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Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic

condition. In recent years there has been considerable interest in strategies to enable

HIV-infected individuals to cease ART without viral rebound, either by purging all cells

infected harboring replication-competent virus (HIV eradication), or by boosting immune

responses to allow durable suppression of virus without rebound (HIV remission). Both of

these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected

cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+

T cells are dysfunctional. Here, we review our current understanding of both global and

HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed

viral load under ART, and its implications for HIV cure, eradication or remission. Overall,

the literature indicates significant normalization of global T cell parameters, including

CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells

from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals

than of viremic HIV-infected individuals. However, markers of senescence remain

elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected

individuals on ART. This phenomenon could have implications for attempts to prime de

novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both

HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior

to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral

suppressive capacity, and tissue localization. Addressing these issues will be critical to

the success of HIV cure and remission attempts.
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CD8+ T CELLS IN THE POST-ART ERA

The long-term goal of HIV cure is to enable HIV-infected individuals to cease life-long
antiretroviral therapy (ART) through the development of strategies to eradicate cells latently
infected with HIV. Studies in which patients with little to no measurable HIV reservoir (due to
very early ART treatment) rebounded following ART removal suggest that HIV reactivation may
originate from a few or even a single replication competent provirus (1, 2). Total eradication
of the HIV reservoir, and therefore true HIV cure, while no doubt the ideal, will therefore be
challenging to achieve. Consequently, many groups are pursuing strategies to induce durable
ART-free remission without HIV rebound. Both in vivo and in vitro studies support a role for CD8+

T cells inHIV eradication and durable remission approaches (3–6). CD8+ T cells are highly efficient
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killers of virus-infected cells; however, HIV-specific CD8+ T cells
induced by natural infection fail to suppress viral replication after
cessation of ART (Figure 1, top), suggesting that a successful HIV
cure or durable remission strategy may require the priming of de
novo HIV-specific responses and/or qualitative shifts in CD8+ T
cell function. To date, CD8+ T cell HIV immunotherapies have
been broadly unsuccessful. Failure has been attributed not only to
poor population-level immunogenicity but also ongoing immune
dysfunction in HIV+ART+ individuals.

A new generation of HIV therapeutic vaccines have been
developed that exhibit greater immunogenicity and efficacy in
pre-clinical testing (7, 8). In addition, therapies such as bispecific
biologics work by harnessing all CD8+ T cells, and therefore
promise to be scalable to a large, genetically diverse population
(9–11). Success with all of these strategies still however relies on
the quality and function of CD8+ T cells. Here, we review the

FIGURE 1 | HIV Cure Strategies may require different properties of CD8+ T

cells. (Top) Outline of typical HIV rebound (red line) following the cessation of

ART. Although the magnitude of the HIV-specific CD8+ T cell response

increases, there is a progressive loss of function with time off ART. (Middle)

HIV Eradication of the replication competent reservoir (black line) combining

latency reversal agents and immunotherapies to boost or redirect CD8+ T

cells (purple line) to rapidly eliminate all cells infected with HIV. Following viral

clearance, the magnitude of the HIV-specific CD8+ T cell response would

decline, but a small population of functional memory cells would persist

long-term. (Bottom) Durable ART-free remission in which the CD8+ T cell

host immune response limits HIV rebound without decreasing the size of the

HIV reservoir. This strategy may require intermittent boosting of the CD8+ T

cell response (for example, through immunization) to combat a potential

decline in the magnitude and function of HIV-specific CD8+ T cell responses

over time. It is likely that different functional properties of CD8+ T cells will be

required for HIV eradication (e.g., rapid killing, penetration of tissue reservoirs)

vs. HIV remission (e.g., memory maintenance). Note, HIV eradication and

remission strategies may be combined.

global function of CD8+ T cells under ART, comparing CD8+

T cell characteristics between HIV+ART+, HIV seronegative
individuals (HIV-), and untreated HIV+ infected individuals
grouped into elite controllers (EC), viremic controllers (VC)
and typical progressors (TP). We also summarize literature
comparing HIV-specific CD8+ T cells in treated and untreated
HIV infection.

Overall, CD8+ T cells undergo substantial restoration
of function following prolonged ART suppression, including
in individuals treated in chronic/advanced infection. The
phenotype and functional profile of total CD8+ T cells
in HIV+ART+ individuals more closely resembles that of
HIV seronegative (HIV−) than of HIV seropositive (HIV+)
individuals, including HIV controllers. This supports the
continued testing of CD8+ T cell immunotherapies for HIV
cure. However, CD8+ T cells, including HIV-specific CD8+ T
cells, in HIV+ART+ individuals resemble the phenotypic and
functional profile of CD8+ T cells in older HIV− individuals.
We postulate that the “immunosenescent” phenotype of CD8+ T
cells in HIV+ART+ individuals has differential implications for
CD8+ T cell immunotherapies targeted at HIV eradication vs.
durable remission strategies.

TOTAL CD8+ T CELLS UNDER ART

Untreated HIV infection causes progressive CD8+ T cell
dysfunction, skewing T cell differentiation and limiting CD8+ T
cell proliferation, cytokine production and lytic function (12–17).
In untreated infection, sustained HIV viremia is a major driver
of CD8+ T cell dysregulation. In individuals in whom viremia is
lower, broader T cell function is observed (14, 18, 19). EC and
VC, who typically control viremia in acute/early HIV infection,
consistently exhibit a broader range of CD8+ T cell cytokine
production and higher lytic function than typical progressors
(TP) (Table 1). Similarly, CD8+ T cells from individuals who
initiate ART in early infection mostly exhibit broader function
than those treated in chronic infection (16, 64, 65). Early virus
control also limits other drivers of CD8+ T cell dysfunction,
including CD4+ depletion and lymph node fibrosis (66–68).

Under ART, low-level viremia (∼1 copy/mL plasma) is
detectable in most individuals and likely contributes to the long-
term detection of HIV-specific CD8+ T cells, and the CD8+ T
cell phenotype and dysfunction observed (69). The other driver/s
of residual CD8+ T cell dysregulation are increasingly difficult
to assess because of the changing demographics of HIV+ART+

individuals. Age impacts immune function, and because over
50% of HIV+ART+ individuals in the U.S. are over the age of
50, age is a confounder in studies of CD8+ T cell function in
HIV+ART+ individuals (70).

The primary effect of aging on the immune system is the
process of immunosenescence. Features of immunosenescence in
healthy individuals include low CD4/CD8T cell ratio, decreased
telomere lengths which limits mitosis, and an increase in total,
senescent, terminally differentiated and activated CD8+ T cells
(71–73). This latter phenotype limits CD8+ T cell proliferative
and functional capacity. Immunosenescence is also associated
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TABLE 1 | Total T cell characteristics in HIV seronegative and HIV seropositive participants relative to HIV seropositive, durably ART suppressed individualsa (↑, higher

relative to ART treated; ↓, lower relative to ART treated; ≈, comparable to ART treated).

Global CD8+ T cell

characteristics

HIV seronegative HIV seropositive ART naive Ref

Age <65 Age >65 Elite

controllersb
Viremic

controllersb
Typical

progressorsb

CD4/CD8 ratio ↑ ≈ ≈/↑ ↓ ↓ (20–29)

CD8+ subsets Naïve ↑ ≈ ↑ ↑ ≈/↓** (30–36)

Central memory ≈/↓ ≈ ≈ ≈/↓** ≈ (22, 37)

Effector memory ↓/≈ ≈ ≈ ≈ ≈/↑** (30, 31, 37)

TEMRA ≈ ≈/↓** ≈ ≈ (30, 31)

CD8+ T cell activation % CD38+ HLA-DR+ ≈ ↓ ↑ ↑ ↑ (30, 32, 38)

% PD-1 expression ≈ ≈ ≈ ↑ (22, 31, 39–42)

CD8+ senescence Telomere length ↑ ≈ ↓ ↓ ↓ (22, 34, 36, 43–46)

TCR diversity ↑≈ ≈ ↓ (32, 46–51)

%CD27−CD28+ ↑≈ ≈ ↑ (22, 31, 32, 46, 52)

%CD57+ ↓ ≈ ↑ ↑ (22, 35, 37, 44, 53–56)

%CD27−CD28− ↓≈ ≈ (22, 30–32, 34, 57, 58)

CMV CMV-specific ↓ ↓ ≈ ↓ (22, 35, 59–61)

CD4 % Peripheral blood ↑/≈ ≈ ≈/↓** ↓ (13, 45, 62, 63)

Gut mucosa ↑ ≈ ↓ ↓ (13)

a Includes immunological non-responders in whom VL is suppressed by CD4T cells do not fully restore. Generally immunological non-responders exhibit more residual CD8T cell

dysregulation.
bElite controllers: viral load/ml <50, CD4/µl >350; Viremic controllers: viral load/ml 50–2,000, CD4/µl >350; Typical progressors: viral load/ml >2,000, CD4/µl >350; Progressors

(AIDS): viral load/ml >2,000, CD4/µl >200.

**non-significant changes reported relative to ART suppressed individuals.

with co-morbidities such as elevated risk of cardiovascular
disease, cancer, fragility and tissue damage resulting from
dysregulated inflammation (74). The incidence of these co-
morbidities is also increased in HIV+ART+ individuals (47).

CD4/CD8 Ratio Under ART
Untreated HIV infection is characterized by an inverted, low
CD4/CD8 ratio (75), that results from both ongoing CD4+ T
cell depletion and the persistent elevation of peripheral CD8+

T cells. While ART consistently improves patient CD4/CD8
ratio, irrespective of pre-ART CD4+ counts (76), CD8+ T cell
absolute counts in untreated infection remain relatively stable
post-ART (75). The net result is that ART generally fails to
fully normalize the CD4/CD8 ratio to levels measured in age-
matched HIV seronegative individuals (20–25, 77) (Table 1),
and the consistently low CD4/CD8 ratio observed in ART
treated individuals is strongly associated with a number of
immunological abnormalities (20, 21, 77). Risk of co-morbidities
and mortality are further increased in immunological non-
responders in whom ART controls virus load but CD4+ T cell
recovery is poor (78–80).

HCMV seropositivity, which is higher in HIV-infected
individuals (>80%) than the broader population (81), has been
consistently implicated as a driver of the elevated global CD8+

T cell counts observed in HIV-infected individuals both off
and on ART (82). HCMV seropositivity also increases with
age, and HCMV serostatus is independently associated with
elevated non-AIDS co-morbidities (81, 83). HCMV induces

a potent CD8+ T cell response that increases in magnitude
over time, a phenomenon termed “memory inflation” (84),
and HCMV-specific CD8+ T cell responses can account for as
much as 50% of all antigen-specific CD8+ T cells in elderly
individuals [reviewed in (85)]. A recent study showed that
HCMV+HIV+ individuals had higher absolute CD8+ T cell
counts than individuals who were either HCMV+ or HIV+

alone (86), but it is unclear whether these higher levels resulted
only from increased frequencies of HCMV-specific CD8+ T
cells (22, 59). While HCMV-specific CD8+ T cell responses do
not themselves exhibit functional impairment in HIV+ART+

individuals (22), HCMV infection may indirectly impact CD8+

T cell immunoscenescence through ongoing production of
proinflammatory cytokines and by limiting T cell receptor
diversity across the broader CD8+ T cell population (22, 59).

CD8+ T Cell Subsets Under ART
CD8+ T cell differentiation and maturation is skewed during
HIV infection (Table 1) (30, 31, 87). Naïve (CD45RA+ CD27+)
CD8+ T cells are depleted from early infection, more so in TP
than EC and VC (30, 87). ART partially restores naïve CD8+ T
cells relative to TP, but frequencies are more comparable to those
of older HIV- than age-matched healthy individuals. Differences
in terminally differentiated (CD45RA+CD27−), central memory
(CD45RA−CD27+) and effector memory (CD45RA−CD27−)
subsets between ART treated and untreated HIV-infected
individuals, although less striking, have also been reported (30,
31, 87). The failure to fully restore the CD8+ naïve compartment
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combined with elevated total CD8+ T cell frequencies described
above suggests that, similar to observations in older people,
induction of de novo CD8+ T cell responses in HIV+ART+

individuals may be more limited.
There have been few reports of induction of novel HIV-

specific CD8+ T cell responses following therapeutic vaccination
of ART+HIV+ individuals (88), though this in part may arise
from the limited immunogenicity of first generation T cell
vaccines. Whether it will be possible to induce potent de novo
HIV-specific T cell responses in HIV+ART+ individuals, equally
important for both HIV eradication and remission approaches, is
a key question in the current era of CD8+ T cell immunotherapy.

Immune Activation Under ART
Uncontrolled HIV replication is characterized by elevated
frequencies of CD4+ and CD8+ T cells expressing activation
markers such as CD38 and HLA-DR (89, 90). The importance
of immune activation in HIV pathogenesis is underscored by the
observation that in untreated infection, T cell activation predicts
disease progression independently of viral load (91–93). In
individuals with durably suppressed viral load onART, peripheral
T cell activation is substantially reduced relative to untreated
individuals, including EC (30, 32, 38). However, in many cases, T
cell activation is not fully normalized relative to HIV-uninfected
individuals (22, 94, 95). Residual T cell activation appears to be
particularly prevalent in immunologic non-responders (96, 97).

As introduced earlier, low-level viremia is observed in most
HIV+ART+ individuals (98, 99). These levels are lower than
observed in EC, who exhibit higher T cell activation (100).
Activation levels are higher again in VC and TP (30, 32, 38).
Other drivers of elevated T cell activation may be an ongoing
consequence of immune dysregulation prior to the initiation of
ART. These include lymphoid fibrosis, the depletion of regulatory
T cells (Tregs) with anti-inflammatory activities, and loss of gut
barrier integrity leading to translocation of bacterial products
such as LPS that could trigger inflammatory responses (69, 101–
103). This has sparked interest in whether it might be possible
to normalize immune activation through early initiation of ART
(often defined as ART within 6 months of infection), perhaps
by minimizing the size of the viral reservoir and preserving
regulatory T cells, the integrity of lymphoid architecture, and
the gut epithelial barrier. Research in this area has produced
conflicting results, indicating that the effect of early ART on T
cell activation may depend on how early after infection ART is
initiated, how long after ART initiation activation is measured,
and other, as yet undefined, factors (104–108).

Residual T cell activation may have implications for HIV
cure. Activated CD4+ T cells more readily support productive
HIV replication, potentially rendering them more vulnerable to
infection in any HIV cure attempt involving analytic treatment
interruption (ATI) (109). Activation-induced cell death of
uninfected (or abortively infected) “bystander” CD4+ T cells
could also contribute to CD4+ depletion during ART treatment
interruption (110, 111). Conversely, activated CD4+ T cells
harboring replication-competent but latent virus may be more
amenable to latency reversal. Notably, some putative latency-
reversing agents activate T cells in vitro (112–114).

CD8+ T Cell Function in Lymphoid Tissues
Under ART
Most research on CD8+ T cell function under ART conducted
to date has been performed on peripheral blood mononuclear
cells (PBMC). While the blood is the easiest compartment
to sample, most HIV replication occurs in other tissues,
particularly mucosal and lymphoid tissue (115–117). These
tissues harbor the bulk of HIV RNA+ cells in HIV+ART+

individuals (118). Polyfunctional HIV-specific tissue resident
memory (TRM) CD8+ T cells are found at higher frequencies
in the gastrointestinal tract of EC compared with individuals on
ART, suggesting that in EC these cells may play an important
role in in vivo viral suppression (119). Current available data
indicate that in both HIV+ and HIV− individuals, memory
CD8+ T cells in the lymph nodes and rectal mucosa express less
perforin and granzyme B and are less efficient killers of target
cells than their counterparts in the peripheral blood (120–122).
This less cytotoxic phenotype may be related to the function of
lymphoid tissue as predominantly a site of lymphocyte priming
and maintenance. Furthermore, de novo perforin production is
lower in ex-vivo stimulated HIV-specific CD8+ T cells from
EC compared with typical progressors, suggesting that perforin
production may not be the major control mechanism in the gut,
and that cytokine production in lymphoid tissues may be a more
useful correlate of virologic suppression (13, 121).

In secondary lymphoid tissues (LT), HIV replication is
concentrated within CD4+ T cells in the B cell follicles (123).
This may be a consequence of the partial exclusion of HIV-
specific CD8+ T cells from follicles (123–126). HIV replication
is also associated with LT fibrosis, which strongly correlates with
the depletion of naïve CD4+ T cells, and is inversely correlated
with the extent of immune reconstitution upon the initiation of
ART (66). LT fibrosis, caused through the deposition of collagen
by T regulatory cells, disrupts LT architecture, resulting in T
cells with less access to antigen and IL-7, which is critical for
T cell maturation and maintenance (66, 127). LT fibrosis is
elevated in all HIV+ groups (HIV+ EC, VC, TP, andHIV+ART+,
both immunologic responders and non- responders), compared
to HIV− individuals (128). To date, the data suggest that LT
fibrosis does not reverse with ART; however, early initiation
of ART may limit the viral replication-dependent inflammation
that drives fibrosis, improving immune reconstitution (66, 128).
These additional barriers, need to be considered for HIV cure
or remission strategies. Strategies to redirect CD8+ T cells to
immune-privileged sites, such as the follicles, and/or strategies
to limit LT fibrosis or reverse collagen deposition, such as IL-7
therapy are being investigated (129, 130).

CD8+ T Cell Senescence Under ART
Telomere integrity is critical for mitotic division and cell survival.
The shortening of telomeres is a hallmark of decreased cell
proliferation and can activate pathways resulting in apoptosis
or cellular senescence (22, 131–133). Compared to HIV−

individuals, the telomeres of CD8+ T cells in both HIV-infected
ART naïve or treated individuals are significantly shorter,
indicating a history of increased cell divisions (22, 43, 134).

Frontiers in Immunology | www.frontiersin.org 4 February 2019 | Volume 10 | Article 291

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Warren et al. CD8T Cells Under Art

Though multiple studies suggest that T cell telomere length is
partially restored (relative to untreated infection) following ART,
ongoing proliferation defects in ART treated individuals have
been confirmed(Table 1) (112, 135–137). Similar to alterations
in T cell differentiation state, telomere length in T cells is more
consistent with that of older seronegative individuals (47).

CD8+ T cells with shortened telomeres exhibit a combination
of CD28−, CD57+, or CD27− phenotypes (138–141). An
increased frequency of CD28−CD57+ CD8+ T cells is observed
in HIV infection, where elevated CD57+ expression has been
associated with reduced proliferative capacity of CD8+ T cells
(22, 53, 142). Initiation of ART in early infection is able to
largely normalize the proportion of CD8+ CD28−, CD57+, and
CD27− T cells, though not to the levels seen in age-matched
HIV-seronegative individuals (142). Expression of senescence
markers in HIV+ ART+ individuals again resembles that of older
seronegative individuals.

A highly diverse T cell repertoire is generally associated with
an effective immune system and efficient control of chronic
viral infections. HIV infection is associated with qualitative TCR
repertoire changes, including disruption of the TCR variable
region, Vβ, with CD8+ T cells affected to a greater extent than
CD4+ T cells (143, 144). Compared to HIV− individuals, HIV+

treatment-naïve individuals exhibit a significant decrease in
whole-blood TCR diversity (145). However, the TCR repertoire
diversity of naïve and memory/effector sub-populations is
comparable between HIV+ and HIV− individuals. This suggests
that the decrease in TCR repertoire diversity in the blood results
from the expansion of more differentiated T cell populations with
lower TCR diversity (145). Most (48, 49, 146), but not all (147),
studies have observed that ART is unable to fully reconstitute
the TCR repertoire in CD8+ T cells to the diversity seen in
seronegative individuals. Whether the diminished TCR diversity
in HIV+ART+ individuals will impact curative strategies is
unclear as co-factors separate from TCR diversity also contribute
to CD8+ T cell function (148).

Summary
Collectively, the current available literature suggests that
durable viral suppression under ART is associated with partial
normalization of the frequency, activation, differentiation,
senescence, and diversity of global CD8+ T cells. The overall,
global CD8+ T cell profile in HIV+ART+ individuals is
more similar to HIV seronegative than HIV seropositive
individuals, but when HIV seronegatives are stratified by age,
data consistently indicate that CD8+ T cells in HIV+ART+

individuals show an aging phenotype.
Since existing HIV-specific CD8+ T cells have, by definition,

failed to control viral replication in individuals on ART, a
successful HIV cure or remission strategy may require the
priming of de novo HIV-specific responses by vaccination.
Reduced TCR diversity, lower frequencies of circulating naïve
CD8+ T cells, and accumulation of terminally differentiated and
senescent cells could hinder this approach by reducing the pool of
CD8+ T cells available for priming. Further studies are required
to definitively elucidate whether early ART or other interventions

could preserve CD8+ T cell diversity, stemness, and
self-renewal capacity.

HIV-SPECIFIC CD8+ T CELLS UNDER ART

HIV infection induces a robust HIV-specific CD8+ T cell
response. In untreated infection, the HIV-specific CD8+ T
cell response is highly dynamic. CD8+ T cells exert selection
pressure on HIV, resulting in the emergence of non-synonymous
mutations in and around T cell epitopes (149–151). These
mutations can result in HIV-infected cells either failing to present
the viral epitope or, if presented evading recognition by CD8+

T cells (17, 151–154). This process, termed “escape” is first
observed within weeks of transmission and continues through
infection (149–151). Virus escape results in an ongoing shift
in the HIV-specific CD8+ T cell response pattern, with new
CD8+ T cell responses constantly emerging (154). However,
HIV infection is also characterized by a progressive loss of HIV-
specific CD8+ T cell immune function, specifically the loss of
the capacity to simultaneously produce antiviral cytokines and
release lytic molecules following antigenic stimulation (14, 16,
16). HIV-specific CD8+ T cells also exhibit shorter telomeres
and poorer proliferative capacity (32, 137). This increasing loss
of function in CD8+ T cells is associated with upregulation of
immune checkpoint markers such as PD-1, CD160, Tim-3, and
TIGIT, typically referred to as an “exhausted” phenotype (39). By
contrast, HIV-specific CD8+ T cells in EC that largely control
HIV viremia early in acute-early infection exhibit broader CD8+

T cell function, robust proliferation and lower immune activation
(16). Here we consider the magnitude, breadth and functional
phenotype of CD8+ T cells in ART treated individuals compared
to TP, EC and VC.

HIV-Specific CD8+ T Cell Magnitude and
Breadth
T cell magnitude can be measured by either the absolute
frequency (multimer staining to detect all HIV-specific cells,
whether functional or not) or by assessing the frequency of
functional cells (ELISpot, intracellular cytokine staining, CSFE
proliferation etc). Magnitude is an important measure of T cell
potency. In HIV infection, the functional magnitude of T cells,
measured by IFN-γ ELISpot, is correlated to the time to viral
escape, although associations between the overall frequency of
HIV-specific CD8+ T cells using functional assays and viral
load have not been consistently observed (65, 155, 156). Viremia
is a primary driver of the magnitude of the HIV-specific T
cell response, an observation underscored by the differences in
HIV-specific T cell magnitude between groups of HIV infected
individuals, including ART treated individuals (155, 157, 158).
In a study examining the total summed magnitude of CD8+ T
cell responses against the entire HIV proteome from PBMCs,
as measured by ex vivo IFNγ ELISpot, the summed magnitude
of CD8+ T cells in untreated chronic infection is at least 2-
fold greater than the summed magnitude of CD8+ T cells from
treated infection (Table 2) (155). EC, who control HIV better
than TP and have low viral load, exhibit significantly lower T
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cell responses than TP. In turn, EC, who exhibit higher viremia
than ART+HIV+, have higher magnitude T cell responses (155,
157, 158). Even so, the HIV-specific T cell response in ART
treated individuals remains detectable over time, with responses
detectable ex vivo after years of durable suppression (155).

The magnitude of the total HIV-specific CD8+ T cell
responses positively correlates with the number of reactive
epitopes targeted, that is the breadth of response (155). Similar
to magnitude, the breadth of response is decreased during ART
treatment, and timing of ART initiation affects the breadth of
CD8+ T cell response (155). Treatment during acute infection
results in breadth of response being significantly lower and
more narrowly directed than individuals with untreated or
intermittently treated HIV infection (Table 2) (155, 175).

HIV-Specific CD8+ T Cell Targeting of HIV
The specificity of the CD8+ T cell response may also be critical
in HIV control. Associations between the targeting of HIV-
specific CD8+ T cell responses and virus set point have been
observed. In cohort studies of individuals in South Africa with
chronic clade C HIV untreated infection, viral load was inversely
correlated with the breadth of Gag-specific T cell responses,
and was directly correlated with the breadth of Env-specific
responses (163). Similar observations were observed in chronic,
HIV-clade B untreated infection, where individuals with lower
viral loads more extensively target HIV-Gag (176, 177). Work
by Mothe and colleagues extended these previous findings (178).
T cell responses against the full HIV proteome were mapped in
950 participants and a set of T cell epitopes were identified as
“protective,” based on cohort-level associations with lower viral
load (178). The protective epitopes occurred in regions of Gag,
Pol, and Vif, while non-protective epitopes that were associated
with higher virus loads occurred in regions of Env, Nef, Vpr, and
Pol (178).

HIV sequence variability at the population-level can be
quantified using a measurement called entropy (179). High
entropy epitopes are more variable at the population level,
whereas low entropy epitopes are more conserved. The
“protective” epitopes described byMothe et al. typically exhibited
lower entropy relative to non-protective epitopes (178). Lower
entropy regions are less likely to accommodate escape mutations
without inducing a fitness cost (17, 154, 180). For example, Gag is
subject to more stringent sequence constraints than Env, making
it less likely for HIV to accommodate a mutation in this region.
More generally, eliciting CD8+ T cell responses against the most
highly-conserved regions of HIV may be a good strategy for
immunotherapies, as escape mutations in these regions can result
in fitness cost for HIV.

Virus escape mutations were identified in HIV provirus
over 25 years ago (181). More recently, virus escape was also
confirmed in the replication-competent reservoir in durably ART
suppressed individuals, highlighting the challenge of pre-existing
virus escape to T cell immunotherapy strategies, whether for
HIV eradication or durable remission (182). Further studies are
needed to quantify the level and extent of pre-existing virus
escape in the HIV reservoir.

HIV-Specific CD8+ T Cell Function Under
ART
In chronic untreated infection, HIV-specific CD8+ T cells
progressively lose the capacity to proliferate and secrete cytokines
and cytotoxic effectors, though even in late-stage infection
some function is retained (183–185) (Table 2). ART significantly
normalizes HIV CD8+ T cell functions (186). However, multiple
studies have reported that HIV-specific CD8+ T cells from
individuals durably suppressed on ART do not exhibit the same
breadth of function as HIV-specific CD8+ T cells from EC (40,
165). Relative to EC, CD8+ T cells from HIV+ART+ individuals
display reduced proliferative capacity and cytokine and lytic
molecule production following stimulation with HIV antigens
(13, 137, 158, 165, 167, 170). Even more pertinently, HIV-specific
CD8+ T cells from ART-suppressed individuals have reduced
capacity to eliminate both productively infected and latently
infected CD4+ T cells compared with CD8+ T cells from EC
(5, 165, 166). Although these observations were likely to be
influenced by increased frequencies of HIV-specific CD8+ T cells
in EC or stronger targeting of protective, low entropy T cell
epitopes (13, 165), together they indicate that HIV-specific CD8T
cells in HIV+ART+ individuals while broadly functional, are
not optimal.

HIV-Specific CD8+ T Cell Exhaustion
In untreated HIV infection, progressive functional impairment
of CD8+ T cells is accompanied by the upregulation of
“immune checkpoint markers” such as PD-1, CD160, 2B4, LAG-
3, and TIGIT, (with negligible expression of TIM3 and CTLA-
4), which can inhibit signaling downstream of the TCR on
HIV-specific CD8+ T cells, and in chronic viral infections,
promote apoptosis (39, 171, 187, 188). Checkpoint marker
upregulation in dysfunctional CD8+ T cells is a signature of
T cell exhaustion. As exhaustion is partly driven by chronic
antigen exposure, it would be expected that viral suppression
under ART would be associated with at least partial recovery of
HIV-specific CD8+ T cell function, and this does appear to be
the case for multiple markers when HIV+ART+ are compared
to TP (Table 2)(41, 186, 189). Literature are limited on whether
checkpoint inhibitor levels remain elevated relative to the HIV
seronegative population; however, Tauriainen et al. report that
HIV-specific CD8+ TIGIThi cells were associated with lower
function in durably treated participants and co-expressed other
exhaustion markers, suggesting some ongoing T cell exhaustion
in durably suppressed individuals (173).

Antibody blocking of checkpoint inhibitors, with most focus
on the PD-1/PDL-1 pathway, can increase CD8+ T cell function
and, remarkably, in some cancer patients has afforded complete
clinical response (190). Clinical data are more limited in HIV-
infected individuals. A small clinical study found evidence that
low level anti-PD-1 treatment increase CD8+ T cell functionality
in a subset of durably ART-suppressed HIV seropositive
participants, andmore recently CTLA-4 blockade was reported to
be well tolerated in HIV-infected individuals (191, 192). In SIV-
infected macaques, α-PD-1 antibody given 10 days prior to ART
initiation increased antiviral CD8+ T cell function and produced
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TABLE 2 | HIV-specific CD8+ T cell responses in HIV seropositive, treatment naïve individuals relative to HIV seropositive durably ART suppressed individuals. (↑, higher

relative to ART treated; ↓, lower relative to ART treated; ≈, comparable to ART treated).

HIV-specific CD8+ T

cell response

Elite

controllersa
Viremic

controllersa
Typical

progressorsa

Magnitude ↑ ↑ ↑ (12, 14, 16, 18, 19, 95, 155, 159–161)

Breadth ↑ ↑ ↑ (18, 19, 155, 162)

Immunodominant protein Gag Gag Env (14, 18, 163, 164)

In vitro function Polyfunctionalityb ↑ ↑ ↓ (12–16)

Viral inhibition ↑ ↑ ↓ (5, 18, 19, 165, 166)

Proliferation ↑ ↑ ↓ (13, 18, 32, 40–42, 137, 158, 165,

167–171)

Phenotype % HLA-DR+ CD38+ ≈ ↑ ↑ (61, 172)

Exhaustion % PD-1 ≈ ↑ (39–41, 165)

% LAG-3 ≈ (39)

% CD160 ↑ (39)

% 2B4 ≈ (39)

% TIGIT ↓ ↑ (39, 173)

Survival factorsc Cleaved caspase 3-

proapoptotic

↓ ↑ ↑ (174)

BCL-2 antiapoptotic ↑ ↓ ↓ (174)

aElite controllers: viral load/ml <50, CD4/µl >350; Viremic controllers: viral load/ml 50–2,000, CD4/µl >350; Typical progressors: viral load/ml >2,000, CD4/µl >350; Progressors

(AIDS): viral load/ml >2,000, CD4/µl >200.
bPolyfunctionality: expression of multiple cytokines and chemokines (ex. IFNy, TNFα, IL-2).
cProapoptotic marker, cleaved caspase-3 (CC3) and antiapototic marker (Bcl-2), regulate the mitochondrial released of cytochrome C to induce apoptosis. Bcl-2 negatively regulates

the induction of the apoptotic pathway.

more rapid suppression andCD4+ T cell reconstitution following
ART initiation (193). We anticipate that results from several
ongoing clinical and non-human primate studies will be reported
over coming years.

Summary
The initiation of ART, particularly during acute infection, is
associated with a decrease in HIV-specific CD8+ T cell response
magnitude and breadth. A HIV cure or remission strategy may
require redirecting CD8+ T cells to the more highly conserved
regions of HIV, as escape mutations in these regions can result
in a fitness cost for the virus. When designing immunotherapies
intended to elicit CD8+ T cells capable of clearing reactivated
latent cells, increasing the frequency and redirecting CD8+ T
cells may not be enough, and specifically, the implications of sub-
optimal HIV-specific CD8+ T cell function should be considered.

IMMUNOTHERAPY IN CURE

CD8+ T Cell Vaccines and Therapies for
HIV Cure
In most people, the CD8+ T cell response to HIV is inadequate to
prevent virus rebound. As detailed above inadequate CD8+ T cell
magnitude and breadth, pre-existing escape in the HIV reservoir,
insufficient restoration of CD8+ T cell function following ART
and ongoing exclusion of CD8+ T cells from virus reservoirs
such as B cell follicles likely all contribute to the failure of CD8+

T cell immunity to control HIV rebound. However, a recent
study observed that dual bNAb treatment in the first weeks

of macaque simian/human immunodeficiency virus (SHIV)
challenge in rhesus macaques resulted in lower persistent viremia
(194). SHIV rebound was observed following CD8-antibody
depletion in controller animals. In most animals virus control
was regained following restoration of CD8+ T cells (194). While
this study design cannot be easily translated into clinical practice,
the observations provide proof-of-principle that CD8+ T cell
immunity can be augmented, resulting in improved long-term
virus control.

CD8+ T cell vaccine therapies against HIV aim to stimulate
pre-existing and/or generate de novo HIV-specific CD8+ T cell
responses to suppress viral replication through the clearance
of HIV-infected cells. To date, therapeutic vaccine regimens,
which range from recombinant DNA and viral vectors to
dendritic cell vaccines (195, 196), have only shown a modest
effect, and a minimal delay in virus rebound following
ATI, which may be due to limited immunogenicity of the
vaccine [reviewed in (197)]. The limited efficacy of current
therapeutic vaccines may also be due to HIV escape or
lack of restoration of CD8+ T cell function. However, the
newest generation of vaccines involve heterologous vector
prime-boost regimens, which have shown enhanced immunity
compared to homologous regimens, as well as conserved
immunogenic designs which may help to overcome population
level immunogenicity and virus escape (7, 198). Adoptive transfer
of in vitro expanded autologous and allogeneic HIV-specific
CD8+ T cells is also being pursued (199, 200). This approach
has been successful against some cancers (6, 201, 202) and to
date, HIV-CD8+ T cell therapy has been safe in HIV+ART+

individuals (203).
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Other approaches under active investigation seek to harness
bulk (rather than antigen-specific) CD8+ T cells for HIV
clearance. These approaches include the use of chimeric antigen
receptors, Dual-Affinity Re-Targeting protein (DARTS) and T
cell receptor (TCR)-targeting system with an anti-CD3 effector
function (ImmTAVs) in which CD8+ T cells are transduced
with either a HIV-specific T cell receptor, a HIV-specific binding
antibody, HIV-specific antibodies, or T cell receptors ligated to a
CD3 effector molecule (9, 10, 204). Several molecules are in Phase
I testing or progressing to Phase I testing.

These approaches could all be combined with approaches to
block checkpoint inhibitors and enhance CD8+ T cell function
of CD8+ T cell responses or combined with approaches targeting
other arms of the immune response such as bNAb therapy. In
combination with antiretroviral drugs, CD8+ T cell therapies,
bNAbs, blockade of regulatory pathways and the harnessing of
other immune cells may offer new therapeutic approaches in a
near future.

Integration of CD8+ Therapies to HIV Cure
HIV eradication requires reactivation and clearance of latently
infected cells that evade ART because they are long-lived
and quiescent (205) and/or undergo homeostatic proliferation
without reactivation of the integrated provirus (206). Multiple
groups are focusing on developing small molecule or immune-
based approaches to reactivate HIV latently infected cells. To
date, latency reversing agents have successfully increased cell
associated HIV RNA in resting CD4+ T cells and induced viral
blipping in vivo (207–209). However, these studies, supported by
in vitro work (5), suggest that reactivation is transient, with cells
rapidly returning to a state of quiescence, and no change in the
size of the HIV reservoir was observed. This suggests that CD8+

T cells and or other immune effectors have a limited window
to clear reactivated cells. The implication for HIV eradication
strategies is that latency reversal and immunotherapy should
occur in concert; that is CD8+ T cell immunotherapy should
produce the “best” CD8+ T cell response around the time
of maximal latency reversal. For eradication strategies, CD8+

T cell clearance in short well-timed bursts may be sufficient
(Figure 1, middle).

The desired outcome of HIV cure attempts contrasts with
HIV remission strategies that do not seek to eradicate the
reservoir but rather control and limit HIV rebound in the
long term. Here, T cell based immunotherapy would need
to afford sustained CD8+ T cell surveillance of stochastic
HIV reactivation, perhaps over years (Figure 1, bottom).
HIV eradication vs. HIV remission strategies therefore may
require qualitatively and quantitatively different CD8+ T
cell responses.

In conclusion, ART at least partially restores lytic function
and virus inhibitory capacity of CD8+ T cells. This suggests
that therapeutic vaccination can drive expansion of HIV-
specific CD8+ T cell responses, at least in the short-term
(210, 211). These intact functions may be sufficient for HIV
eradication approaches that are shorter term and rely more
on rapid expansion and lytic function of CD8+ T cells.
However, accelerated aging phenotype of CD8+ T cells could
be a greater limitation to durable remission approaches. In
this case, ongoing proliferation defects, cellular activation
and exhaustion may over time, limit long-term efficacy of
immunotherapies. For optimal and sustained efficacy, T cell
boosting regimens may need to be incorporated in HIV
remission strategies as well as adjunct therapies aimed at
reversing or limiting CD8+ T cell immunosenescence in the ART
suppressed population.
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