3 and bone morphogenetic proteins (BMP)-2 and BMP-4 (45).

FLS, a heterogeneous population of fibroblastic cells, express
CD55 and also play a central role in the maintenance of
joint inflammation and the destruction of cartilage (8, 46).
RA joint pathology is characterized by chronic inflammation
of the synovium (synovitis), which causes cartilage and bone
erosion between inflammatory/immune cells and resident FLSs
(47). Under healthy conditions, these cells contribute to the
homeostasis of normal joints by synthesizing extracellular
matrix (ECM) molecules and secreting specific components of
synovial fluid (48). Synovial Fibroblasts respond to inflammatory
cytokines, mainly TNF-α, by producing a large variety of
inflammatory mediators along with tissue destruction (49, 50).

MSCs are also shown to be present in various areas of the joint
(51). Immunoregulatory function of MSCs can be modulated
by proinflammatory cytokines such as IFN-γ, TNF-α, and IL-
1α or β (52). Synovial MSCs express CD44, CD90, CD271,
and UDPGD, required for hyaluronan synthesis, and possess
high chondrogenic potential (53). Synovial MSCs, which when
healthy, maintain tissues and facilitate the repair process. While
both FLSs and MSCs are part of the synovium, their functional
specialization and diversification may be dependent on their
positional information and environmental cues (54); however
the relationship between MSCs and FLSs remains unclear. MSCs
in the synovial lining could be perhaps stem cells interspersed
between the FLSs and synovial macrophages. Alternatively, the
FLSs could be a stage of differentiation of the MSC lineage,
taking on FLS-specific properties, but still maintaining theirMSC
lineage (54).

While immune cells have been extensively investigated in the
pathogenesis of RA, little is known about the in vivo functions
of FLSs/MSCs in the regulation of immune homeostasis in
physiology and their contribution to immune regulation in
RA. Under normal conditions, FLSs/MSCs would control
the degree of immune responses; however, the inflammatory
environmental signals cue inflammatory cells, unsettling the
immunomodulatory functions of FLSs/MSCs, damaging the
pannus, contributing to chronic disease maintenance and
progression (55). Aberrant cross-talk between FLSs/MSCs and
immune cells (T-cells, B cells and macrophages) could be
a vicious cycle of chronic RA progression (54). This could
be due to MSCs ability to express inflammatory mediators
such as prostaglandin E2 and IL-6. Also enzymatic production
of arachidonic acid enhanced in MSCs by TNF-α or IFN-
γ have a deleterious effect on immune cells in the RA

microenvironment (56). Thus, heterogeneity of MSCs in terms
of immune and hematopoietic function can either maintain
immune homeostasis or promote RA pathogenesis.

Healthy MSC function has been shown to inhibit
inflammatory responses and improve regeneration (57, 58) by:
(a) inhibiting inflammatory cell infiltration and inflammatory
cytokine release (59); (b) activating regulatory T-cells (Tregs)
(60); and (c) influencing the transition from Th1 cells toward
Th2 cells (61). MSCs exert their regulatory activities through the
release of immunomodulatory molecules such as IL-10, TGF-β,
PGE2, and indoleamine 2,3-dioxygenase (IDO) (62, 63). In
addition, MSCs are able to polarize macrophage differentiation
toward the anti-inflammatory M2 phenotype in vitro and in
vivo (64, 65); inhibit T-cell proliferation (61, 66); and induce
the formation of Tregs (67, 68). As such, MSCs are an attractive
target for immunomodulation, particularly in the treatment of
cartilage injuries and diseases such as RA (54), as modulation
of resident synovial MSCs could lead to the control of the
inflammatory immune response (57) and ultimately decrease the
RA-associated angiogenesis processes.

Stimulation of resident MSCs, or other tissue specific
cells to improve inflammation and/or tissue regeneration, is
a relatively new concept in medicine that could potentially
be achieved by the use of PEMF (10, 69–72). PEMF has
the potential to prevent aberrant and promote healthy MSC
function. PEMF has been shown to induce differentiation of
MSCs to promote immunomodulation and improve cartilage
and bone regeneration in vitro (10) and in vivo (73).
Stimulation of chondrogenesis in situ through PEMF could
lead to an increase of cartilage matrix and collagen levels
in RA damaged joints (24, 26, 27, 30, 74, 75). In addition,
PEMF promotes proliferation of endogenous chondroblasts
(73), supports the enhancement of cartilage regeneration (76),
and potentiates MSCs’ anti-inflammatory responses. In RA,
PEMF also upregulates adenosine receptors to increase anti-
inflammatory effects on both chondrocytes and FLS and reduces
levels of enzymes produced by FLS and osteoclasts that lead to
bone destruction (24, 27, 77) (Table 1).

PEMF AS AN ALTERNATIVE TO
BIOLOGICS IN THE TREATMENT OF RA

The cytokine network in RA is complex and involves an
interplay of both pro-inflammatory and anti-inflammatory
cytokines. Regulating this cellular microenvironment is
essential to maintaining healthy MSC phenotype. In RA, the
macrophage-mediated inflammatory response is the main
source of proinflammatory cytokines, including TNF-α, IL-1β,
IL-6, C-X-C motif chemokine ligand 4 (CXCL4), and CXCL7
(83). While data from clinical trials show some efficacy using
biologic drugs, the blockade of these cytokines does not fully
control RA in all patients (84, 85). Interleukin-4 (IL-4) and−10
(IL-10) are pleiotropic cytokines considered to be promising
modulators to control RA, as these regulatory mediators may
have a direct inhibitory effect on the macrophage activity in
the synovium (86, 87). While the targeted suppression of key
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TABLE 1 | Frequency Specific Effects of PEMF on cells and tissues associated with RA.

Authors Frequency

(Hz)

Field strength (mT) Time of exposure Outcome

Chen et al. (78) 15 2 8 h/day Increased cartilaginous matrix deposition and enhanced

chondrogenic gene expression in SOX-9, COL II, and

aggrecan in MSCs

De Mattei et al. (79) 75 2.3 At 1, 6, 9, and 18 h for 3 and 6 days Increased proliferation of human articular chondrocytes

Esposito et al. (80) 75 1.8 or 3 8 h/day for up to 21 days Increased cell division, cell densities, COL II, and

chondrogenesis in MSCs

Fitzsimmons (73) 15 1 A single 30min exposure Prevented increases in NO, cGMP, and increased DNA

content in proliferation rates of chondrocytes

Meyer-Wagner et al. (69) 15 5 45min every 8 h, 3x/day for 21 days Increased GAG/DNA and improved chondrogenic

differentiation via COL II in BM-MSCs

Parate et al. (81) 15 2 1 application for 10min Increased Sox-9, COL II, and aggrecan. Stimulated

chondrogenesis via calcium homeostasis in MSCs

Varani et al. (82) 75 1.5 Continuously for 1 week Upregulated A2A and A3 ARs increasing anti-inflammatory

properties in both chondrocytes and FLS

PEMF, pulsed electromagnetic field; Hz, Hertz; mT, milliTesla; h, hour; d, day; NO, nitric oxide; BM-MSCs, bone marrow mesenchymal stromal cells; GAG, glycosaminoglycans; cGMP,

cyclic guanosine monophosphate; COL, collagen; AR, adenosine receptor; FLS, fibroblast-like synoviocytes.

inflammatory pathways involved in joint inflammation and
destruction allows better disease control, it comes at the price of
elevated infection risk, since blockade of these pathways can lead
to broad immunosuppression (88, 89). In addition, these drugs
are expensive, costing around $1,000–$3000 US per month,
and the risks of prolonged treatment remain uncertain (87).
While biologic drugs for RA work by halting the progression
of joint damage, and sometimes pushing RA into remission,
preliminary evidence shows loss of efficacy over time; therefore,
rotation between available biological drugs is often necessary
to maintain a good clinical response (89). Another unknown
is the appropriate treatment duration for biologic medications.
Once remission of the disease is achieved, it is unclear whether
the drugs need to be maintained, or if they can safely be
suspended (87, 90).

The pro-inflammatory transcription factor nuclear factor
kappa B (NF-kB) plays crucial roles in the regulation of
inflammation and immune responses by controlling the
transcription of multiple cytokine genes (e.g., TNF-α, IL-1, IL-6,
and INF-γ), as well as genes involved in cell survival. Given its
central role in the control of inflammation and immunity, it is
not surprising that inappropriate NF-kB activity has been linked
to many autoimmune and inflammatory diseases, including
RA (91–93). Exposure to PEMF induces early upregulation
of adenosine receptors A2A and A3 that reduce PGE2 and
pro-inflammatory cytokines such as TNF-α, which combine to
inhibit the activation of transcription factor NF-kB (94, 95).
Specifically, at 5Hz, 0.04 mT, a 1 h exposure to PEMF has been
shown to down-regulate both NF-kB and TNF-α in murine
macrophages (75). By inhibiting NF-kB activation (94), exposure
to PEMF led to decreased production of TNF-α, IL-1β, IL-6,
and PGE2 in human chondrocytes, osteoblasts, and synovial
fibroblasts (94, 96).

It is important to note inflammatory cytokines can
prevent MSCs differentiation, repressing their stem cell
function. Cytokines, ions, growth factors, and chemokines

modulate physiological processes of MSCs through their
microenvironment (97). In both animal and clinical trials,
TNF-α, IL-1β, IL-6, PGE2, and the anti-inflammatory cytokine
IL-10 have all been shown to be modulated by PEMF (98–101).
Exposure to PEMF has also been shown to stabilize plasma
membrane Ca2+ ATPase (PMCA) activity (35). PMCA is
a transport protein that removes Ca2+ from the cell, and
thereby regulates the intracellular concentration of Ca2+ in
all eukaryotic cells (102). These extremely low frequencies
have a documented record of long-term safety, and their anti-
inflammatory properties are well-established in animal arthritis
models (35, 37). In double-blind clinical trials in which the knees
and spine of RA patients were exposed to 5Hz, 10–20 Gauss
PEMF exposure for 10–30 min/day, 3–5x/ week for 1 month,
up to a 47% improvement was documented in various clinical
measures such as pain severity, joint tenderness and range of
motion (24, 103). These beneficial clinical effects were attributed
to PEMF’s ability to significantly reduce the production of the
RA-associated inflammatory cytokines IL-1β, IL-6, TNF-α,
and PGE2, while increasing the levels of the anti-inflammatory
cytokine IL-10 in peripheral blood mononuclear cells (PBMCs)
such as T-cells and macrophages (26, 96, 104).

Table 2 provides a summary of the various parameters with
which PEMF has been explored to-date for its ability to modulate
cytokines and growth factors.

ABILITY OF ELF-PEMF TO POTENTIALLY
RESTORE ANGIOGENIC HOMEOSTASIS

Angiogenesis is the formation of new capillaries from pre-
existing vasculature, and this process plays a critical role in the
pathogenesis of several inflammatory autoimmune diseases such
as RA (106). In RA, excessive infiltration of circulating leukocytes
into the inflamed joint induces synovial tissue macrophages
and fibroblasts to produce inflammatory and proangiogenic
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TABLE 2 | Frequency Specific Effects of PEMF on cytokines and growth factors associated with RA.

Authors Frequency

(Hz)

Field strength (mT) Time of exposure Outcomes (in vitro?)

Gomez-Ochoa et al. (26) 50/60 15 15 min/day/days 7, 8, 9 Significantly decreased IL-1β and TNF-α, while increasing

IL-10 in human fibroblasts

Ongaro et al. (96) 75 1.5 24 h Inhibited release of PGE2, and IL-1β and IL-6 production,

while stimulating release of IL-10 in synovial fibroblasts

Ross and Harrison (75) 5.1 0.04 1 h Inhibited production of TNF-α and NF-kB in macrophages

Tang et al. (105) 15 1 6 h Significantly decreased production of IL-1α and IL-6 in

vertebral joint cells

Vincenzi et al. (94) 75 1.5 24 h Inhibited NF-kB activation, and decreased the production of

IL-6 and PGE2 in chondrocytes

PEMF, pulsed electromagnetic field; Hz, Hertz; mT, milliTesla; h, hour; TNF-α, tumor necrosis factor alpha; IL, interleukin; PGE2, prostaglandin E2; VEGF, vascular endothelial growth

factor; NF-kB, nuclear factor kappa B.

factors, such as TNF-α, IL-1β, IL-6, IL-17, and TGF-β that
trigger neoangiogenesis (95, 106, 107). This inappropriate
neoangiogenesis is also known to play a key role in the abnormal
tissue growth, disordered tissue perfusion, abnormal ossification,
enhanced responses to normal or pathological stimuli (108),
and the development of the hyperplasic proliferative pathologic
synovium (7). This area, called “pannus,” destroys articular
cartilage, subchondral bone, and periarticular soft tissue, further
increasing the density of synovial blood vessels required to
develop the hyperplasic and invasive nature of the RA synovium
(41). Although these newly formed blood vessels deliver oxygen
to the augmented inflammatory cell mass, the neovascular
network is dysfunctional and thus fails to restore tissue oxygen
homeostasis. As a result, the rheumatoid joint remains in
a markedly hypoxic environment (109). Hypoxia has been
shown to activate NF-kB, which in turn activates macrophages,
fibroblasts, and endothelial cells (107), stimulating further release
of proinflammatory cytokines and growth factors (110–112) that
directly or indirectly mediate inflammatory angiogenesis (113,
114). Repetitive cycles of hypoxia and reoxygenation, together
with oxidants produced by phagocytic cells, promote a state
of chronic oxidative stress within the microenvironment of the
affected joint, leading to the generation of reactive oxygen species
(ROS), which can further contribute to tissue damage. Given the
central role neoangiogenesis plays in the pathogenesis of RA,
anti-angiogenic therapy appears ideal.

While angiogenesis forms from new capillaries from
pre-existing vessels, vasculogenesis is established capillarity
formation from endothelial precursor cells (EPCs). Current
understanding of the role of angiogensis and vasculogensis in
RA is a focus of therapeutic intervention (115). Angiogenesis
is profuse in RA and causes defective EPC function, leading
to atherosclerosis and vascular disease in arthritis (115).
Angiogenesis is essential for the expansion of synovial tissue
in RA: pre-existing vessels facilitate the entry of blood-derived
leukocytes into the synovial sublining, to generate and potentiate
inflammation. Several steps are involved in angiogenesis, each
of which is modulated by specific factors (10). The process
starts with growth factors such as vascular endothelial growth
factor (VEGF) and fibroblast growth factor (FGF) binding to

their cognate receptors on endothelial cells (ECs) and activation
of these cells to produce proteolytic enzymes (116). Recent
evidence has emerged that implicates VEGF to be one of the key
players in RA pathogenesis and vascular abnormalities (7, 41).
For example, VEGF expression levels in synovial fluid and tissues
have been shown to correlate with the clinical severity of RA,
and with the degree of joint destruction (117). Proangiogenic
factors such as VEGF are modulators of change in vascular
permeability, and studies suggest that capillaries are more deeply
distributed in the RA synovium, compared with normal tissue
(118, 119). The synthesis of VEGF is induced by cytokines
and growth factors (e.g., TNF-α), and through oxidative stress,
and hypoxia (117, 120). Overexpression of VEGF-C in FLS by
stimulation with TNF-alpha may play an important role in the
progression of synovial inflammation and hyperplasia in RA by
contributing to local lymphangiogenesis and angiogenesis (121).
Both oxidative stress and hypoxia are present within the joints of
RA patients (117). TNF-α has also been reported to induce the
release of VEGF from endothelial cells (122), which can lead to
an imbalance between endothelial cells (EC) tube formation and
the parallel development of MSCs/pericytes and thereby altering
angiogenesis and vasculogenesis (107).

MSCs are perivascular cells that are precursors of pericytes
and adventitial cells that envelop microvessels and surround
larger arteries and veins, as well as the myriad of other stromal
cells that act in concert to maintain/restore tissue homeostasis
(123, 124). Aberrant MSCs can release various inflammatory
cytokines and VEGF (85), enhancing tissue inflammation (108),
and promoting angiogenesis, both of which are of direct
relevance to the pathogenesis of RA (125). Pericytes have been
shown to possess stem-like qualities, and have been hypothesized
to be the in vivo counterparts, or precursors, of MSCs (126–
128). MSC/pericytes are recognized for their central role in
blood vessel formation, and they act as a repair system in
response to injury by maintaining the structural integrity of
blood vessels (129). Pericytes have been shown to both stabilize
and promote capillary sprouting (130). Perivascular pericytes
envelop the vascular tube surface of the inner EC layer that lines
the blood vessel wall (131). Because of their close anatomical
and functional association with ECs, pericytes are thought to
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regulate capillary diameter and physically influence EC behavior
(132) via contraction in response to electrical or neurotransmitter
stimulation (133). Homing of endothelial progenitor cells (EPCs)

to an RA injury site is important for repair of vasculature and
angiogenesis. Applied direct current (DC) electric fields has
been reported to guide EPC migration through VEGF receptor

FIGURE 1 | PEMF are physical stimuli that produce membrane activations of multiple cellular pathways. (A) RA pathogenesis begins with activation of immune

function increasing proinflammatory cytokines and upregulating growth factors to increase FLS proliferation and bone resorption. (B) Application of PEMF could

potentially bring immune function back to homeostasis.
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TABLE 3 | Frequency Specific Effects of PEMF on angiogenesis-associated RA.

Authors Frequency

(Hz)

Field strength (mT) Time of exposure Outcome

Delle-Monache et al. (15) 50 2 1, 6, and 12 h Significantly reduced the expression and activation levels of

VEGF in HUVECs

Leoci et al. (150) 8 1.05 5 min/2x/day for 3 weeks Reduction in peak gradient blood flow in prostatic hyperplasia

Okana et al. (141) Static 120 24/7 for 10 days Significantly promoted tubular formation in area density and

length of tubules and improved gradient force on vessels

Vincenzi et al. (94) 75 1.5 24 h Inhibited VEGF activation in chondrocytes

Wang et al. (148) Static 2–4 24 h Significantly inhibited the proliferation ability of HUVECs to

treat pathological angiogenesis

PEMF, pulsed electromagnetic field; Hz, Hertz; mT, milliTesla; HUVEC, human umbilical vein endothelial cell; VEGF, vascular endothelial growth factor; ECs, endothelial cells.

signaling in vitro, controlling EPC behavior to heal injury sites in
the vascular (134). PEMF has also been reported to increase the
number and function of circulating EPCs in treating myocardial
ischemia/reperfusion (I/R) injury in rats (135).

Collectively, these data point to EPCs and MSCs as highly
localized modulators of blood flow (130). It has also been
found that MSCs can stabilize blood vessels and contribute
to tissue and immune system homeostasis under physiological
conditions by assuming a more active role in tissue repair in
response to injury (136). As such, MSCs/pericytes represent a
logical target for new in vivo therapeutic approaches to treating
the vascular abnormalities present in RA and halting disease
progression to restore homeostasis (136). Since PEMF have been
shown to stimulate the production of MSCs (137), and MSCs
can stabilize blood vessels and contribute to immune system
homeostasis, the possibility exists that PEMF could provide a
therapeutic application to restore immune balance and bringing
hypoxic conditions and synovial angiogenesis back to a state
of homeostasis.

MSCs represent an ideal target on which PEMF can initiate
their effects on the aberrant immune response that drives
the pathogenesis of RA. MSCs/pericytes down-modulate the
production of synovial macrophages, which trigger production of
cytokines, such as IL-4, that initiate the proliferation of synovial
fibroblasts, promoting the expression of growth factors such as
VEGF and TGF-β (138, 139). Exposure of MSCs/pericytes to
PEMF appears to trigger a cascade of downstream effects on
multiple pathways, affecting macrophages, T-cells, and B cells,
and the cytokines that are produced. The cumulative result
of these varied effects is modulation of VEGF and TGF-β,
which ultimately curtails the production of synovial fibroblasts
and osteoclasts and halts bone resorption, while promoting the
production of chondrocytes and osteoblasts to restore cartilage
and bone health/integrity (Figure 1).

The effects of PEMF on vessel growth and development,
both in vitro and in vivo, support the use of this approach
to therapeutically modulate the aberrant angiogenesis present
in RA, (140–142). PEMF has been reported to improve
osteochondral ossification, and modulate nociception (143–146)
through the down-regulation of neovascularization (15, 147, 148)
in both animals and humans with RA (9, 24, 25, 27, 149). It
has also been reported to significantly reduce activation levels of

VEGF (15), to inhibit the proliferative ability of human umbilical
vein endothelial cells (HUVECs) (148), and to reduce the extent
of vascularization in diseased tissue (142). Approximately half
of the cited studies of PEMF application indicate a vasodilatory
effect, themagnitude of which is dependent upon the initial vessel
tone. The remaining half indicates that PEMF has the potential
to trigger vasoconstriction. The ultimate outcome of PEMF
application thus appears to depend on the cellular/mechanistic
basis of the disease in question (140). A summary of some
of the studies that have explored the use of various regimens
of PEMF to potentially restore angiogenic homeostasis appear
in Table 3.

CONCLUSION

Under normal physiological conditions, MSCs in the joint are
believed to contribute to the maintenance and repair of joint
tissues. In RA, however, the repair function of MSCs appears
to be repressed by the inflammatory milieu. In addition to
being passive targets, MSCs could interact with the immune
system and play an active role in the perpetuation of arthritis
and progression of joint damage (54). Achieving homeostasis
in the face of acute inflammatory/immune challenges in
the human body involves maintaining a balance of highly
complex biochemical and cellular interactions. When this
delicate balance is upset, acute inflammatory and immune
responses designed to quickly eliminate a transient threat
become chronic, and inflammatory/autoimmune disease sets
in. RA is a paradigmatic autoimmune disease, and current
RA therapies target inflammatory molecules involved in
autoimmune activation. Despite the therapeutic improvements
in RA, there are still a substantial number of patients who
respond only transiently to these approaches, and others who
do not respond at all. As such, there is an urgent unmet need
to identify complementary and innovative therapies for the
treatment of RA.

PEMF is emerging as a novel and highly promising means
of treating chronic inflammation and aberrant immunity that
exists in diseases such as RA. It can be used to target aberrant
MSCs to potentially bring the inflammatory milieu back to
homeostasis. Cellular electrical properties such as membrane
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surface charge and membrane potential can be readily influenced
by PEMF (151–153), which can affect oscillatory frequencies
of the myriad of enzymes present within the cells. PEMF can
also influence cell membranes, nucleic acids, and bioelectrical
phenomena generated by coherent groups of cells that are
essential to cell-to-cell communication processes (154, 155).
PEMF appears to exert its effects on cellular function and
differentiation by altering the spatial and temporal patterns of
intracellular calcium (Ca2+) concentration (10) and restoring
levels/activity of potassium (K+) channels (17, 156, 157). By
restoring normal Ca2+ ion flux andNa+/K+ balance, the cell can
begin the process of down-regulating inflammatory cytokines,
heat-shock proteins, and proangiogenic molecules such as VEGF
(157), making it possible for the body to commence rebuilding
healthy cartilage. Using PEMF to modulate inflammation and
immune function is relatively safe in contrast to the broad
immunosuppression currently in clinical favor (39, 158). An
alternative to immunosuppression–healthy immunomodulation
and tissue repair–can be achieved by targeting MSCs with
PEMF. While traditional approaches target individual molecules
or signaling pathways, PEMF works on all cellular/organismal
systems in a holistic and integrative manner by potentially
bringing the transmission and flow of information (signal
transduction) back to a state of homeostasis via coherence of
sinusoidal pulses (159). There are other potential advantages of
PEMF including low-cost, easy-to-use at-home, without adverse
effects.While cell therapies or biologics suffer from the possibility
of loss of efficacy over time (87), preliminary clinical studies
with PEMF have shown no loss of efficacy even after exposure
to the field has ended (160). Another key unsolved problem in
the treatment/management of RA is determining the optimal

duration of therapy, and the lack of data to inform clinicians
whether drugs should be suspended once remission of the
disease is obtained (87). PEMF has the advantage of use without
concerns regarding global immunosuppression until the desired
clinical outcome is obtained (87). Since MSCs are ubiquitous,
targeting their regenerative, and anti-inflammatory capacities
would be an optimal combination of exogenous (PEMF),
and endogenous (MSC) therapies. Clinical applications include
whole-body mats for systemic approach (161), and hand-held
devices for localized therapy (149). For localized applications,
direct capacitive coupling mechanisms such as electrodes adhere
to the site of inflammation/tissue degeneration. For non-direct
capacitive/inductive coupling, mats can be used for full body
applications. Current research shows optimal frequency <75Hz,
with optimal intensity (field strength) <5 mT, and optimal time
courses ranging between 15 and 90min, with longer duration
most effective for severe symptoms.

AUTHOR CONTRIBUTIONS

GA-P provided expertise and contributed editorial and written
content on mesenchymal stromal cells (MSCs). DA provided
expertise on RA and contributed editorial and written content on
RA pathology. CR wrote the manuscript and provided expertise
on the therapeutic effects of pulsed electromagnetic field for the
treatment of RA.

ACKNOWLEDGMENTS

We wish to acknowledge the Guth Family Fund WFBHA-63313-
740-120330-740196 for their continued support.

REFERENCES

1. Network RAS. Rheumatoid Arthritis Facts and Statistics. (2016) Available

online at: https://www.rheumatoidarthritis.org/ra/facts-and-statistics/

(Accessed August 31, 2017).

2. Isaacs J. The changing face of rheumatoid arthritis: sustained remission for

all? Nat Rev Immunol. (2010) 10:605–11. doi: 10.1038/nri2804

3. Smolen J, Aletaha D, Redlich K. The pathogenesis of rheumatoid arthritis:

new insights from old clinical data? Nat Rev Rheumatol. (2012) 8:235–43.

doi: 10.1038/nrrheum.2012.23

4. Center JHA. Rheumatoid Arthritis Treatment. (2017) Available online

at: https://www.hopkinsarthritis.org/arthritis-info/rheumatoid-arthritis/ra-

treatment/ (Accessed September 11, 2017).

5. Ethgen O, de Lemos Esteves F, Bruyere O, Reginster JY. What do we know

about the safety of corticosteroids in rheumatoid arthritis? Curr Med Res

Opin. (2013) 29:1147–60. doi: 10.1185/03007995.2013.818531

6. Ramiro S, Gaujoux-Viala C, Nam JL, Smolen JS, Buch M, Gossec L,

et al. Safety of synthetic and biological DMARDs: a systematic literature

review informing the 2013 update of the EULAR recommendations for

management of rheumatoid arthritis. Ann Rheum Dis. (2014) 73:529–35.

doi: 10.1136/annrheumdis-2013-204575

7. Paleolog E. The vasculature in rheumatoid arthritis: cause or

consequence? Int J Exp Path. (2009) 90:249–61. doi: 10.1111/j.1365-2613.

2009.00640.x

8. Fu H, Hu D, Zhang L, Tang P. Role of extracellular vesicles

in rheumatoid arthritis. Mol Immunol. (2018) 93:125–32.

doi: 10.1016/j.molimm.2017.11.016

9. Ganesan K, Gengadharan A, Balachandran C, Manohar B. Low frequency

pulsed electromagnetic field - a viable alternative for arthritis. Indian J Exp

Biol. (2009) 47:939–48. doi: 10.1002/bem.20535

10. Ross C, Siriwardane ML, Almeida-Porada G, Proada CD, Brink P, Christ

GJ, et al. The effect of low-frequency electromagnetic field on human bone-

marrow derived mesenchymal stem/progenitor cell differentiation. Stem Cell

Res. (2015) 15:96–108. doi: 10.1016/j.scr.2015.04.009

11. Trock D. Electromagnetic fields and magnets: investigational treatment for

musculoskeletal disorders. Rheum Dis Clin North Am. (2000) 26:51–62.

doi: 10.1016/S0889-857X(05)70119-8

12. Stiller M, Pak GH, Shupack JL, Thaler S, Kenny C, Jondreau L. A

portable pulsed electromagnetic field (PEMF) device to enhance healing of

recalcitrant venous ulcers: a double-blind, placebo-controlled clinical trial.

Br J Dermatol. (1992) 127:47–54. doi: 10.1111/j.1365-2133.1992.tb08047.x

13. Cohen D, Palti Y, Cuffin BN, Schmid SJ. Magnetic fields produced by steady

currents in the body. Proc Natl Acad Sci USA. (1980) 77:1447–51.

14. Liboff A, McLeod BR. Kinetics of channelized membrane ions in magnetic

field. Bioelectromagnetics. (1988) 9:39–51.

15. Delle-Monache S, Angelucci A, Sanità P, Iorio R, Bennato F, Mancini

F, et al. Inhibition of angiogenesis mediated by extremely low-

frequency magnetic fields (ELF-MFs). PLoS ONE. (2013) 8:e79309.

doi: 10.1371/journal.pone.0079309

16. Gordon G. Designed electromagnetic pulsed therapy: clinical applications. J

Cell Physiol. (2007) 212:579–82. doi: 10.1002/jcp.21025

17. Ross C. The use of electric, magnetic, and electromagnetic field for directed

cell migration and adhesion in regenerative medicine. Biotechnol Prog.

(2016) 33:5–16. doi: 10.1002/btpr.2371

Frontiers in Immunology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 266

https://www.rheumatoidarthritis.org/ra/facts-and-statistics/
https://doi.org/10.1038/nri2804
https://doi.org/10.1038/nrrheum.2012.23
https://www.hopkinsarthritis.org/arthritis-info/rheumatoid-arthritis/ra-treatment/
https://www.hopkinsarthritis.org/arthritis-info/rheumatoid-arthritis/ra-treatment/
https://doi.org/10.1185/03007995.2013.818531
https://doi.org/10.1136/annrheumdis-2013-204575
https://doi.org/10.1111/j.1365-2613.2009.00640.x
https://doi.org/10.1016/j.molimm.2017.11.016
https://doi.org/10.1002/bem.20535
https://doi.org/10.1016/j.scr.2015.04.009
https://doi.org/10.1016/S0889-857X(05)70119-8
https://doi.org/10.1111/j.1365-2133.1992.tb08047.x
https://doi.org/10.1371/journal.pone.0079309
https://doi.org/10.1002/jcp.21025
https://doi.org/10.1002/btpr.2371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ross et al. PEMF and MSC for Treatment of RA

18. Chen C, Lin YS, Fu YC, Wang CK, Wu SC, Wang GJ, et al. Electromagnetic

fields enhance chondrogenesis of human adipose-derived stem cells in a

chondrogenic microenvironment in vitro. J Appl Physiol. (2013) 114:647–55.

doi: 10.1152/japplphysiol.01216.2012

19. Sun W, Gan Y, Fu Y, Lu D, Chiang H. An incoherent magnetic field

inhibited EFG receptor clustering and phosphorylation induced by a 50Hz

magnetic field in cultured FL cells. Cell Physiol Biochem. (2008) 33:508–14.

doi: 10.1159/000185524

20. Nie K, Henderson A. MAP kinase activation in cells exposed to

a 60Hz electromagnetic field. J Cell Biochem. (2003) 90:1197–206.

doi: 10.1002/jcb.10704

21. Goodman R, Lin-Ye A, GeddisMS,Wickramaratne PJ, Hodge SE, Pantazatos

SP, et al. Extremely low frequency electromagnetic fields activate the

ERK cascade, increase hsp70 protein levels and promote regeneration in

planaria. Int J Radiat Biol. (2009) 85:851–9. doi: 10.1080/09553000903

072488

22. Bekhite M, Finkensieper A, Abou-Zaid FA, El-Shourbagy IK, Omar KM,

Figulla HR, et al. Static electromagnetic fields induce vasculogenesis and

chondro-osteogenesis of mouse embryonic stem cells by reactive oxygen

species-mediated up-regulation of vascular endothelial growth factor. Stem

Cells Dev. (2010) 19:731–43. doi: 10.1089/scd.2008.0266

23. Li X, Zhang M, Bai L, Bai W, Xu W, Zhu H. Effects of 50Hz pulsed

electromagnetic fields on the growth and cell cycle arrest of mesenchymal

stem cells: an in vitro study. Electromagn Biol Med. (2012) 31:356–64.

doi: 10.3109/15368378.2012.662194

24. Ganguly K, Sarkar AK, Datta AK, Rakshit A. A study of the effects of

pulsed electromagnetic field therapy with respect to serological grouping in

rheumatoid arthritis. J Indian Med Assoc. (1998) 96:272–5.

25. Shupak N, McKay JC, Nielson WR, Rollman GB, Prato FS, Thomas AW.

Exposure to a specific pulsed low-frequency magnetic field: a double-

blind placebo-controlled study of effects on pain ratings in rheumatoid

arthritis and fibromyalgia patients. Pain Res Manag. (2006) 11:85–90.

doi: 10.1155/2006/842162

26. Gómez-Ochoa I, Gómez-Ochoa P, Gómez-Casal F, Cativiela E, Larrad-

Mur L. Pulsed electromagnetic fields decrease proinflammatory cytokine

secretion (IL-1β and TNF-α) on human fibroblast-like cell culture.

Rheumatol Int. (2011) 31:1283–9. doi: 10.1007/s00296-010-1488-0
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