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Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment

of hematological and solid malignancies. However, despite the success of this field,

there remain some major challenges, including accelerated T cell exhaustion, potential

toxicities, and insertional oncogenesis. To overcome these limitations, recent advances

in CRISPR technology have enabled targetable interventions of endogenous genes in

human CAR T cells. These CRISPR genome editing approaches have unleashed the

therapeutic potential of CAR T cell therapy. Here, we summarize the potential benefits,

safety concerns, and difficulties in the generation of gene-edited CAR T cells using

CRISPR technology.
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INTRODUCTION TO CHIMERIC ANTIGEN RECEPTOR T
CELL THERAPY

Major histocompatibility complex (MHC) molecules play key roles in the surveillance of aberrant
proteins of tumor cells. T cell receptors (TCRs) on the surface of T lymphocytes recognize
antigenic peptide fragments derived from these aberrant proteins in complex withMHCs (1, 2). The
expression of MHC/peptide complexes constitutively occurs on all nucleated cells. Tumor-specific
MHC/peptide complexes are considered ideal targets for T cell-based immunotherapies. Diverse
strategies have been developed to induce T cell immunity against these tumor epitopes, including
cancer vaccination (3), adoptive T cell transfer (4), and TCR engineering (5). In cancer patients,
however, tumor cells can effectively escape adoptive immunity via regulatory mechanisms, such as
downregulation of MHCs or mutation. Because the presence of relatively fewer MHCmolecules on
the tumor cell surface limits naive TCR recognition, T cells fail to respond and trigger cascades of
immune activation (6).

Recently, the most promising development has been the use of chimeric antigen receptor
(CAR) T cell immunotherapy (7). CAR T cell immunotherapy has emerged as a leading curative
strategy in the treatment of relapsed hematological malignancies. CAR T cell therapy is based on
the immune effect of T cell activation and the principle of transformation through the genetic
engineering of T cells. A typical CAR construct comprises a binding domain (single chain antibody
fragment, scFv), a transmembrane domain and intracellular signaling domains capable of activating
T cells (Figure 1). CARs allow the T cells to be activated independently of MHC. Donor-derived
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FIGURE 1 | Main structures of chimeric antigen receptors. Three generations

of CAR structures. In the first generation of CARs, the binding domain (single

chain antibody fragment, scFv) is linked to the signaling domain (CD3ζ) via the

transmembrane domain. In the second generation of CARs, the costimulatory

molecule (CM1, such as CD28 4-1BB or OX-40) is introduced with the

signaling domain (CD3ζ). In the third generation of CARs, the additional

costimulatory molecule (CM2) is included.

T cells are modified to express multivalent CARs on the cell
surface that are responsible for recognizing the tumor-associated
antigen (TAA) of tumor cells. Thus, T cells are activated via
intracellular signal transduction. CAR designs differ not only in
their signaling domains but also in their functional properties.
The CAR structures have progressed since the first generation
was described in 1989 (8). The first generation of CARs was
designed as an scFv linked to the CD3ζ intracellular signaling
domain of the TCR through a hinge and a transmembrane
domain. Although the CD3ζ signaling domain can trigger
activation of T cells, this pattern most likely results in T
cell anergy, attenuating T cell activation. Therefore, the first
generation of CARs exhibited limited responses in clinical
trials (7). To address this limitation, a costimulatory molecule,
such as CD28, OX40, or 4-1BB, was incorporated into the
intracellular domain for the second generation of CARs. The
additional costimulatory domain in the second generation of
CARs strikingly improved T-cell proliferation and persistence.
To optimize T-cell efficacy, the third generation of CARs has
been developed by introducing two costimulatory domains into
the CAR structure. Although dual costimulatory domains can
enhance the activation and proliferation of T cells, the abundance
of cytokines remains to be considered.

The CAR T cell approach has provided great advances
in the treatment of hematological malignancies. Anti-CD19
CAR T cells have significantly advanced the therapy of human
hematological malignancies and were shown to achieve a 90%
complete response rate in acute lymphoblastic leukemia (ALL)
(9). Tisagenlecleucel, the first anti-CD19 CAR T cell therapy, was
approved by theUS Food andDrug Administration (US FDA) for
the treatment of children and adults with advanced leukemia in
2017 (10, 11). As 2017 ended, there were hundreds of ongoing

CAR T cell trials for the treatment of hematologic and solid
tumor malignancies (12).

POSSIBLE SIDE EFFECTS OF CHIMERIC
ANTIGEN RECEPTOR T CELL THERAPY

Although most patients infused with CAR T cells show mild
or moderate side effects, potentially severe side effects are
still challenging. The prominent toxicities include cytokine
release syndrome (CRS), insertional oncogenesis, and neurologic
toxicity (13, 14).

Cytokine Release Syndrome
CRS is an unintended side effect due to overactivation of the
host immune system. Severe CRS was observed in some patients
who received infusion of CAR T cells (15). An abundance of
cytokines is released by either the infused CAR T cells or other
polarized immune cells. Several clinical studies indicated that 19–
43% of patients exhibited CRS when they were treated with anti-
CD19 CAR T cells for relapsed/refractory ALL (13, 16). Clinical
features of CRS include high fever, muscle pain, malaise, unstable
hypotension, fatigue, ang capillary leakage (17). A wide variety
of cytokines can be elevated in the serum of patients. Dramatic
elevations of inflammatory cytokines, such as INF-γ, IL-2, IL-6,
and IL-10, are observed in CRS (18). Occasionally, neurologic
toxicity can be associated with anti-CD19 CAR T cell therapy,
probably due to the elevated levels of cytokines (16). The use of
the anti-IL-6 receptor antibody tocilizumab was demonstrated to
exert curative effects for serious cases of CRS in all patients with
a high proliferation of CAR T cells (19).

Insertional Oncogenesis
Continuous CAR expression in T cells relies primarily on the
delivery of the CAR gene by integrated gamma retroviral (RV)
or lentiviral (LV) vectors. The advantages of both systems are
high gene-transfer efficiency and stable expression of the CARs.
Although both RV and LV vectors have been shown to be
safe in intensive biosafety testing, this safety issue remains
a concern. LV- or RV-mediated random and uncontrollable
integration in the genome are unpredictable (20). Uncontrollable
insertions of CAR genes lead to potential oncogenesis, variegated
transgene expression, and transcriptional silencing (21). This
possibility poses an oncogenic risk for RV/LV-engineered T
cells (22). Although RV-driven oncogenesis has not yet been
reported in CAR T cell therapy, this phenomenon was observed
in clinical trials of hematopoietic stem cell transplantation
(23). Additionally, random integration into the genome causes
substantial variations in CAR expression levels in a batch of CAR
T cells because of the different copy numbers per cell.

Graft-vs.-Host Disease
With the gradual initiation of clinical trials, autologous CAR T
cells have shown some disadvantages. In infants or adults who are
receiving chemotherapy or radiotherapy, it is difficult to harvest
sufficient lymphocytes for CAR T cell manufacture. Thus, the
quality of CAR T cells for each patient is uncontrollable and
unpredictable. The use of allogeneic CAR T cells has become
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a solution for these problems. Allogeneic CAR T cells can
be expanded ex vivo on a large scale and can be reserved
to treat multiple patients (24). The concerned with allogeneic
infusion is graft-vs.-host disease (GVHD) between the donor cells
and recipients. The repertoire of TCRs and MHCs expressed
on allogeneic CAR T cells may potentially induce GVHD in
recipients who receive donor CAR T cells (25). A study showed
that allogeneic anti-CD19-CAR T cells had clinical benefits for
relapsed hematologic malignancies (26). No obvious GVHD was
observed in these recipients.

GENERATION OF POTENT CAR T CELLS
WITH CRISPR TECHNOLOGY

Efforts to enhance the efficacy of CAR T cell therapy have been
undertaken, including the selection of extracellular receptors
(27), optimization of intracellular costimulatory molecules
(28), combination with cytokines(29), and improvement of
“on-target/off-tumor” toxicity (30). Effective gene-editing
technologies have emerged as tools for cell engineering (31).
The properties of three gene-editing tools, including CRISPR,
zinc-finger nucleases (ZFNs), and transcription activator-like
effector nucleases (TALENs), are summarized in Table 1. The
use of CRISPR in genome editing is highly efficient and enables
a simple and efficient way to multiplex the processing of T cells
(32, 33). Both ZFNs and TALENs have also been adopted to
modify T cells for clinical applications (34, 35). However, the
recognition of the targetable DNA sequences with ZFNs and
TALENs in T cells remains complicated and tedious, resulting
in a low gene-editing efficiency. The simultaneous multiplexed
genetic manipulations of these techniques are challenging (36).
CRISPR/Cas9 systems have been used for the knock-out and
knock-in of sequences in mammalian genome editing (Figure 2).
In principle, a deletion or insertion at a target gene is introduced
by a small RNA (sgRNA)-guided Cas9 nuclease that induces a
double-stranded DNA break, which is subsequently repaired
by non-homologous end joining (NHEJ) (37). Nucleotide
insertions or deletions result in non-sense mutations and loss
of gene function. In comparison to NHEJ, a relatively large
gene sequence can be delivered to a precise locus in the genome
through homology directed repair (HDR) after double-stranded
DNA is cleaved by sgRNAs (38–40). The HDR process enables
precisely targeted nucleotide replacements at the defined site of
interest. Currently, several strategies based on CRISPR are being
applied to develop next-generation CAR T cells by multiplexed
genome editing (41–43). Such approaches include the knockout
of endogenous genes (such as TCRs, MHCs, or self-antigens) to
build allogeneic universal CAR T cells (41, 44, 45), the disruption
of inhibitory receptors (such as CTLA-4, PD-1, or LAG-3)
(44, 46, 47), and the integration of the CAR cassette into the
endogenous TCR α constant locus (TRAC) (48, 49) or the C-C
chemokine receptor type 5 (CCR5) locus (32) (Table 2).

Universal CAR T Cells
Although autologous CAR T cells against B cell malignancies
have shown promising results, some clinical studies

TABLE 1 | Comparison of ZFN, TALEN, and CRISPR.

Property ZFN TALEN CRISPR

Anchor site 18–36 nt 30–36 nt 23 nt

Off-target Low low High

Complication High High Low

Efficiency Relatively low Relatively low High

Multiplex Low Low High

Methylation

sensitivity

High High Low

Mechanism of

action

Zinc finger

nuclease for

DNA recognition

and cleavage

transcription

activator-like

effector nuclease

recognition and

DNA cleavage

Guide RNA for

DNA recognition

and Cas9

endonuclease

for cleavage

demonstrated that for some patients, autologous T cells
could not be manufactured due to poor lymphocyte counts
or low T cell quality and quantity (50). Especially for some
patients in infancy, sufficient peripheral blood mononuclear
cells (PBMC) cannot be harvested to support T cell manufacture
ex vivo. These limitations can be circumvented by utilizing
allogeneic T cells. Endogenous TCRs that allogeneic T cells
express can recognize the alloantigen of the recipient, resulting
in major graft-vs.-host disease (GVHD). Before these allogeneic
T cells can be widely used clinically, the issue of GVHD must be
resolved (45). Universal allogeneic CAR-T cells are ideal because
their manufacture and quality may be more easily controlled
and GVHD may be avoided. Several groups have generated
allogeneic universal anti-CD19 CAR T cells by deleting multiple
genes, such as TRAC, β2M, and MHC, using CRISPR methods
(41, 42). Meanwhile, ongoing clinical trials have shown that a
suicide gene in the CAR construct can also be used to avoid
GVHD after allogeneic CAR T cell injection (25). These results
suggest that CAR T cells that utilize multiplexed gene editing
generate CAR T cells that are as potent as non-gene-edited
T cells.

Until now, most successful CAR T cell therapies have been
applied to B cell malignances. For T cell malignances, patients
would receive allogeneic T cells rather than autologous CAR
T cells. Genomic editing of some antigens, which recognize
those “non-self ” molecules and are attacked by the host
immune system, can broaden the application of CAR T cells.
DiPersio et al. reported that fratricide-resistant “off-the-shelf ”
universal T cells generated with CRISPR gene editing were
used for treatment of T-cell malignancies (44). CD7 is a
molecule commonly expressed in T lymphocytes. To avoid self-
elimination, the CD7 target antigen against malignancies, which
is recognized by anti-CD7-CARs, is deleted on CAR T cells
(51, 52).

Resistance to PD-1 Inhibition
It is widely accepted that the existence of immune checkpoints
(such as PD-1, CTLA-4, and LAG-3) can attenuate the activation
of CAR T cells and accelerate T cell exhaustion. PD-1 is a
primary inhibitory molecule in T cell transduction (53, 54). The
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FIGURE 2 | Introduction to the CRISPR gene-editing system. Guided by sgRNAs, the CRISPR-Cas9 nuclease can target short DNA sequences. The PAM specifically

creates a sgRNA–target DNA heteroduplex and generates double-strand breaks. Then, the DNA double-strand breaks are repaired by non-homologous end-joining

(NHEJ) or homology-directed repair (HDR). In the NHEJ pathway, indels lead to nucleotide deletions or insertions. In the HDR pathway, accessory factors can facilitate

genome recombination through the two homology arms, resulting in the knock-in of a gene of interest.

PD-1/PD-L1 pathway plays an important role in the regulation
of T cell activation and differentiation (55). High expression
of PD-1 accelerates T cell tolerance and exhaustion (56–59).
Increasing evidence indicates that blocking the PD-1/PD-L1
axis could partially restore the function of exhausted T cells
(54, 60). A recent clinical study demonstrated that treatment
with anti-CD19 CAR T cells in combination with an anti-
PD-1 antibody was effective in patients with relapsed chronic
lymphocytic leukemia (CLL) (61). This anti-PD-1 antibody
treatment revives the antitumor response of anti-CD19 CAR T
cells in patients who fail to respond to CAR T cell treatment
(62). In other cases, unanticipated autoimmune responses are
associated with anti-PD-1 checkpoint inhibitors (63). Therefore,
ablation of PD-1 with gene editing by CRISPR/Cas9 is an
alternative to enhance the antitumor response of CAR T cells
in anti-CD19 CAR T cell therapy (41, 42). Ren et al. suggested
that depletion of PD-1 genes in anti-prostate stem cell antigen
(PSCA) CAR T cells with a Cas9/RNP method significantly
enhanced T cell immunity in vivo (42). A significant antitumor
response was observed after PD-1 was disrupted by genome
editing. Controversially, a study indicated that T-cells without
PD-1 were susceptible to exhaustion and lacked long-term
durability (64). In regard to other checkpoint targets, no obvious
improvement was confirmed when LAG-3 genes were deleted
in CAR-T cells using CRISPR/Cas9 (47). Nevertheless, these
studies still support the promise of checkpoint inhibition in CAR
T cell therapy.

Targeted Integration of CARs
Recently, effective homologous recombination was shown
to promote the site-specific integration of large transgenes

in the T cell genome (65). In this method, after the
DNA of the target gene is cleaved using Cas9 RNPs, a
gene of interest is subsequently delivered to the cleavage
site using adeno-associated viruses (AAVs). Site-specific
transgene integration is achieved by HDR. An anti-CD19
CAR gene has been successfully integrated into the TRAC
locus using the combined action of Cas9/RNP and AAV
donor vectors (49). Targeting the CAR gene to the TRAC
locus not only results in uniform CAR expression but
also delays effector T-cell differentiation and exhaustion.
Moreover, the insertion of a CAR transgene into a defined
location avoids the risk of insertional oncogenesis and
places CAR expression under the control of endogenous
regulatory elements.

SAFETY CONCERNS OF CRISPR
GENE-EDITED CAR-T CELL THERAPY

To date, although many limitations of conventional
CAR T cells have been addressed with CRISPR gene
editing, safety issues must be addressed before these
gene-edited cells start to move into clinic. Multiple
elements, such as off-target effects, Cas9 activity,
target site selection, and sgRNA design, and delivery
methods, can determine the efficiency and safety of the
CRISPR/Cas9 system.

The first concern of CRISPR gene editing is off-target
effects (66). These off-target effects might be beneficial to
bacteria and archaea (67). However, several recent studies have
reported unintentional CRISPR/Cas9-induced large genomic
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TABLE 2 | Summary of the CAR-T cells modified with gene editing.

CAR Gene-editing method Targeted gene Gene editing

efficiency (%)

Malignancy Reference

KNOCK-OUT

CD19

scFv/4-1BB/CD3ζ

Cas9 RNP electroporation TRAC 85 B cell acute lymphoblastic

leukemia

(41, 42)

β2M 100

PD-1 64.7

CD19

scFv/4-1BB/CD3ζ

Cas9 RNP electroporation TRAC 81.7 B cell acute lymphoblastic

leukemia

(45)

TRBC 49.3

β2M 79.9

CD7 scFv/CD28/4-

1BB//CD3ζ

Cas9 RNP electroporation CD7 89.14 T cell acute lymphoblastic

leukemia

(44, 52)

EBV-LMP2A CTL Cas9 plasmid electroporation PD-1 47.4 Epstein-Barr virus-associated

gastric cancer

(46)

CD19

scFv/4-1BB/CD3ζ

Cas9 RNP electroporation LAG-3 45–70 B cell acute lymphoblastic

leukemia

(47)

KNOCK-IN

CD19

scFv/4-1BB/CD3ζ

Cas9 RNP electroporation and

transfection with AAV6 encoding CAR

TRAC exon 1 50 B cell lymphoma (48)

CD19

scFv/CD28/CD3ζ

Cas9 RNP electroporation and

transfection with AAV encoding CAR

TRAC exon1 40 Adult B acute lymphoblastic

leukemia

(49)

deletions or gene inversions in various species, including
mouse, C. elegans, and rabbit (68–70). For human therapies,
clinical safety is particularly important. Several recent studies
have reported off-target effects of CRISPR in T-cells. Off-
target effects introduce random mutations, thus impacting
tumor-suppressor genes or activating oncogenes. Off-target
effects were also observed when the TRAC or TRBC locus of
CAR-T cells was inserted with CRISPR/Cas9 electroporation
(42). A controversial study indicated that CRISPR gene
editing could cause hundreds of unintended mutations in
the genome when whole-genome sequencing was performed
on a CRISPR–Cas9-edited mouse (68). Notably, another
study showed that CRISPR/Cas9 genome editing resulted in
a p53-mediated DNA damage response in human retinal
pigment epithelial cells (71). p53 activation may lead to
chromosomal rearrangements and other tumorigenic mutations
in cells. Although the outcome of CRISPR-induced p53
activation is unconfirmed, it seems to decrease the gene editing
efficiency. Therefore, the off-target issues must be considered
in the future development of CRISPR/Cas9-edited CAR T
cells. Off-target assays during CRISPR target selection may
be performed to manage the safety risk of clinical CAR
T trials.

Another safety concern is that unpredicted translocations
may occur between double-strand breaks when multiple
genes are edited (72). Although such events are rare in T
cells, transformation analysis should still be performed to
ensure the safety of gene-edited CAR-T therapy. In addition
to the safety risk of translocations, altered functions of
gene-edited CAR-T cells most likely would cause adverse
effects in patients. For example, CRISPR gene disruption

in CAR T cells can cause unintended innate immune
responses (73).

PERSPECTIVES OF CRISPR GENE-EDITED
CAR-T CELL THERAPY

In recent, many antitumor approaches have been developed,
including target small molecules (74, 75), antibody drugs (76–
84), immune cell therapy (85). Among them, CAR T cell therapy
aims to treat cancer through the use of the patient’s immune
system. This type of therapy has many advantages, such as low
toxicity and a long duration (86). However, CAR T cell therapy
appears to be effective only in a limited portion of patients with
hematological malignancies. CRISPR is a cutting-edge technique
that can be used to generate CAR T cells with enhanced potency
and safety. Although the clinical use of allogeneic donor CAR
cells has been recently reported, their use is highly dependent
upon either rigorous patient selection or T cell selection (25).
Potential GVHD still limits the wide application of allogeneic
CAR cells. Taking advantage of CRISPR, the risk of GVHD may
be minimized through the deletion of endogenous TCR and
MHC molecules. The additional disruption of PD-1 is believed
to optimize the antitumor activities of CAR-T cells through the
regulation of T-cell functions (32). The safety of gene-edited
CAR T cells is the primarily concern because of notorious off-
target effects. To minimize the safety risk of off-target effects,
careful selection of the target site combined with prior off-target
assays will be required during target site selection of CAR T
cells. Although skeptics question whether CRISPR gene-edited
T cell therapy is safe and ready for the clinical stage, the first
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CRISPR gene-editing trial using autologous T cells was initiated
to treat patients with melanoma, synovial sarcoma, and multiple
myeloma in 2016 (87). These potent T cells have shown merits
in preclinical studies. The long-term safety profile of gene-edited
CAR-T cells should be further examined in the clinic.
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