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Background: Current immune-based TB tests, including the tuberculin skin test (TST)

and interferon-gamma release assays (IGRA), have significant limitations, including the

inability to distinguish between latent TB infection (LTBI) and active TB. Few biomarkers

with the potential to discriminate between these two infection states have been identified.

Objective: To determine whether functional profiling of mycobacteria-specific T cells

can distinguish between TB-infected and -uninfected children, and simultaneously

discriminate between LTBI and active TB.

Methods: One hundred and forty-nine children with suspected active TB or

risk factors for LTBI were recruited at the Royal Children’s Hospital Melbourne.

Whole-blood stimulation assays, using ESAT-6, CFP-10, PPD, and heat-killed

M. tuberculosis as stimulants, were done, followed by intracellular cytokine staining and

flow cytometric analysis.

Results: Eighty-two participants in the well-defined diagnostic categories

‘uninfected individuals’ (asymptomatic, TST 0 mm / IGRA-; n = 61), LTBI

(asymptomatic, TST ≥10 mm / IGRA+, normal chest radiograph; n = 15), or

active TB [microbiologically-confirmed (n = 3) or fulfilling stringent criteria (n =

3)] were included in the final analysis. The proportions of mycobacteria-specific

single-positive TNF-α+ and double-positive IFN-γ+/TNF-α+ CD4+ T cells

were significantly higher in participants with active TB than in those with

LTBI and uninfected individuals. Additionally, the frequency of IL-17-expressing

CD4+ T cells, predominately with single-positive IL-17+ and double-positive
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IL-2+/IL-17+ phenotypes, was higher in participants with active TB than in the other

two groups.

Conclusions: The frequencies and functional profiles of mycobacteria-specific CD4+

T cells differ significantly both between TB-infected and TB-uninfected children, and

between LTBI and active TB. Although confirmation in further studies will be required,

these findings indicate that functional profiling of mycobacteria-specific CD4+ T cells

could potentially be exploited for novel immune-based TB assays that enable the

distinction between infection states based on a blood sample alone.

Keywords: tuberculosis, child, immunoassay, functional profile, T cell, diagnosis

INTRODUCTION

Tuberculosis (TB) has recently become the leading infectious
cause of death globally (1). The World Health Organization
estimates that in 2016 there were 10.4 million new cases of active
TB, and 1.6 million TB-related deaths (2). In addition, one-
quarter of the global population is thought to be infected with the
causative agent of TB, Mycobacterium tuberculosis (MTB), and
to have asymptomatic latent TB infection (LTBI) (3). Children
contribute substantial numbers to this pool of individuals with
LTBI, which is fuelling the ongoing TB pandemic (3).

Progress with containing the global pandemic has been
hindered substantially by the significant limitations of current
diagnostic tools (4). Although considerable advances have
recently been made in molecular TB diagnostics (5), and
polymerase chain reaction (PCR) based tests are increasingly
becoming available in high TB prevalence countries (6), this may
not translate into significant improvements in the diagnosis of TB
in children, as tests relying on molecular detection of MTB have
suboptimal sensitivity in this patient population (7, 8).

Despite intensive research in immunological TB diagnostics,
no new immune-based tests have become available for use
in routine clinical practice since interferon-gamma (IFN-γ)
release assays (IGRAs) were approved in 2002 (4). IGRAs have
significant limitations, which include their comparatively high
cost, variable reproducibility, largely unexplained discordance
with tuberculin skin test (TST) results, and suboptimal sensitivity
in both children and adults with active TB (4, 9–13).
Furthermore, neither TSTs nor IGRAs can distinguish between
LTBI and active TB (4, 14).

Although there is increasing evidence suggesting that these
are not distinct entities, but rather extremes on a continuum,
the discrimination between LTBI and active TB remains critical
from a clinical perspective as their treatment differs (15, 16). A
test with the ability to discriminate between LTBI and active TB
would be particularly useful in high TB prevalence settings where
a large proportion of the population have LTBI, and determining
whether a patient with respiratory symptoms and a positive TST
or IGRA result has pulmonary TB, or alternatively a respiratory
tract infections caused by another pathogen and coincidental
LTBI, is often challenging. To date, only a small number of
biomarkers that may have the ability to discriminate between
LTBI and active TB have been identified (14, 17–20). However,

few of these biomarkers have been evaluated in sufficiently
large studies, and none have been tested in a routine clinical
diagnostic setting.

Advances in flow cytometry over the last decade have
enabled increasingly detailed functional profiling of pathogen-
specific immune cells. Significant efforts have been made to
identify potential correlates of protection against MTB infection,
primarily to facilitate the development and evaluation of
novel TB vaccines. Mycobacteria-specific polyfunctional T-cells
emerged as potential markers of protection, but recent studies
have cast doubt on the extent of their role in protective
immunity (21). To date, only few studies have explored the use
of polyfunctional T-cells in the diagnostic context.

This study aimed to determine the potential of functional
profiling of mycobacteria-specific T-cells to distinguish between
TB-infected and -uninfected children, and simultaneously
discriminate between LTBI and active TB.

MATERIALS AND METHODS

Participants
Children and adolescents up to 18 years of age were recruited
at the Royal Children’s Hospital Melbourne (RCH) as part of
an ongoing project investigating anti-mycobacterial immune
responses in children. The inclusion and exclusion criteria
for this study are described in detail elsewhere (14). In
brief, all children undergoing screening for suspected LTBI or
active TB were eligible for inclusion, including the following:
(i) children with symptoms and signs suggestive of active
TB, (ii) children with known contact with a case of active
TB, (iii) children who had recently migrated from countries
with a high TB prevalence (incidence ≥ 40 TB cases/100,000
population). Children with known immunodeficiency and those
receiving immunosuppressive treatment were excluded from
participation. Potential participants who had a TST in the
previous 6–52 weeks were excluded from participation, as at
commencement of the study there were some data suggesting
that a TST done 6 weeks prior to an IGRA may result in
boosting, thereby causing false-positive IGRA results. We have
subsequently shown that this is not the case (22).

Informed consent was obtained from each child’s parent
and/or guardian. A standardized data collection sheet was
used to record demographics, history, and clinical findings.
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A chest x-ray was done in all cases with positive TST
or IGRA results. Histological, conventional, and molecular
microbiological tests were done in all children with suspected
active TB as clinically indicated.

Diagnostic Tests
All participants had a TST performed by intradermal injection of
0.1ml Tubersol (Sanofi Pasteur; Toronto, Canada; bioequivalent
to 5 Tuberculin Units PPD-S), and the resulting induration was
recorded after 48–72 h. In addition, blood was obtained for the
QuantiFERON-TB Gold In-Tube (QFT-GIT; Cellestis/Qiagen;
Carnegie, Australia) assay, which was processed and interpreted
at the Victorian Infectious Diseases Reference Laboratories
(VIDRL) according to manufacturer’s instructions. An additional
10mL of blood was collected in heparinized tubes for whole
blood assays. In addition to standard microcopy and culture,
polymerase chain reaction (PCR) testing for MTB, done with
a Taqman real-time PCR (Applied Biosystems; Waltham, MA)
targeting the insertion sequence IS6110, was done at VIDRL,
using previously described methods (23).

Categorization of Participants and
Definitions
Participants were classified into three well-defined categories
according to their clinical features, TST, IGRA, and
microbiological results: (i) uninfected individuals, (ii) individuals
with LTBI, and (iii) individuals with active TB. Uninfected
individuals were defined as asymptomatic participants without
any palpable TST induration (i.e., TST result of 0mm), and a
negative QFT-GIT result. LTBI was defined as asymptomatic
individuals with a positive TST result (≥10mm), a positive
QFT-GIT result and an unremarkable chest radiograph. Active
TB was defined as either (i) microbiological confirmation of
infection with MTB by culture or PCR, or (ii) a symptomatic
individual fulfilling at least two of the following three criteria in
conjunction with response to treatment with anti-tuberculous
therapy: (a) symptoms and signs consistent with active TB
(chronic cough, persistent fever, night sweats, unexplained
weight loss), (b) radiological findings suggestive of active TB,
(c) presence of risk factors for TB infection (known TB contact,
birth or previous residence in a high TB prevalence country).
These stringent criteria exceed those proposed by the American
Thoracic Society and the Centers for Disease Control and
Prevention (24). Participants who did not fall into any of these
three distinct diagnostic categories, including asymptomatic
individuals with a TST induration of 1–9mm, were excluded
from further analyses to ensure unambiguous diagnostic groups.

Whole Blood Assays
Whole blood was incubated with ESAT-6, CFP-10 (each at a
concentration of 10µg/ml; JPT Peptide Technologies, Berlin,
Germany), PPD (20µg/ml; RT50; Statens Serum Institut,
Copenhagen, Denmark), heat-killed MTB H37Rv (MTBk; 1.6 ×

106 CFU/ml), staphylococcal enterotoxin B (5µg/ml; positive
control; Sigma-Aldrich, St. Louis, MO), or without stimulant
(negative control) in the presence of co-stimulatory antibodies,
anti-CD28 and anti-CD49d (each 1µg/ml; BD Biosciences, San

Jose, CA). Following incubation at 37◦C for 20 to 24 h, brefeldin
A (10µg/ml; Sigma-Aldrich, St. Louis, MO) was added, and
samples were incubated for a further 5 h. Following addition
of EDTA (2mM; Sigma-Aldrich) samples were transferred into
FACS lysing solution (BD Biosciences), and then cryopreserved
at−80◦C for batched analysis.

Cell Staining and Flow Cytometric Analysis
Samples were thawed and permeabilized with Perm2 Solution
(BD Biosciences) for 10min. Cells were then washed with
1xPBS/0.5%BSA/0.1%NaN3 staining buffer before incubation
with fluorochrome-conjugated antibodies at room temperature
for 30min. The following antibodies were used: anti-CD3 Pacific
Blue (UCHT1), anti-CD4 APC-H7 (RPA-T4), anti-CD8 Qdot
605 (3B5), anti-IFN-γ Alexa 700 (B27), anti-IL-2 PE (MQ1-
17H12), anti-TNF-α PerCP-Cy5.5 (MAb11), anti-IL-17 FITC
(BL168) [all BD Biosciences, except Qdot-605 (Life Technologies,
Carlsbad, CA) and FITC (BioLegend, San Diego, CA)]. Cells
were analyzed on a LSRII flow cytometer (BD Biosciences).
Cytometer Setup and Tracking beads (BD Biosciences) were run
prior to acquisition to optimize instrument settings. Automated
compensations were calculated with FACSDiva software (BD
Biosciences) using stained CompBeads (Pacific-Blue, APC-H7,
Qdot-605, PerCP-Cy5.5), stained CompBeads Plus (Alexa-700),
and Calibrite (PE, FITC) beads (all BD Biosciences). Analysis was
performed using FlowJo software (version 8.8.6; TreeStar Inc.,
Ashland, OR). A hierarchical gating strategy was used to select
single-cell CD4 and CD8 T-cell populations. Gates for cytokine
expression in samples stimulated with mycobacterial antigens
were set using the unstimulated control sample (Figure 1). A
Boolean combination was used to determine polyfunctional
T-cells producing two or more cytokines.

Statistical Analysis and Reporting
Statistical analyses were done with Stata (Version 12; StataCorp,
College Station, TX) and Prism (Version 5; Graph Pad Software
Inc., La Jolla, CA). Data were background-corrected prior to
analysis by subtracting the proportion of cytokine-producing
cells detected in unstimulated (nil control) samples from the
proportion detected in antigen-stimulated samples. Comparisons
of continuous variables between multiple groups were done
using non-parametric Kruskal–Wallis tests. In instances where
the Kruskal–Wallis p-value was <0.1, indicating a potential
difference between the groups, additional analyses using two
sided Mann–Whitney U-tests for two group comparisons
were done. Mann–Whitney U p-values <0.05 were considered
statistically significant. All figures were constructed with Prism.

RESULTS

A total of 149 participants were recruited into the study. Of
these, 97 fulfilled the study criteria for the diagnostic categories
uninfected (n = 75), LTBI (n = 16), and active TB (n = 6).
Of these, 14 participants in the uninfected and one in the LTBI
group had to be excluded due to technical issues during sample
analysis (mainly instrument failure; Figure 2). Therefore, a total
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FIGURE 1 | Gating strategy. (A) Gating of CD3+ T cells, aggregate exclusion, followed by gating of single CD4+ and CD8+ T cells. (B) Threshold gates for CD4+

T cells producing IFN-γ, IL-2, TNF-α, or IL-17; a Boolean gating strategy was used to determine the proportion of polyfunctional T cells. Gates for cytokine-producing

CD4+ T cells were set on the unstimulated sample (upper panel) and transposed onto the antigen-stimulated samples (in this example PPD; lower panel) in each

individual participant.

of 82 participants, entailing 82 unstimulated and 328 antigen-
stimulated samples, were included in the final analysis.

The baseline characteristics of the study population are
summarized in Table 1. The six participants with active TB
comprised three patients with microbiologically-confirmed TB
(intrathoracic TB, n = 1; lymph node TB, n = 2) and three
patients who fulfilled the study criteria for active TB without
microbiological confirmation (pulmonary TB, n = 2; spinal TB,
n = 1). All six had positive TST and QFT-GIT results, and
had resolution of symptoms with anti-tuberculous treatment.
Further details on these patients can be found in our previous
publication (14).

Total Mycobacteria-Specific,
Cytokine-Producing CD4+ T-Cells
First, the proportion of mycobacteria-specific CD4+ T-cells
producing IFN-γ, IL-2, TNF-α, or IL-17 in antigen-stimulated
samples was determined (Figure 3).

In the group of uninfected individuals, the median
proportions of cytokine-producing CD4+ T-cells were
universally low; proportions were consistently below 0.1%,

irrespective of the stimulant used. Overall, in both the LTBI and
the active TB group the proportions of CD4+ T-cells producing
cytokines in response to stimulation with mycobacterial antigens
were considerably greater in PPD and MTBk stimulated
samples compared to samples stimulated with the MTB-specific
peptide antigens ESAT-6 and CFP-10. ESAT-6 induced greater
proportions of cytokine-producing CD4+ T-cells than CFP-10.
Stimulation with ESAT-6, CFP-10, and PPD induced only small
proportions of IL-17+ CD4+ T-cells, while stimulation with
MTBk resulted in substantially higher proportions of these cells.

Irrespective of the stimulant used, the proportions of IFN-γ+,
IL-2+, TNF-α+, and IL-17+ CD4+ T-cells were highest in the
group with active TB. In ESAT-6, PPD, and MTBk stimulated
samples, the median proportions of TNF-α+ CD4+ T-cells were
significantly higher in participants with active TB than in those
with LTBI (0.13 vs. 0.02%, p = 0.032; 0.85 vs. 0.28%, p = 0.004;
0.48 vs. 0.21%, p = 0.026, respectively). In PPD and MTBk
stimulated samples the median proportions of IL-17+ CD4+
T-cells were significantly higher in the group with active TB than
in the group with LTBI (0.08 vs. 0.01%, p= 0.045; 0.81 vs. 0.21%,
p= 0.024, respectively).
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FIGURE 2 | STARD flow chart showing the composition of the initial and the final study population. IGRA, interferon-γ release assay; QFT-GIT, QuantiFERON-TB Gold

In-Tube assay; TB, tuberculosis; TST, tuberculin skin test.

Mycobacteria-Specific Mono- and
Polyfunctional CD4+ T-Cells
Next we determined whether the pattern and proportions of
single-cytokine producing and polyfunctional CD4+ T-cells
differed between the three diagnostic groups. The results
of these analyses are summarized in Figures 4A–D and in
Supplementary Table 1.

Overall, in participants with LTBI and active TB, the
proportions of mycobacteria-specific monofunctional, single-
cytokine producing CD4+ T-cells were higher than those of
double-, triple- and quadruple-positive polyfunctional CD4+
T-cells. With ESAT-6, CFP-10, and PPD stimulation, the highest
proportions of mycobacteria-specific CD4+ T-cells comprised
cells with the following functional profiles: IFN-γ+ only, TNF-
α+ only, IFN-γ+/TNF-α+, IL-2+/TNF-α+, and IFN-γ+/IL-
2+/TNF-α+. This pattern differed from that observed in MTBk
stimulated samples, where the following functional profiles
predominated: IFN-γ+ only, TNF-α+ only, IL-17+ only, IFN-
γ+/TNF-α+, IL-2+/IL-17+, IL-2+/TNF-α+/IL-17+.

Although there was a general tendency for the proportions of
mono- and polyfunctional CD4+T-cells to be higher in the active
TB group than in the LTBI group, only few comparisons between

these two groups reached statistical significance. Irrespective
of the stimulant used, the largest differences between the
two groups were consistently observed in single-positive TNF-
α+ CD4+ T-cells (statistically significant in ESAT-6, PPD,
and MTBk stimulated samples) and double-positive IFN-
γ+/TNF-α+ CD4+ T-cells (statistically significant in ESAT-
6 and PPD stimulated samples). In MTBk stimulated samples
the proportion of single-positive IL-17+ CD4+ T-cells was
significantly higher in the active TB group than in the LTBI
group, contrasting with the observations in ESAT-6, CFP-10 and
PPD stimulated samples.

DISCUSSION

Our data indicate that analysis of mycobacteria-specific
CD4+ T-cell responses can distinguish between TB-infected
and TB-uninfected children. In addition, we found that the
proportions of certain mycobacteria-specific mono- and
polyfunctional CD4+ T-cells differed significantly between
individuals with LTBI and patients with active TB. The most
marked differences between these two groups were observed
in single-positive TNF-α+ CD4+ T-cells and double-positive
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TABLE 1 | Baseline characteristics of the study population.

Uninfected LTBI Active TB

(n = 61) (n = 15) (n = 6)

Median (IQR) age, years 5.7 11.7 15.0

(2.8–10.8) (5.6–14.4) (12.1–16.2)

Ethnic origin, no. (%)

Africa 27 (44.3) 10 (66.7) 5 (83.3)

Asia 19 (31.1) 4 (26.7) 1 (16.7)

Middle East 4 (6.6) 0 0

Australia/New Zealand 11 (18.0) 1 (6.7) 0

Migration background *,

no. (%)

28 (45.9) 14 (93.3) 6 (100)

Median (IQR) duration of

residence in Australia

(migrants only *), months

7.0 (2.3–36.0) 12.5 (4.0–37.3) 21.0 (3.0–69.0)

BCG vaccination history, no. (%)

Yes 21 (34.4) 13 (86.7) 5 (83.3)

No 37 (60.6) 1 (6.7) 1 (16.7)

Unknown 3 (4.9) 1 (6.7) 0

BCG vaccination scar, no. (%)

Yes 20 (32.8) 11 (73.3) 5 (83.3)

No 41 (67.2) 4 (26.7) 1 (16.7)

Known TB contact, no. (%)

Yes 42 (68.9) 7 (46.7) 1 (16.7)

No 19 (31.1) 8 (53.3) 5 (83.3)

Type of TB contact, no. (%)

Parent 10 (16.4) 3 (20.0) 1 (16.7)

Other household

member

20 (32.8) 3 (20.0) 0

Other contact 12 (19.7) 1 (6.7) 0

No known contact 19 (31.1) 8 (53.3) 5 (83.3)

BCG, Bacillus Calmette-Guérin; IQR, interquartile range; LTBI, latent tuberculosis

infection; TB, tuberculosis.
*Excludes migrants from New Zealand.

IFN-γ+/TNF-α+ CD4+ T-cells, a finding that could be
exploited for diagnostic purposes.

The observation that CD4+ T-cells expressing TNF-α are
the hallmark of active TB in children is consistent with recent
observations reported from a study in adults, which included
a discovery cohort comprising 48 individuals with LTBI and
eight cases with active TB (18). Using a similar approach
to functional profiling of mycobacteria-specific T-cells with
intracellular cytokine staining, the investigators found that
adults with active TB had significantly higher proportions of
single-positive TNF-α+ CD4+ T-cells than those with LTBI.
However, in contrast to our study that used whole blood
assays, peripheral blood mononuclear cells (PBMCs) were
used, and the functional analyses were restricted to IFN-
γ, IL-2, and TNF-α expression. In contrast to our findings,
the investigators reported that polyfunctional CD4+ T-cells
expressing all three cytokines predominated in adults with
LTBI. Irrespective of the antigenic stimulant used, we did
not observe any significant differences between children with

LTBI and those with active TB in relation to mycobacteria-
specific IFN-γ+/IL-2+/TNF-α+ CD4+ T-cells, and in both
groups the proportions of triple-positive polyfunctional CD4+
T-cells were generally considerably smaller than the proportions
of single-positive CD4+ T-cells. Our findings are consistent
with a recent study that included 15 adults with LTBI but no
cases with active TB, which also found that the frequency of
mycobacteria-specific single-positive TNF-α+ CD4+ T-cells in
this patient group was far greater than the frequency of triple-
positive cells (25). However, all subjects in that study were
HIV-infected and the analyses primarily focused on memory
T-cells. Another study in adults with LTBI, which used MTB
DosR antigens regulated by Rv3313c as stimulants, also found
that mycobacteria-specific single-cytokine producing T-cells
predominated in individuals with LTBI, rather than double-
positive and triple-positive IFN-γ+/IL-2+/TNF-α+ T-cells (26).
Ultimately, additional studies applying identical methods to
samples from both children and adults will be required
to determine whether there are truly age-related differences
in the functional profiles of mycobacteria-specific T-cells,
or whether these contrasting observations are the result of
methodological differences.

In addition to single-positive TNF-α+ CD4+ T-cells, we
found that the frequency of mycobacteria-specific polyfunctional
IFN-γ+/TNF-α+ CD4+ T-cells was significantly greater in
children with active TB than in those with LTBI. This observation
is consistent with a study by Sutherland and colleagues, which
compared functional T-cell profiles between adults with active
TB and asymptomatic household contacts (27). Unfortunately,
TST-negative and TST-positive (i.e., individuals likely to have
LTBI) household contacts were combined into one group in some
of the analyses, precluding direct comparisons. Nevertheless,
using an ESAT-6/CFP-10 fusion protein and PPD as stimulants,
the investigators detected significantly greater proportions of
double-positive IFN-γ+/TNF-α+ CD4+ T-cells in the active
TB group than in the comparator group. A relatively small,
more recent study that included 13 adults with active TB
and 21 with LTBI (defined as asymptomatic individuals with
positive ELISpot responses and no evidence of active TB),
also made similar observations as our study (28). Those with
active TB were found to have significantly higher proportions
of PPD-specific single-positive TNF-α+ and double-positive
IFN-γ+/TNF-α+ CD4+ T-cells than individuals with LTBI. In
accordance with our findings, no difference in the proportions
of triple-positive IFN-γ+/IL-2+/TNF-α+ T-cells was observed
between the two groups.

There has long been strong evidence that TNF-α is a
key cytokine in anti-mycobacterial immune responses in both
animals and in humans (29). The observation that patients
treated with monoclonal anti-TNF-α antibodies for chronic
inflammatory conditions are at significantly increased risk of
progression from LTBI to active TB has added to the existing
evidence (30). Recent data suggest that TNF-α may also be a key
cytokine for the distinction between LTBI and active TB.We have
recently reported that TNF-α concentrations in supernatants
harvested from whole blood stimulation assays were significantly
higher in children with active TB than in children with LTBI
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FIGURE 3 | Proportions of mycobacteria-specific, cytokine-producing CD4+ T cells induced by antigenic stimulation in the three diagnostic groups. The different

groups are indicated by the color: uninfected (white boxes), latent tuberculosis infection (orange boxes), active tuberculosis (red boxes). The respective antigenic

stimulant is indicated on the left (note scales vary between stimulants), and the cytokines on the top of the figure. The boxes represent the medians; the whiskers

indicate the IQR. All data shown are background-corrected. P-values were calculated with Mann-Whitney U-tests; all significant p-values are shown in the figure.
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FIGURE 4 | Continued
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FIGURE 4 | Proportions of mycobacteria-specific mono- and polyfunctional CD4+ T cells in the three diagnostic groups in (A) ESAT-6, (B) CFP-10, (C) PPD, and (D)

MTBk stimulated samples. Box plot with Tukey whiskers; the boxes represent the interquartile range and the horizontal lines indicate the medians. The different groups

are indicated by the color: uninfected (white boxes), latent tuberculosis infection (orange boxes), active tuberculosis (red boxes). All possible combinations of cytokine

expression are shown on the x-axis (single cytokine producing CD4+ T cells toward the left; polyfunctional CD4+ T cells toward the right). All data shown are

background-corrected. Statistically significant differences between the three diagnostic groups are indicated by star symbols: *p < 0.05; **p < 0.001; ***p < 0.0001.
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in a cohort that largely overlapped with the cohort described
in the present report (14). Furthermore, by combining TNF-
α responses with IL-10 and IL-1ra responses, patients could be
accurately classified into one of these two infection states. Similar
observations regarding mycobacteria-specific TNF-α responses
being of greater magnitude in patients with active TB than in
individuals with LTBI have also been reported by adult studies
(20, 31, 32).

IGRAs, which are currently the only in vitro
immunodiagnostic test for TB approved for clinical use,
are based solely on the detection of IFN-γ responses following
stimulation with mycobacterial peptides. A large number
of studies provide evidence that IFN-γ responses do not
differ between individuals with LTBI and patients with active TB
(14, 20, 33). Therefore, neither IGRAs nor other, non-commercial
IFN-γ-based assays can be used to discriminate between those
two infection states. Inclusion of TNF-α responses, potentially in
combination with other discriminatory biomarkers, into future
immune-based assays for TB is likely to increase assay sensitivity
and simultaneously provide useful additional information
about the probable infection state to help guide management.
Other biomarkers with the potential to distinguish between TB
infection states, including CD38, Ki67, and HLA-DR (34–36),
also warrant further investigation.

A further intriguing finding is the observation that
mycobacteria-specific IL-17 responses appear to depend
on the antigen used for stimulation. Although some IL-17
producing CD4+ T-cells were detected in active TB patients
following stimulation with the MTB-specific peptide antigens
ESAT-6 and CFP-10, as well as PPD, the proportions of these
cells were several-fold greater when heat-killed MTB was used as
the stimulant. This raises the question whether certain antigens
contained in heat-killed MTB, but not in PPD, such as lipid
antigens, are particularly potent inducers of IL-17 responses.
Notably, recent data show that mycolic acids, lipid antigens
contained in the cell wall of MTB, are strong inducers of IL-17 in
CD1b-restricted T cells (37). Also, in both PPD and heat-killed
MTB stimulated samples, the proportions of mycobacteria-
specific IL-17+ CD4+ T-cells were significantly greater in
patients with active TB than in individuals with LTBI. The
majority of mycobacteria-specific CD4+ T-cells expressing IL-17
had single-positive IL-17+ and double-positive IL-2+/IL-17+
phenotypes. Our observations are in accordance with previous
reports in adults. One study that included adult patients with
active TB and healthy BCG-vaccinated donors, which analyzed
PBMCs stimulated with MTB extracts, found that the proportion
of IL-17+ T-cells was substantially higher in the former group
(38). In another study, which included active TB patients and
adults with LTBI (based on positive TST results) and analyzed
PBMCs after stimulation with different MTB strains, found
that active TB cases had significantly higher proportions of
IL-17+ CD4+ T-cells (39). Interestingly, recent data in adults
also suggest that IL-17 expression in T-cells may correlate with
disease severity in active TB (40). The importance of Th17 cells,
which characteristically produce IL-17, IL-21, and IL-22, in the
anti-mycobacterial immune response has been discovered a
decade ago (41, 42). Current concepts suggest that the main role
of IL-17 lies in the early stages of MTB infection, and specifically

in promoting neutrophil recruitment and survival, thereby
aiding granuloma formation and containment of the pathogen.

The main limitation of our study is the inclusion of a limited
number of patients with active TB, a limitation shared by many
other studies in this area that have included a similar number
of cases (17, 18, 33). However, despite this, we detected a
number of highly significant differences between TB-infected
and TB-uninfected individuals, and between individuals with
LTBI and patients with active TB. A further limitation is
the absence of an additional control group of children who
had symptoms compatible with TB but with an alternative
subsequent diagnosis. An important strength of this study is
the use of unambiguous diagnostic groups in the analyses. This
approach led to the exclusion of a large proportion of the
initial study population from the final cohort, but considerably
strengthens our data. Many previous immunodiagnostic studies
have included participants with uncertain TB infection status
(e.g., solely based on TST results) or uncertain active TB cases
(e.g., “possible” and “probable TB” cases based exclusively on
clinical features), and therefore have an inherent risk of data
contamination confounding the analyses.

In conclusion, we found that profiling of mycobacteria-
specific CD4+ T-cell responses has the potential to discriminate
between TB-infected and TB-uninfected children, and
simultaneously between children with LTBI and those with
active TB. Mycobacteria-specific single-positive TNF-α+ and
double-positive IFN-γ+/TNF-α+CD4+ T-cells are the hallmark
of active TB in children. In addition, compared with children
with LTBI, children with active TB have significantly higher
proportions of IL-17 expressing mycobacteria-specific CD4+
T-cells, mainly with single-positive IL-17+ and double-positive
IL-2+/IL-17+ phenotypes. Further studies will be required to
determine whether these findings can be translated into novel
immune-based diagnostic assays that allow the distinction
between infection states in the clinical setting.
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