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Type 1 diabetes, the immune mediated form of diabetes, represents a prototypical organ

specific autoimmune disease in that insulin producing pancreatic islets are specifically

targeted by T cells. The disease is now predictable in humans with the measurement of

type 1 diabetes associated autoantibodies (islet autoantibodies) in the peripheral blood

which are directed against insulin and beta cell proteins. With an increasing incidence of

disease, especially in young children, large well-controlled clinical prevention trials using

antigen specific immunotherapy have been completed but with limited clinical benefit. To

improve outcomes, it is critical to understand the antigen and T cell receptor repertoires

of those cells that infiltrate the target organ, pancreatic islets, in human type 1 diabetes.

With international networks to identify organ donors with type 1 diabetes, improved

immunosequencing platforms, and the ability to reconstitute T cell receptors of interest

into immortalized cell lines allows antigen discovery efforts for rare tissue specific T cells.

Here we review the disease pathogenesis of type 1 diabetes with a focus on human islet

infiltrating T cell antigen discovery efforts, which provides necessary knowledge to define

biomarkers of disease activity and improve antigen specific immunotherapy approaches

for disease prevention.
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INTRODUCTION

Type 1 diabetes is a chronic autoimmune disorder that results from the tissue specific destruction
of insulin producing beta-cells within pancreatic islets (1, 2). Human leukocyte antigen (HLA)
genes, especially the class II DQ and DR alleles, confer significant disease risk (3–5). In addition to
T1D risk genes, there are yet to be identified environment factors that lead to a loss of tolerance to
insulin and other beta cell proteins. It is now appreciated that T1D develops in stages prior to the
clinical onset of symptoms and these stages are defined with the presence of islet autoantibodies
(6), those directed against insulin, glutamic acid decarboxylase (GAD), islet antigen 2 (IA-2), and
zinc transporter 8 (ZnT8). From prospective birth cohort studies, if an at-risk child has two or
more islet autoantibodies, there is ∼85% chance of developing T1D within 15 years and a nearly
100% lifetime risk for disease development (7). With the ability to stage the disease process and
an increasing incidence over the last two decades (8), a number of largescale immune intervention
trials have been completed trying to delay or prevent the onset of clinical disease. Many of these
trials have used formulations of insulin (subcutaneous, intranasal, oral, and intradermal) as an
antigen specific therapy (9–13). Unfortunately, the trials have been of limited clinical benefit
and there is a need for safe and specific therapies to prevent the onset of T1D (14). We believe
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FIGURE 1 | The trimolecular complex consists of a CD4T cell

receptor–Peptide–HLA class II molecule. The peptide binding groove of the

HLA class II molecule consists of pockets (P1, P4, P6, and P9) which bind

amino acid side chains to anchor a peptide. The arrows of the peptide

represent amino acid side chains. The T cell receptor is comprised of alpha

and beta chains with three complementary determining regions (CDR) each.

The T cell receptor interacts with both peptide amino acid side chains and

those located on the HLA molecule to become activated.

understanding the immunology within the target tissue,
pancreatic islets, will lead to improved markers of disease activity
and therapies to delay T1D onset (15). This has been challenging
due to the anatomic location of the pancreas and dual function
as both an exocrine and endocrine organ. However, recent efforts
and advances in technology have made the study of pancreatic
islets from recent onset T1D organ donors possible. Here we
review the progress made in understanding the reactivity of islet
infiltrating CD4T cells with a focus on the trimolecular complex
of T cell receptor–peptide–HLA molecule (Figure 1).

STAGES OF T1D DEVELOPMENT

At the current time, a significant amount of understanding
surrounds the natural history of T1D development. Much
of our understanding comes from both animal models of
disease development and birth cohort studies that have followed
genetically at-risk children (i.e., those with high risk HLA
class II DQ and DR alleles) prospectively from birth to
disease onset. These large epidemiology studies have taken
place in the United States, Diabetes AutoImmunity Study in
the Young (DAISY) (16), and Europe, including the Type 1
Diabetes Prediction and Prevention Study (DIPP) in Finland
(17), and BABYDIAB studies in Germany (18). All three studies
measured islet autoantibodies from the peripheral blood at
regular time intervals (every 3–6 months) and showed that
the presence of two or more islet autoantibodies marks the
start of T1D, as nearly all of these genetically at risk children
and adolescents develop clinical T1D, indicated by elevated
blood glucose, insulin deficiency, and the need for exogenous
insulin treatment. Notably, islet autoantibodies are markers of
a disease state (islet autoimmunity) but not disease activity

as antibodies can be present for years prior to clinical T1D
presentation (19). The preclinical phase of T1D is now staged
by the presence of islet autoantibodies and beta cell function,
as measured by an oral glucose tolerance test (6). Stage 1
is the presence of two or more islet autoantibodies with no
dysglycemia, Stage 2 encompasses those with autoantibodies and
metabolic abnormalities, and Stage 3 is prototypical new-onset
T1D in which an individual meets diagnostic blood glucose
criteria for diabetes and the presence of islet autoantibodies
(20). This staging paradigm leads to T1D being predictable
and the ability to perform clinical intervention trials prior to a
significant loss of beta cell function, with these trials previously
reviewed (21).

Significant insights into disease pathogenesis come from
the studying of animal models of autoimmune diabetes (22).
The non-obese diabetic (NOD) mouse is a spontaneous model
of autoimmune diabetes and shares many similarities with
human disease (23). Both have major histocompatibility (MHC)
class II genes that confer disease risk, NOD mice develop
autoantibodies to insulin prior to hyperglycemia, and immune
cells including T cells infiltrate the pancreatic islets (termed
insulitis) in these mice. Disease specific T cells from the islets
and pancreatic lymph nodes reveal that insulin is a critical
self-antigen in the disease process (24–29). A fragment of the
insulin B chain, amino acids 9-23 (B:9-23), is a CD4T cell
epitope and mutation of a single amino acid within the B
chain (B16 tyrosine to alanine) results in mice maintaining
normoglycemia without insulitis (27). This is not the case for
other beta cell antigens including GAD, islet antigen 2 and
glucose-6-phosphatase catalytic subunit-related protein (30–32)
with the exception of chromogranin A, elimination of which
results in significant protection from islet autoimmunity in NOD
mice (33).

These insights from the NOD have translated to human
disease in that insulin B:9-23 reactive T cells have been identified
within the islets of recent onset organ donors and in the
peripheral blood of T1D patients (34–38). Notably insulin B:9-23
has an identical amino acid sequence in mouse and humans.
Further support for insulin as a key self-antigen in a subset of
T1D patients comes from the TEDDY study, The Environmental
Determinants of Diabetes in the Young, which is an international
multicenter prospective study evaluating environmental
factors that may lead to the development of autoantibodies
(islet autoimmunity) and eventual T1D (39). It is becoming
appreciated that genetically at-risk children present with a
different initial islet autoantibody that are correlated to HLA-
DQ-DR genotypes. The presence of HLA-DR4-DQ8 haplotype
(DR and DQ are in linkage disequilibrium on chromosome 6)
is associated with insulin autoimmunity, while the DR3-DQ2
haplotype may reflect initial autoimmunity to GAD (40). These
important findings indicate: (1) T1D risk genes are strongly
associated with markers of an adaptive immune response to
self-antigen and (2) there is disease heterogeneity such that
subsets of patients may be defined by the presence of given
HLA genes.

Another animal model of autoimmune diabetes that
has been instrumental in understanding mechanisms of
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disease development is the BioBreeding rat. In these models
there are diabetes prone animals that develop spontaneous
islet infiltration, and separately diabetes resistant rats in
which diabetes is induced with a viral infection or other
stimulus of innate immune system activation (41). The
use of an environmental trigger, such as a viral infection,
may mimic an environmental exposure needed to induce
human islet autoimmunity, and eventual T1D in a genetically
susceptible individual.

Animal models unfortunately have not been as robust of
a model for clinical therapeutics (42). The potential reasons
for this are many, including dose, route, and timing of an
intervention in the disease process. For example, antigen specific
therapies tend to work well to prevent NOD diabetes onset
when administered early in the disease process (e.g., before
the development of insulin autoantibodies) but become less
effective as the disease progresses (43). In contrast, anti-CD3
monoclonal antibodies are able to delay disease onset when
administered later in the NOD disease course (42). Just as
there are different animal models of T1D with spontaneous
and inducible disease processes, human T1D is likely not a
single disease. There is disease heterogeneity and the need
exists to understand different subtypes of the condition,
i.e., those that have a distinct pathophysiologic mechanism
leading to T1D development (44), to improve the development
of disease modifying therapies for T1D. As HLA class II
genes confer genetic risk and function to present processed
antigens to CD4T cells, understanding this trimolecular
complex (Figure 1) within the target tissue (pancreatic islets)
in human disease is critical for disease prevention and
reversal (45, 46).

NETWORK FOR PANCREATIC ORGAN
DONORS (NPOD)

The Network for Pancreatic Organ Donors (nPOD, http://www.
jdrfnpod.org/) was established in 2007 to address the gap in the
field to study the target organ in autoimmune T1D (47). Tissues
from organ donors are collected and distributed to investigators
for the study into the pathogenesis of human T1D. To date
over 150 cases have been collected from T1D patients, over
150 non-diabetic donors and several dozens with autoantibodies
but no clinical diabetes. This large and collaborative consortium
has provided the frame work to study the human pancreas,
islets embedded within the pancreas, pancreatic lymph nodes,
and spleen in those with and without disease. Many insights
have been gleaned from a decade of studies and recently
reviewed (48, 49).

Prior to the efforts of nPOD, most of the knowledge regarding
T cell reactivity came from the study of rare antigen specific
cells in the peripheral blood with multiple groups cloning islet
reactive T cells (35, 36, 50–53). Outside of the peripheral blood,
Kent and colleagues cloned insulin A chain reactive CD4T
cells from the pancreatic lymph nodes of an individual with
established disease (54). However, in the last 3 years, three
independent laboratories have reported on the antigen specificity

of human islet derived CD4T cells from recent onset T1D
organ donors.

ANTIGEN REPERTOIRE OF HUMAN ISLET
INFILTRATING T CELLS

In 2015, Mannering and colleagues reported the first results of
cloning islet resident CD4T cells from a deceased T1D organ
donor (19 year-old with 3 years of T1D) (55). The donor had
residual insulin staining within islets and hand-picked islets were
cultured under conditions to promote T cell growth. Outgrowths
of T cells were apparent and these cells were then single cell sorted
using flow cytometry. Clones were established and then tested for
reactivity to overlapping peptides of proinsulin and 26 peptides
derived from other islet autoantigens–GAD65, IA-2, IGRP, and
ZnT8. Epstein Barr Virus (EBV) transformed B cells from the
donor were used as antigen presenting cells (APCs) in these T
cell stimulation assays. Remarkably, 14 out of 53 tested CD4T cell
clones (26%) responded to six overlapping peptides within the C-
peptide region of proinsulin (55) (Figure 2). The HLA restriction
element was predominantly DQ8 and one clone responded
to a C-peptide fragment presented by DQ8 trans. HLA-DQ8
(DQA∗03:01, DQB∗03:02) is present in ∼60% of all T1D
patients and those at risk and confers an odds ratio for disease
development of 6.5–11 (3). HLA-DQ2 (DQA∗05:01, DQB∗02:01)
is also present in about 1/3 T1D patients, and trans dimers
can be formed where the beta alpha chain of DQ2 pairs with
the beta chain of DQ8 (DQ8 trans: DQA∗05:01, DQB∗03:02),
whichmay present unique epitopes to autoreactive CD4T cells in
T1D (53, 56, 57).

Using a similar approach, Kent and colleagues cloned CD4T
cells from hand-picked islets of nine recent onset organ donors
with T1D (58). In addition to growing T cell lines directly from
islets, dispersed islets were stained, flow sorted for CD4 and
CD8 cells and then expanded to establish ex vivo T cell lines.
Fifty of the CD4T cell lines were tested for antigen specificity
using autologous EBV transformed B cells as APCs and a
large panel of known or putative islet antigens including some
which were post-translationally modified. Antigen specificity
was identified in 17/50 (34%) of the tested T cell lines
with a wide array of antigens represented including some
which may represent post-translationally modified peptides (58,
59). These T cell lines predominantly secreted inflammatory
cytokines such as IFN-γ, TNF-α, and IL-2 in response to their
cognate peptide/HLA.

We used an alternate but complementary approach to study
islet infiltrating T cells from three recent onset T1D organ donors,
all of whom had insulitis and the T1D risk HLA-DQ8 allele
(37). Hand-picked islets underwent short-term culture (∼3–4
days) followed by single cell flow sorting for CD4 and CD8 cells.
Instead of attempting to expand the single T cells, we sequenced
the alpha and beta chains of the TCR of each individual cell.
This provided insights into the diversity of the TCR repertoire
of islet infiltrating T cells. We were able to isolate hundreds
to thousands of T cells from 500 to 1,500 islet equivalents.
CD8T cells were more clonally expanded in these donors as
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FIGURE 2 | Amino acid sequence of human proinsulin with shaded areas representing CD4T cell epitopes recognized by islet derived T cells. T cells obtained from

the insulitis lesions of recent onset T1D organ donors respond to epitopes within the shaded area of the insulin B chain, the B:9-23 region, and C-peptide including

the amino acid sequence GQVELGGG which forms a portion of hybrid insulin peptides. These islet derived T cells are predominantly activated by peptides presented

by HLA-DQ8.

1/3 to 1/2 of all full length receptors were detected more than
twice in the same donor (37). For CD4T cells, only 15–20% of
the sequences were detected more than twice from two of the
donors (37). While none of the identical sequences were shared
between the three patients, it could due to the limited number of
cases studied and further efforts may reveal public TCRs shared
across patients.

To test antigen specificity, the TCR sequences from CD4T
cells were transduced into an immortalized TCR null cell line,
thus making a single TCR transductant, and screened against
overlapping preproinsulin peptides and other characterized islet
antigens derived from peripheral blood T cell reactivity of
patients. These TCR transductants are readily expanded in
culture and provide a robust reagent to determine antigen
specificity as these cells secrete IL-2 when the TCR engages
cognate peptide/HLA (60). From 85 selected CD4 TCR
transductants, 3 responded to peptides within proinsulin (37).
Two TCRs from two separate donors responded to insulin B:9-23
presented by DQ8 and one TCR responded to C-peptide 19-35
presented by DQ8 trans (Figure 2). Importantly, the insulin B:9-
23 responding T cells also responded to whole islets as antigen
when presented by APCs bearing DQ8. Notably, reactivity to the
DQ8 trans epitope within C-peptide is identical to that reported
by Mannering and colleagues in a separate patient (55). This
raises the distinct possibility that there are common epitopes
within proinsulin, insulin B:9-23 and C-peptide 19-35, that
stimulate islet infiltrating CD4T cells even after the clinical onset
of T1D.

Further research is underway to characterize the antigen
specificity of the remaining CD4 TCR transductants and in
a similar manner the CD8T cell specificities and their HLA
restriction elements. It is notable that the majority of the T
cell lines, clones, and transductants reported on to date have
unknown antigen specificities. Developing high or moderate
throughput screening systems will aid in this endeavor. As TCR
transductants are engineered T cells, these cells are amenable
to fluorescent reporter systems based upon TCR stimulation,
thereby providing the ability to combine multiple T cells
into a single well of a stimulation assay. The use of human
islet extracts as a source of antigen, including those cultured
with agents that induce beta cell “stress,” may provide tools
to determine mechanisms by which autoantigens are formed
in various disease conditions. Finally, combinatorial peptide
libraries provide another avenue to define ligands for the islet
derived T cell clones, lines, and transductants which have had
success in other immune mediated diseases (61, 62).

IMPLICATIONS FOR STUDYING TISSUE
SPECIFIC T CELLS IN T1D

For T1D, understanding the specificities and antigen receptor
repertoire of those T cells within the target tissue will provide
novel insights into disease pathogenesis and help to further
dissect disease heterogeneity. Studying tissue specific T cells
also provides an avenue to develop biomarkers to assess disease
activity and monitoring immune responses to therapies. Islet
autoantibodies mark a disease state in which the adaptive
immune response has targeted pancreatic islets; however, these
do not correlate to disease activity (i.e., insulitis and beta
cell destruction). Conversely, T cells can cause tissue specific
destruction and may provide markers of an active disease
state, especially those cells that circulate in the peripheral
blood. Of note, insulin B:9-23 reactivity has been detected
in the islets of multiple T1D organ donors and peripheral
blood of T1D patients (34–38). Further understanding the
TCR repertoires across patients holds potential for developing
a non-cell based biomarker assay as compared to traditional
assays using fluorescent multimers (63, 64) and functional assays
such as cytokine enzyme linked ImmunoSpot (ELISPOT) (65,
66). As immunosequencing technologies continue to advance,
combined with machine learning algorithms, the potential exists
to understand clonally expanded TCR repertoires and their
ligands in disease states (67).

One of the major goals of studying human islet infiltrating T
cells is to apply this knowledge to the development of therapies
to prevent disease onset, induce tissue specific tolerance, and
ultimately reverse the disease process. As mentioned previously,
T1D does not represent a single disease pathogenesis and there
are likely different mechanisms or pathways which lead to the
immune system losing tolerance to insulin producing beta cells
(44). It is important to understand these pathways and identify
the different patient subsets or endotypes who share similar
features to improve disease modifying therapies within T1D.

Antigen specific therapy has long held promise to both delete
effector T cells and induce regulatory T cells to self-antigens (68).
By understanding T cell reactivity within human T1D islets, it
is our belief that antigen specific therapy can be better designed
and subsets of patients identified with these T cell responses
in their peripheral blood. It is conceivable that whole antigens
(e.g., preproinsulin) or multiple relevant peptides need to be
administered to patients with these reactivities. For example, a
subset of patients may have dominant T cell responses directed
toward insulin epitopes and benefit to proinsulin based antigen
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therapies, while other patients may have predominant GAD
reactivity and would respond to GAD based antigen therapies.
This rationale is in line with the findings from TEDDY indicating
that a subset of children present with initial insulin autoimmunity
or GAD autoimmunity based upon HLA genotype (40). An
important caveat to mention is the fact that combination therapy
will likely be needed based upon the stage of T1D treated
(14). At new-onset T1D (Stage 3) induction therapy could be
followed by antigen specific therapy in an attempt to induce
antigen specific tolerance. Induction therapies could include a
monoclonal antibody directed against CD2 or CD3 on T cells
(69–72), CD20 on B cells (73), CD80/86 on APCs (74), or
polyclonal anti-thymocyte globuliln (ATG) (75), which have all
shown short-term ability to preserve residual beta cell function
in clinical trials with new-onset T1D patients.

Another promising disease modifying therapy uses small
“druglike” molecules to block self-antigens presented by HLA-
DQ8 (76, 77). DQ8 is common in T1D, confers significant genetic
risk and is actively involved in disease pathogenesis as the vast
majority of islet derived CD4T cells studied to date are activated
by proinsulin peptides presented by DQ8 (58). Methyldopa
(Aldomet), a clinically well-established oral medication used to
treat hypertension in children and adults for >50 years (78), was
discovered to bind the antigen-binding cleft of DQ8, and block
peptide presentation and subsequent T cell activation to self-
antigens (insulin and α-gliadin) (77). Remarkably, methyldopa
did not alter a T cell response to an influenza epitope presented
by DQ8. In a proof of concept clinical trial, recent onset T1D
patients were genetically selected for DQ8 and administered
methyldopa (www.clinicaltrials.gov NCT01883804). Methyldopa
specifically blocked DQ8, not DR4 or DQ2, in these patients and
lessened the inflammatory response of insulin specific T cells

(77). As many autoimmune diseases are associated with specific
HLA class II genes (79, 80), genetically selecting patients and
treating with drugs to block self-antigen T cell activation by these
HLA molecules has broad applicability to treating not only T1D
but other autoimmune diseases.

CONCLUSIONS

There is a need to study T cells within the target tissue,
pancreatic islets, of T1D patients. This need is being met through
collaborative research efforts such as the Network for Pancreatic
Organ Donors (nPOD). Findings from independent laboratories
are defining the components of the trimolecular complex, TCR-
peptide-HLA, within human islet infiltrating CD4T cells. This
understanding provides a framework to understand disease
heterogeneity and develop biomarkers of disease activity,
which hold promise for disease monitoring and timing of
therapeutic interventions. Ultimately, this understanding will
aid in the design and development of improved therapies
aimed at inducing tolerance to islet antigens and preventing
T1D onset.
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