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Chemokines are small secreted proteins that orchestrate migration and positioning of

immune cells within the tissues. Chemokines are essential for the function of the immune

system. Accumulating evidence suggest that chemokines play important roles in tumor

microenvironment. In this review we discuss an association of chemokine expression

and activity within the tumor microenvironment with cancer outcome. We summarize

regulation of immune cell recruitment into the tumor by chemokine-chemokine

receptor interactions and describe evidence implicating chemokines in promotion

of the “inflamed” immune-cell enriched tumor microenvironment. We review both

tumor-promoting function of chemokines, such as regulation of tumor metastasis, and

beneficial chemokine roles, including stimulation of anti-tumor immunity and response to

immunotherapy. Finally, we discuss the therapeutic strategies target tumor-promoting

chemokines or induce/deliver beneficial chemokines within the tumor focusing on

pre-clinical studies and clinical trials going forward. The goal of this review is to provide

insight into comprehensive role of chemokines and their receptors in tumor pathobiology

and treatment.
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INTRODUCTION

Migration of the immune cells to specific organs is controlled in part by small proteins called
chemokines (i.e., chemotactic cytokines) (1, 2). Chemokines bind to seven transmembrane G
protein-coupled receptors that trigger intracellular signaling that drives cell polarization, adhesion,
and migration (3, 4). They are divided into four families based upon structure: CXC, CC, CX3C,
and C chemokines. The receptors follow a similar nomenclature system, based upon the family of
chemokines to which they bind. In addition there is a family of atypical chemokine receptors that
do not directly couple to G proteins, but are reported to have a variety of roles in development,
homeostasis, inflammatory disease, infection, and cancer (5). Chemokines are also classified as
homeostatic or inflammatory (4, 6–8) and both subsets play important roles in cancer (9, 10).
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CHEMOKINE/CHEMOKINE RECEPTORS
IN THE REGULATION OF LEUKOCYTES

Since chemokines and their receptors are highly promiscuous,
with most chemokines binding multiple receptors, and receptors
binding multiple chemokine ligands. One must consider this
complexity in reference to functional significance of each
chemokine or receptor in reference to cancers (Figure 1).

Of key importance in immune surveillance is the recruitment
of dendritic cells (DCs), CD4+Th1 cells, and CD8+ T effector
cells to the tumor microenvironment. Chemokine receptors
CCR4, CCR5, CXCR3, CXCR4, CCR6, and CCR7 play a pivotal
role in the regulation of T cell homing to inflammatory sites (13).
T cells (αβ, γδ, TFM, TFH, Th22, Tregs, ILCs, NKT), NK cells,
B cells and immature DCs (14–16) are recruited to the tumor
by CCL20 interaction with CCR6. CCL19 and CCL21 recruit
Tregs, CD4T helper, TCM, TRCM, activated T cells, monocyte-
derived dendritic cells (mDC) and B cells to the TME through
interaction with CCR7 (7, 17–20). Dendritic cells home to XCR1,
CCL3, CCL4, CCL5, CCL20, and CCL25 in the TME or LN (21–
23). When antigen-specific CD4T cells interact with DC, CCL3,
and CCL4 are released and this can guide CCR5-positive naïve
CD8+T cells into tissues for activation (24). As such, secretion of
ligands for these receptors (CCL4/5 for CCR5, and CXCL9/10/11
for CXCR3) at the site of inflammation is necessary for the
initiation of a specific immune response (25).

In contrast, tumor-promoting leukocytes are comprised of
macrophages expressing arginase, IL4, IL10, and IL13, as well
as myeloid-derived suppressor cells (MDSCs), T regulatory cells

FIGURE 1 | The chemokine family of chemokine ligands and chemokine receptors. The XC chemokine receptor is in green, CC chemokine receptors are in blue B,

CX3CR chemokine receptor is in yellow, and CXC chemokine receptors are in lilac. The inner lines leading to each chemokine receptor shows the ligands that bind to

the receptor. Outside the chemokine receptor wheel shows the types of cells that express the receptor to respond to the ligands for each chemokine receptor. B, B

cell; iDC, immature DC; NK, natural killer cell; NKT, natural killer T cell; MDSCs, myeloid-derived suppressor cells; pDC, plasmacytoid DC; Th, T helper cell; TCM,

central memory T cell; TEFF, effector T cell; TFH, follicular helper T cell; TFR, follicular regulatory T cell; TN, naïve T cells, TRCM, recirculating memory T cell (11, 12).

(Tregs) and specific B cell subsets. Ligands for chemokine
receptors CCR1, CCR2, CCR3, and CCR5, CCR8, CXCR1,
CXCR2, and CXCR4 recruit macrophages to the TME (4, 26–
39). Neutrophils and myeloid derived suppressor cells (MDSCs)
are recruited to the tumor through ligands for CCR2, CCR3,
CXCR1, CXCR2, and CXCR4. Tregs express the chemokine
receptors CCR2, 3, 4, 6, 7, 8, 10, CXCR3, and CXCR4 (40–48).
Because the same chemokines that recruit anti-tumor leukocytes
can also recruit pro-tumor leukocytes (for example CCL19
and CCL21 recruit both Tregs, mDCs, and activated T cells),
therapeutically targeting chemokines or chemokine receptors in
cancer is complicated.

For naïve T cells to become activated, antigen presenting
DCs migrate from the developing tumor to the lympth node
where they present antigen to the T cells via the T cell receptor
(TCR) and stimulate a process that leads to T cell activation.
CD4 cells can be activated by antigen presenting cells (APCs)
and mature into helper cells [T helper type I cells (Th1) or T
helper type II cells (Th2)]. Th1 cells produce cytokines including
interferon-γ (IFNγ), tumor necrosis factor-alpha (TNFα), while
Th2 cells secrete IL-4, IL-5, IL-10, and IL-13. The cytokines
produced by the DCs influence the differentiation of naïve
helper T cells into either Th1 or Th2 cells. For example, if DCs
secrete IL-12, the naïve helper T cells differentiate into Th1
cells. Th1 cells express CD40L on their plasma membrane and
this ligand binds to CD40 expressed by the DC or other APC.
Engagement of CD40 on the DCs or other APC primes them
to a higher activation level resulting in elevated expression of
class I MHC, B7 and co-stimulating molecules such as 4-1BBL.
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When CD8+ T cells come into contact with one of these highly
activated DCs, its TCRs recognizes the peptides presented by
the MHC Class I molecule on the DC/APC. This, in turn, leads
to the activation of CD8T cell upon binding of its TCR to
the MHC presented peptide(12).The clone subsequently expands
in response to IL-2 induced stimulation of cell proliferation.
CD4T cells are important for the survival and expansion of
activated CD8T cell clones and for the survival of memory CD8T
cells during recall expansion, but there is some priming in the
absence of Major Histocompatibility Complex, Class II (MHCII)
activation (49). Different subsets of T cells migrate in response
to a variety of chemokines (12). For example CCR7 is expressed
on all naïve CD4T cells and it’s ligand CCL21 is expressed by the
endothelial cells of the high endothelial venules (HEV) which are
specialized vessels that facilitate lymphocyte recruitment. CCL21
is presented by heparin sulfate into the luminal surface (49).
CCL19 can also bind to CCR7 on CD4 cells and is thought
to mediate survival of naïve T cells as they move into the LN
(50). Once in the LN, naïve CD4T cells search for APCs using
a random walk along a fibroblastic reticular cell network (51)
which expresses adhesion molecules in addition to ligands for
CCR7, CCL19, and 21, as well as CXCL12, which binds CXCR4.
To escape the LN, CCR7 gradually becomes down-regulated
and the CD4 cells bind the sphingosine-1-phosphate receptor 1
(S1PR1) (52) and follow S1P signals into the lymphatic vesicles,
other LNs, or the circulation. FOXO1 is a key transcription
factor in CD4T cells, as is KLF2. FOXO1 regulates expression
of CD62L and CCR7, while KLF2 represses CXCR3, CCR3 and
CXCR5 expression (53).

When CD4T cells are activated, there is upregulation
of CXCR3 and CXCR5, both or which are associated with
differentiation into TH1 cells (54) and can be linked to Bcl6
and cell division, though the order is controversial (55, 56).
TCR engagement, IL12, IL21, and IFNγ expression along with
induction of T-bet are associated with escape from a plastic state
into a definitive Th1 phenotype (57). The cells migrate from
the T zone to the B-T zone interface usingCXCR5 and EB12
(58) to escape areas with high IL-2. In contrast, contact with an
environment high in IL-2 will suppress TFH differentiation.

CD4+T cells undergo priming by DCs and upregulate CXCR3
expression, then CXCR3 mediates the migration of CD4+T cells
between different DC populations in the LN. These CD8α+DCs
are producing CXCL10 in response to IFNγ stimulation. CXCL9,
CXCL10, and CXCL11 are produced bymany cell types including
fibroblasts, leukocytes, and keratinocytes and all bind CXCR3,
though the most potent ligand in humans for CXCR3 is CXCL11
(59). CXCR3 is essential for T cell recruitment into tumors and
through the thymus (60, 61) and Th1 cells also produce IFNγ that
induces additional production of CXCL9 and 10 to enhance the
recruitment of cytotoxic CD8+ T cells into the tumor (62).

Th2 cells express CCR4 and this receptor responds to ligands
CCL17 and CCL22. CCR4 expression is induced in response to
IL-4 and CCR4 expressing Th2 cells may also produce IL-4 (63–
65). In contrast, those Th2 cells that express CCR8 produce IL-5
(66). Another key population of CD4 cells is the CD4+ memory
T cells that express CCR7 and CD62L. These cells produced IL-2
when there is restimulation (67).

In the tumor microenvironment, chemokines are produced
by tumor cells, endothelial cells, mesenchymal stem cells (MSC),
cancer-associated fibroblasts, myeloid cells, and neutrophils,
providing a very rich “soil” to facilitate the recruitment of
immune cells into the tumor microenvironment (TME). For
example, tumor cells, macrophages, and neutrophils produce
CXCL1, CXCL2, CXCL5, and CXCL8 and these chemokines
recruit MDSCs, both the PMN-MDSCs and the Monocytic-
MDSCs (68, 69). The MDSCs suppress the activity of CD8+T
effector cells to prevent tumor cell killing by these cells.
Dendritic cells (DCs), Tregs, CD8+ T cells, Th1, Th9, Th17,
TEM, TRM, and macrophages are recruited into the TME by
CCL3-5, CCL8, CCL11-12, and CCL28 (70). Mature DCs release
CXCL5, CXCL9-11 and these chemokines recruit CD4+Th
cells, CD8+T cells, Tregs, pDCs, NK, and NKT cells into the
TME (71) (Figure 2). Additional interactions of chemokines
and chemokine receptors that facilitate recruitment of diverse
immune cells are shown in Figure 1.

TUMOR CHEMOKINES AND PATIENT
PROGNOSIS

According to the analysis of the TCGA collection of human
cancers using either The Human Protein Atlas (www.
proteinatlas.org) (72, 73) or CBioPortal (74, 75), chemokine
expression can be prognostic in many human cancers. However,
same chemokines can be either favorable or unfavorable
prognostic indicators depending on the type of malignancies.
For instance, T cell-recruiting chemokines CXCL9, CXCL10, and
CXCL11 are favorable prognostic indicators in ovarian cancer,
but are unfavorable indicators for pancreatic and renal cancer.
CXCL9 is also favorable in endometrial and breast cancer.
Elevated expression of CXCL1 is unfavorable indicator in renal,
liver and cervical cancers, but it is favorable in breast cancer.
High CXCL5 is associated with poor survival in renal, liver,
pancreatic and cervical cancer, while CXCL12 is not prognostic
in any of the common TCGA malignancies. High expression
of CCL4 and CCL5 are associated with better outcome in
melanoma, endometrial, and colorectal cancer, but with worst
outcome in renal cancer (Figure 3). Furthermore, a study of
14,492 distinct solid tumors (primaries and metastases) with at
least 30 per tumor type revealed that a 12-chemokine expression
signature (CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19,
CCL21, CXCL9, CXCL10, CXCL11, and CXCL13) correlated
with the presence of tertiary lymph node-like structures and
was also associated with better overall survival of the subset of
melanoma patients (76). Moreover, loss of CCL5 expression was
found to be associated with enhanced melanoma aggressiveness
(77) and poor therapeutic response (78). Interestingly, tumor
genomic instability can affect chemokine expression and patients’
outcome. For instance, chromosomal instability in colorectal
cancer can lead to deletion of the CXCL13 gene which is
associated with greater risk of tumor relapse (79). Of note, in
human breast cancer CXCL13 is produced by follicular helper
T cells which are linked with activation of adaptive antitumor
humoral responses (80).
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FIGURE 2 | Chemokines produced by stromal cells, tumor cells, and immune cells dynamically modulate the immune landscape of the tumor microenvironment.

Dashed red lines indicate a cell moving toward a chemokine gradient. Solid T red lines indicate inhibition. Solid black lines indicate chemokines released by a cell type.

Solid black T lines indicate immune cell killing of tumor cells. This diagram includes representative chemokines recruiting immune cells but does not include all

possible interactions.

Thus, primary tumor data indicate that chemokines play
an important role in tumor progression, which, in part, may
relate to the direct effect of chemokines on cancer cell growth
and metastasis (9). However, the main effect of chemokines
is likely due to their ability to recruit specific subtypes of
immune cells into the tumor that, in turn, can modulate
tumor growth and metastasis. Indeed, immune cells within the
tumor are among the key determinants of cancer outcome,
based on the pan-cancer meta-analysis that correlated gene
expression with overall survival outcomes in ∼18,000 human
tumors across 39 malignancies. This study showed that genes
associated with immune cells, especially T cells, are the
most significant indicators of favorable patient outcome (81).
Furthermore, the presence of T cells or T cell expression
signature within the tumor is associated with greater likelihood of
response to immune checkpoint inhibitors (22, 76, 82–85). Below
we summarize recent studies demonstrating that chemokine-
mediated recruitment plays a central role in the regulation of the
levels of different immune subtypes within the tumor.

CHEMOKINES REGULATE TUMOR
AGGRESSIVENESS AND METASTASIS

Pro-metastatic Chemokine Signaling in
Tumor Cells
Tumor cells express a wide range of chemokine receptors,
and there are extensive reports that tumor cells utilize both
autocrine and paracrine pathways to respond to chemokines
with altered migration, proliferation, and gene expression.
Importantly, chemokine receptors have been reported to play a
crucial role in maintenance of cancer stem cells. For example,
a CXCR1 blockade has been shown to selectively target breast

cancer stem cells (86) and its expression has been correlated with
poor prognosis in breast cancer (87). CXCR1 and CXCR2 have
been linked to melanoma tumor growth and metastasis (88–91).

Similarly, CCL2 expression by cancer-associated fibroblasts
has been shown to support the growth of breast cancer stem cells
(92), while CXCR4was shown to be enriched in a subset of glioma
cancer stem cells (93). Furthermore, CXCR2 is expressed in
MSC and CXCR2 overexpressing MSCs can be used to accelerate
mucosa wound healing (94). Both CXCR5 and CXCR4 are
involved in metastasis of PCSLC prostate cancer stem-like cells
(95), and inhibition of CXCR4 alters the homing of quiescent
stem-like prostate cancer cells to bone (96). Furthermore,
expression of the CXCR4 ligand, CXCL12, by tumor-associated
fibroblasts has been shown to promote immune evasion in
a murine model of pancreatic cancer, while targeting CXCR4
with specific antagonist AMD3100 facilitated immunotherapy
response in these model (97). CCR5 has also been implicated
in breast cancer growth and metastasis (98–100). These findings
provide a rationale for targeting these chemokine receptors
within the tumor microenvironment.

Pro-metastatic Chemokine Signaling in
Metastatic Niche
Chemokines play a crucial role in establishing the make-up of the
“pre-metastatic niche.” Yang et al. reported that when CXCR2
and CXCR4 are inhibited, recruitment of MDSCs to the pre-
metastatic niche of the lung is inhibited and, as a result, breast
cancer metastasis to the lung is significantly reduced (37). Granot
et al. reported that tumor-entrained neutrophils (TENs) inhibit
metastatic seeding in the lungs by generating H2O2 and tumor-
secreted CCL2 is a critical mediator of optimal anti-metastatic
entrainment of G-CSF-stimulated neutrophils. Tumor entrained
neutrophils inhibit seeding in the pre-metastatic lung (101).
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FIGURE 3 | Chemokines associated with patient survival in various

malignancies. Prognostic data was obtained from The Human Protein Atlas.

We reviewed Kaplan-Meier plots for all cancers where high expression of

indicated chemokine genes has significant (p < 0.001) association with patient

survival. Based on this review we constructed a table where chemokines

associated with better survival in one of the reviewed malignancies were

assigned the value of “1.” Chemokines that were significantly associated with

worse survival in a given malignancy were assigned the value of “−1.”

Chemokines not strongly associated with survival (p > 0.001) were assigned

the value of “0.” Chemokines that were not prognostic in any of the tested

malignancies were excluded. Based on the resulting table the heat map was

constructed using Morpheus online tool (https://software.broadinstitute

.org/morpheus).

In contrast, Lavender reported that while in vitro delivery of
CCL2 to 4T1 TENs enhanced the killing of the less aggressive
67NR variant of 4T1 tumor cells, intranasal delivery of CCL2
enhanced the seeding and outgrowth of tumor cells in the
lung (102). However, it has been shown that patients with high
CCL2 expressing basal-like, HER2+ and luminal B breast cancer
exhibit a higher probability of longer survival in comparison to
those patients with low expression of CCL2. These results are
contradicted by findings showing that CCL2 and CCL3 are pro-
tumor based upon their recruitment of pro-tumor macrophages
into the TME (26). Presumably, the contribution of different
chemokines to tumor growth and metastasis may be context
dependent reflecting the overall complexity of cancer-associated
chemokine-chemokine receptor network.

CHEMOKINES FACILITATE “T
CELL-INFLAMED” TUMOR PHENOTYPE

Cytotoxic CD8T cells are Th1-differentiated CD4T cells are
the main drivers of anti-tumor immunity, and there is a
strong clinical and experimental evidence that chemokines are
necessary to for the recruitment of these cells into the tumor.
Analysis of patient samples indicates that chemokine expression
is associated with T cell infiltrate. For example, in melanoma,
the lack of CCR5 ligands (CCL3, CCL4, CCL5) and CXCR3
ligands (CXCL9 and CXCL10) has been associated with limited
infiltration of antigen-specific T cells (103). The critical role of
CXCR3 ligands in the recruitment of T cells into tumors of
various origin has been well-documented (4). This critical role
was further confirmed by the recent meta-analysis study which
examined 5,953 cancer specimens from breast, colorectal, lung,
ovary, melanoma, and head and neck carcinomas. This study
demonstrated a positive correlation of CXCL9, CXCL10, and
CXCL11 mRNA expression with the density of tumor-infiltrating
T and NK cells (104). Interestingly, this study also uncovered
a surprising negative correlation between the expression of
CXCR3 ligands and neutrophil levels within tumors, indicating a
possibility of a mutually exclusive pattern of T cell and neutrophil
recruitment. Functional studies revealed that blockade of CXCL9
and CXCL10, or their receptor CXCR3, impairs recruitment
of adoptively transferred T cells into melanoma tumors (61,
105). Furthermore, B16 melanoma tumors grow more rapidly
in mice lacking CXCR3, and their tumors have lower levels
of T cells as compared to wild-type mice. Notably, response
to T cell-reactivating therapy, such as PD-1 blockade, is also
impaired in CXCR3 knockout animals (105). These findings
implicate CXCR3 ligands as major regulators of T cell tumor
homing. Interestingly, there is evidence that tumors can find
ways to neutralize anti-tumor chemokines within the tumor
microenvironment. For example, a study Barreira da Silva et al.
showed that dipeptidylpeptidase DPP4 produced by stromal cells
within the tumor truncated and inactivated chemokine CXCL10
in transplanted murine melanoma tumors, resulting in reduced
T cell infiltration and enhanced tumor growth and metastasis
(106). These findings suggest that DPP4 inhibitors which are
used as anti-diabetic drugs could potentially be used to stimulate
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tumor immunity. Indeed, the prospective clinical study showed
that DPP4 inhibition can preserve the bioactive form of CXCL10
in humans (107) and a clinical trial of DPP4 inhibitor linagliptin
with PD-L1-antagonist is underway (NCT03281369).

Certain C-C chemokines can also contribute to T cell
recruitment into the tumor. Clinical data indicate that CCR5
ligands, CCL4, and CCL5, can promote anti-melanoma immune
response. This observation is based on our analysis of the
TCGA set of 287 melanoma samples which identified a robust
association of the CD8+ T cell marker CD8Awith the expression
of chemokine CCL5 (78). One of the receptors for CCL5, CCR5,
is expressed on T cells, and it has been reported to direct
CD8 trafficking to sites of inflammation (24). However, mouse
studies showed that CCR5 is dispensable for homing of T cells
into melanoma (61). Recent studies indicate the critical role of
CCL4 and CCL5 within the tumor microenvironment is the
recruitment of cells of myeloid lineage that support adaptive anti-
tumor T cell responses, such as dendritic cells. For instance, NK
cell-derived CCL5 in cooperation with XCL1 has been shown
to drive DC1 recruitment into the tumor (108). Furthermore,
tumor-derived CCL4 has also been linked with the recruitment
of DC cells in a mouse model of melanoma. These DCs, in turn,
recruited cytotoxic T cells into the tumor by producing CXCR3
ligands CXCL9 and CXCL10 (109). Similar data were obtained in
urothelial bladder cancer (110).

Besides CXCR3 and CCR5 ligands, additional chemokines
are now emerging as key players in the regulation of anti-
tumor immunity. For example, CXCL16 has been implicated in
driving immune response against liver cancer by recruiting anti-
tumor NKT cells. Sinusoidal endothelial cells were the major
source of CXCL16 which was induced by gut microbiome-
mediated primary-to-secondary bile acid conversion (111).
Cremonesi et al. demonstrated that recruitment of T cells into
colorectal tumors is controlled by many chemokines, including
CCL5, CXCL9 and CXCL10, CCL17, CCL22, CXCL12, CXCL13,
CCL20, and CCL17 (112). Expression of these chemokines was
induced upon exposure of patient-derived colorectal cancer cells
to gut microbiota and thus was sensitive to antibiotic treatment.
These chemokines predominantly induced recruitment of T cells
with an anti-tumor activity which was associated with improved
survival in an animal model and clinical samples (112).

These reports suggest that many different chemokines
contribute to anti-tumoral T cell recruitment. However,
experimental evidence suggests that not all of these chemokines
directly regulate T cell chemotaxis. For instance, an in vivo
analysis of anti-tumoral T cell chemotaxis using competitive
homing assay showed that key tumor-derived chemotactic
factors are CXCR3 ligands, while CCL5, which was also
produced by melanoma tumors, is dispensable for direct homing
of T cells into the tumor (61). Furthermore, as shown by
Yagawa et al. who used a standardized chemokine assay to
test immune cell recruitment by 48 recombinant chemokines,
resting CD4+ and CD8+ T cells displayed concentration-
dependent chemo-attraction toward CCL19, CCL21, CXCL10,
and CXCL12 and, to a lesser extent, toward CCL13, CCL16,
CXCL9, CXCL11, CXCL13, and/or CXCL16 (113). None of the
other tested chemokine molecules, including CCL4 and CCL5,

were chemotactic for T cells in this experimental setting. These
data suggest that the observed correlation of T cell markers and
CCL5 observed in human melanoma tumors could be a result
of indirect promotion of T cell recruitment or proliferation
by myeloid and antigen-presenting cells recruited by CCL4
and CCL5. Notably, some chemokines may even play a role in
repelling T cells as shown by Li et al. who identified CXCL1 as
a determinant of the non-T-cell-inflamed microenvironment
(114). In summary, these data point out that complex chemokine
profiles orchestrate diverse immune microenvironment of
tumors, including “T cell-inflamed” phenotype.

CHEMOKINES AND TUMOR RESPONSE
TO IMMUNOTHERAPY

Analysis of samples frommelanoma patients undergoing various
immunotherapeutic treatments, including cancer vaccines
and immune checkpoint blockade with CTLA-4 and PD-1
antagonists, revealed that tumors responsive to immunotherapy
tend to be infiltrated with T cells, which is described as “T
cell-inflamed” tumor microenvironment (22, 82–84). It is not
yet fully understood why immune cells are present in some
but absent in other tumors. It has been hypothesized that
tumors with high mutation burden are more immunogenic
because peptides derived from mutated proteins can serve as
neo-antigens when bound by MHC molecules for presentation
to T cells and thus can trigger an immune response (115, 116).
However, a study of a TCGA tumor sample collection found no
correlation between the T cell gene expression signature and
mutational burden in any cancer type (117). An explanation of
this interesting data came from the recent study by Cristescu
et al. which analyzed over 300 patient samples across 22 tumor
types from four KEYNOTE clinical trials (85). This study found
that tumor mutational burden and a T cell-inflamed gene
expression profile were independently predictive of response to
the PD-1 antibody pembrolizumab. Notably, these parameters
demonstrated a low correlation between each other, suggesting
that they reflect distinct features of tumors that independently
promote immunotherapy response. Consistent with this
conclusion, tumors that exhibited both high mutation burden
and prominent T cell signature were most likely to respond to
PD-1 blockade (27% response rates). Tumors exhibiting only
one of these immunotherapy response-promoting phenotypes
had an intermediate likelihood of response (11–12%), while
response rates were low on “T cell cold” tumors with low
mutation burden (0% response rate) (85). These data suggest
that many tumors, including potentially immunogenic tumors
with high mutation burden, find ways to exclude immune cells to
escape immune-mediated destruction. Indeed, regardless of the
mutational load and ability to produce neo-antigen peptides, if
tumor antigen-specific T cells are not mobilized to infiltrate the
tumor, the presence of mutations and neoantigens is not going
to be sufficient to mount anti-tumor immunity.

Based on this logic, chemokines are likely to facilitate
immunotherapy responses by bringing immune cells with
anti-tumor activity into the tumor and, thus, counteracting

Frontiers in Immunology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 333

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vilgelm and Richmond Chemokines Modulate Immune Surveillance

T cell exclusion. The data from patients’ samples supports this
hypothesis. For example, Ayers et al. published a gene expression
signature that accurately predicts response to PD-1 therapy in
patients with HNSCC and gastric cancer (23). Notably, several
chemokine genes includingCCL5, CXCL9, CXCL10, andCXCL11
were in this signature. Furthermore, a Genentech-sponsored
study of therapeutic anti-PD-L1 antibody showed a significant
positive correlation between therapeutic response and baseline
CXCL9 levels in melanoma. This correlation, however, did
not reach statistical significance in NSCLC or renal carcinoma
tumors (118). Interestingly, the same study found that fractalkine
CX3CL1 negatively correlates with anti-PD-L1 response in all
tested indications. This is an unexpected finding because this
chemokine is generally associated with T-cell infiltration.

It is important to mention that chemokines are essential not
only for the response to PD-1/PD-L1 therapeutic targeting, but
they are also implicated in response to other immunotherapeutic
agents. For instance, functional mouse studies revealed the
requirement of CXCR3 ligands for response to anti-TIM-3
immune checkpoint inhibitor when administered in combination
with chemotherapeutic drug paclitaxel (119). Of course, not all
chemokines play a beneficial role in immunotherapy outcome.
It has been shown that high levels of chemokines CCL3,
CCL4, and CXCL8 in pre-treatment tumor specimens were
associated with worse patient overall survival after anti-CTLA4
and Carboplatin/paclitaxel treatment in melanoma (120).

The key question that remains is how the expression of
immunotherapy response-promoting chemokines is induced
in tumors? An interesting hypothesis came from a study by
Topalian’s group which found that chemokines CCL5 and
CXCL1 were upregulated in PD-L1-positive melanoma tumors
along with IFNγ and several IFNγ-regulated genes based on
the analysis of 49 archived melanoma specimens that were
either PD-L1 positive or negative (121). Notably, Topalian’s
group also showed that CCL5 and CXCL1 had no direct effect
on PD-L1 expression in vitro. The rationale for this study
relates to the fact that PD-L1 positive tumors are more likely
to respond to anti-PD-L1 immunotherapy, even though PD-
L1 is not a definitive predictor of response (118, 122). The
connection between chemokines and IFNγ was later confirmed
in HNSCC and gastric cancer where CCL5 and CXCL9-11 along
with a number of IFNγ-regulated genes comprised an expression
signature associated with response to PD-1 blockade (23).
However, it is not entirely clear from these correlative studies
whether IFNγ stimulates chemokine expression in tumors or
whether chemokines recruit immune cells that produce IFNγ.
Perhaps both mechanisms take place in vivo. On the one
hand, chemokines such as CXCL9-11 have been shown to be
induced by IFNγ in vivo (www.interferome.org) (123). On the
other hand, chemokines orchestrate tumor homing of cells
that are the major producers of IFNγ, such as Th1-polarized
CD4+ T, CD8+ T cells, and NK cells (124). IFNγ released by
these cells activates JAK-STAT signaling in tumor and other
cells of the tumor microenvironment which leads to increased
PD-L1 surface display (125–128). This compensatory PD-L1
induction mediated by IFNγ inhibits the anti-tumor activity
of T cells which is a key mechanism of adaptive immune

resistance. Furthermore, Benci et al. showed that prolonged
IFNγ signaling contributes to tumor growth as a result of
expression of interferon-driven inhibitor ligands (IDILS) which,
in addition to PD-L1, include TNF Receptor Superfamily
Member 14/Herpes Virus Entry Mediator (TNFRSF14), galectin-
9 (LGALS9), MHCII, CD28 Antigen Ligand 2/B7-2 (CD86),
and the Interferon Stimulated genes (ISGs), such as Interferon-
Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) and
MX Dynamin Like GTPase1 (MX1)(129). This same study
showed that CRISPR ablation of multiple of these IDILS or
ISGs enhances response to anti-CTLA4+anti-PD1 (129). This
CRISPR ablation worked better than the addition of anti-LAG3
and or anti-TIM3. These data are complicated by reports of JAK1
mutation being associated with resistance to anti-PD1 (130).

In addition to driving adaptive immune resistance, IFNγ

also promotes chemokine expression which, in turn, can recruit
additional immune cells into the tumor (123). Based on these
findings, a model can be proposed where IFNγ-producing
immune cells increase tumor chemokines to recruit more
immune cells that will further induce chemokine expression
and so on. At the same time, tumor cells try to escape
immune-mediated killing by inducing PD-L1 and other immune
checkpoint proteins. The remaining question not explained by
this model is how IFNγ-producing cells are recruited into the
tumor in the first place. We and others have identified key
molecular signals and pathways regulating basal chemokine
expression in tumor cells that can be modulated therapeutically.
We discuss these studies in the following chapter.

THERAPEUTIC IMPLICATIONS

Chemokines as Therapeutic Targets
Accumulating evidence suggests that CXCR2 and CXCR4 are
promising therapeutic targets in multiple malignancies. There
are now over 2,400 publications describing a role for CXCR4 in
cancer and over 300 publications describing a role for CXCR2
in cancer progression. These receptors are expressed on tumor
cells, endothelial cells, leukocytes, including MDSCs. These
studies provide significant evidence that CXCR2 and CXCR4
promote tumor growth through a variety of mechanisms (30,
37, 68, 131, 132). For example, Yang et al. demonstrated that
targeted deletion of CXCR4 in myeloid cells reduced melanoma
and breast cancer tumor growth through a mechanism that
involved enhanced recruitment and activation of NK cells in the
tumor. Likewise, systemic treatment with a CXCR4 antagonist
also significantly inhibited tumor growth (131). Moreover, in
an organotypic tumor spheroid-immune cell co-culture model
inhibition of CXCL12 enhanced T cell recruitment and the anti-
PD-1 immunotherapy response in a colon carcinoma cell model
(133). Other reports show that ablation of CXCR2 signaling
inhibited metastasis of in pancreatic adenocarcinoma in mouse
models (114, 134–139) and improved response to anti-PD1
(114, 135, 140, 141). CXCR2 antagonism also inhibits metastasis
of breast cancer, lung, ovarian, melanoma cells in mouse
models (32, 33, 89–91, 142–148). A meta-analysis study of 2,461
patients revealed that CXCR2 predicts poor overall and relapse-
free survival in laryngeal SCC, lung cancer, pancreatic ductal
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carcinoma, clear-cell renal cell carcinoma, and hepatocellular
carcinoma, but not for digestive tract cancer (149).

Currently, clinical trials are ongoing with both CXCR2 and
CXCR4 antagonist (150–153).

Therapeutic Induction of Chemokines
Chemokines control infiltration of diverse immune cells
into the tumors. The immune cell infiltrate, in turn, is
essential for mounting an effective anti-tumor immune response
with immunotherapy. Thus, therapies that induce chemokine
secretion in tumors and restore immune cell entry into
non-inflamed tumors are likely to facilitate immunotherapy
response. One of the previously explored approaches to induce
infiltration of T cell into the tumors was to inject them directly
with interferons. In a mouse model interferon injection into
melanoma tumor-induced chemokine production and improved
response to anti-PD-L1 therapy (154). One drawback of this
approach is that since not all melanoma lesions are injectable,
this strategy may miss potential micrometastases and therapeutic
effects are likely to be transient. Indeed, a recent clinical study
in melanoma patients did not find increased T cell infiltration
after a single intra-tumoral injection of IFNγ (34). Other
studies reported that chemo-and radio-sensitivity could increase
chemokine expression (155, 156). However, melanoma tumors
are notoriously resistant to chemotherapy and radiation.

We have discovered that senescent-inducing drugs increase
chemokine secretion by melanoma cells (78). Senescence is a
cell state of irreversible (or stable) cell cycle arrest accompanied
by an induction of a complex secretory program known as
senescence-associated secretory phenotype (SASP) (157). Using
small molecules targeting cell cycle kinases, such as alisertib
that inhibits mitotic kinase Aurora A, or palbociclib that
inhibits CDK4/6, to induce senescence we demonstrated that the
melanoma SASP includes a number of chemokines implicated
in T cell trafficking (78, 158, 159). These chemokines included
CCL5 and CXCR3 ligands which are up-regulated in tumors
responsive to PD-1-targeting immune checkpoint therapy (23).
Taken together, these data suggest that senescence-inducing
therapy promotes chemokine secretion in melanoma cells which
facilitates an inflamed tumor microenvironment.

Another approach to re-activate chemokine expression in
immunologically cold tumors is by targeting the epigenetic blocks
that impede chemokine expression in tumor cells. For instance,
treatment of ovarian cancer cells with epigenetic modifiers
reversed the EZH2 and DNMT1 suppression of expression
of the CXCR3 ligands, CXCL9, and CXCL10, resulting in T
cell influx into the tumor and improved response to T cell
transfer and anti-PD-L1 blockade therapy (160). Interestingly,
another study showed that DNMT1 inhibitor treatment induced
expression of CXCL12 in osteosarcoma tumors. Activation of
CXCR4 by CXCL12 has been reported to have pro-tumor activity.
In contrast, in the context of DNMT1 inhibition in osteosarcoma,
activation of the CXCL12-CXCR4 axis reduced metastasis and
promoted T cell recruitment (161). Expression of CCL5 can
also be epigenetically regulated as shown by the study in non-
small cell lung cancer showing that a combination of DNA-
demethylating agents with histone deacetylase inhibitors reversed

tumor immune evasion and modulated the T cell phenotype
away from a T cell exhaustion state toward memory and
effector T cell phenotypes (162). These experiments indicate that
epigeneticmodifiers can be utilized for cancer treatment to rescue
expression of key chemokines important for the recruitment of T
cells and DCs to the tumor.

Also, viral delivery of chemokines can be used to increase
T cell homing into the tumor and promote immunotherapy
response. For instance, intra-tumoral injection of vaccinia virus
delivering CXCL11 promoted response to adoptive T cell
therapy and vaccines (163). In addition, it has been shown
that oncolytic viruses can enhance secretion of CXCL2 and
CXCL10 chemokines by tumors (164). Another promising
approach to elevate chemokine levels within the tumor is
nanoparticle delivery as demonstrated by CXCL10-loaded folate-
modified chitosan nanoparticles that showed anti-tumor activity
(165). Another study showed that resistance to PD-L1 blockade
could be overcome by targeting tumors with tumor necrosis
factor superfamily member, LIGHT. Administration of antibody-
guided LIGHT activated lymphotoxin-beta receptor signaling
which, in turn, facilitated production of chemokines CCL21 and
CXCL13 that recruited T cells into the tumor (166). Finally,
immune adjuvants, including double-stranded (ds) RNAs of
Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C12U),
has been shown to promote the production of CXCR3 ligand
within the tumor (167). In glioblastoma poly(I:C) stimulated
expression of chemokines CXCL9, CXCL10, CCL4, and CCL5
(167). Similarly, an engineered RIG-I agonist-induced expression
of lymphocyte-recruiting chemokines in breast cancer cells (168).
Altogether, these approaches of delivering agents that elevate
levels of T cell-recruiting chemokines within the tumor can be
used to stimulate anti-tumor immunity when tumors are in an
injectable location.

CONCLUDING REMARKS

In the last 30 years, we have made extensive progress in
identifying chemokines and chemokine receptors, characterizing
their roles in the development of the immune system, in
angiogenesis, wound healing, inflammation, tumorigenesis, and
host defense. Extensive effort was put into developing antagonists
of chemokine receptors and some of these were investigated
in various clinical trials. CCR5 antagonists, like maraviroc,
have been developed and used in AIDs patients with some
success (169). CXCR2 antagonists are currently in clinical trials
to block MDSC recruitment to tumors and the pre-metastatic
niche (NCT03177187 in metastatic castration-resistant prostate
cancer (not yet recruiting). CXCR2 antagonists are also being
evaluated in combination with immune checkpoint inhibitor
pembrolizumab in advanced solid tumors (NCT03473925) and
in metastatic melanoma (NCT03161431, not yet recruiting)
(ClinicalTrials.org). CXCR4 antagonists have been and are in
clinical trials: NCT02179970–to assess safety of continuous IV
administration of plerixafor in patients with advanced pancreatic,
ovarian and colorectal cancers (recruiting); NCT03277209–
continuous IV administration of plerixafor to assess impact on
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immune microenvironment in patients with pancreatic, ovarian
and colorectal adenocarcinomas (active but not recruiting);
NCT02605460-chemo-sensitization before hematopoietic stem
cell transplantation in patients with acute leukemia in complete
remission–recruiting; NCT02737072–LY2510924 combined with
durvalumab for solid tumors (terminated and results not posted);
NCT01068301—a Phase I study plerixafor in combination with
fludarabine, thiotepa, and melphalan for a second allogeneic
stem cell transplantation has been completed but results are
not posted; NCT01010880—safety study of CXCR4 antagonist
in multiple myeloma patients-study was completed but no
results are posted. Additional trials are ongoing for the CXCR4
antagonist BL-040 in NSCLC (NCT03337698), in AML in
combination with atezolizumab (NCT03154827), in metastatic
pancreatic cancer (NCT02907099), and in aplastic anemias
or hypoplastic myelodysplastic Syndrome (NCT02462252) and
several others. In addition, the Polyphor CXCR4 antagonist,
balixafortide, combined with eribulin has completed Phase
I trials in HER2-negative metastatic breast cancer patients
and demonstrated an objective response in 16/54 evaluable
patients (30%) with an additional 25 patients exhibiting
stable disease (46%) (153). Xue et al. have recently reviewed
additional reports showing CXCR4 is a potential target for
cancer (170). Similarly, therapeutic approaches to increase
chemokine expression in tumors to facilitate anti-tumor immune

response are also explored in clinical studies. This includes
trials of combined epigenetic and immunotherapy agents,
such as DNA demethylating drug azacitidine with anti-PD-
1 immunotherapeutic pembrolizumab (NCT03264404) or with
anti-PD-L1 antibody avelumab (NCT03699384), as well as
HDAC inhibitor entinostat and anti-PD-1 agent pembrolizumab
(NCT02437136) and similar approaches (171). It will be
interesting to follow the results from these ongoing clinical trials
to learn what works and what revisions are needed to successfully
modulate chemokines and chemokine receptors in combination
with other key targets for treatment of cancers.
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