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FcγRs have been the focus of extensive research due to their key role linking innate

and humoral immunity and their implication in both inflammatory and infectious disease.

Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory

FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through

improved understanding of the structure of these receptors and how this affects their

function we may be able to better understand how to target FcγR specific immune

activation or inhibition, which will facilitate in the development of therapeutic monoclonal

antibodies in patients where FcγRII activity may be desirable for efficacy. This review is

focused on roles of the human FcγRII family members and their link to immunoregulation

in healthy individuals and infection, autoimmunity and cancer.
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INTRODUCTION

Fc receptors are, by definition, receptors for the Fc portion of immunoglobulins (Ig). These have
been traditionally viewed primarily as cell surface receptors for Ig and whose interaction drives
a surprisingly diverse range of responses mostly within the immune system or related to the
physiology of antibodies in immunity.

Receptors for IgM, IgA, IgG, and IgE have been defined over the last 40 years with themajority of
research focused on the receptors found on leukocytes. These receptors induce or regulate leukocyte
effector functions during the course of immune responses. It is noteworthy, and also beyond the
scope of this review, that a limited number and type of Fc receptors are also expressed on cells
outside the immune system where they affect or participate in physiology of antibody function.

In humans, the largest grouping of Fc receptors is the “leukocyte Fc receptors” expressed
primarily on effector cells. Their ectodomains bind ligand, the IgG antibody Fc region, and belong
to the Ig-superfamily. They include the high affinity IgE receptor FcεRI and the distantly related
IgA receptor FcαRI, but the largest group are the IgG receptors or the FcγRs which themselves
comprise several groups—FcγRI, the high affinity IgG receptor, the FcγRII family (FcγRIIA,
FcγRIIB, FcγRIIC), and the FcγRIII family (1, 2).

THE HUMAN FcγRII (CD32) FAMILY OF LEUKOCYTE FCR

General Comments
The human FcγRII family (also known as CD32 in the Cluster of Differentiation nomenclature)
consists of a family of primarily cell membrane receptor proteins. They are encoded by the mRNA
splice variants of three highly related genes—FCGR2A, FCGR2B, and FCGR2C, which arose by
recombination of the FCGR2A and FCGR2B genes (3).
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All members of the FcγRII family are integral membrane
glycoproteins and contain conserved extracellular domains,
exhibiting an overall 85% amino acid identity (3, 4). The high
degree of amino acid and DNA identity has posed challenges
in the analysis of receptor function using monoclonal antibody
or nucleic acid based methods. Thus, some caution should be
exercised when analyzing literature or interpreting experimental
data. The encoded products of the three genes are low-affinity
receptors that are defined practically as interacting poorly with
monomeric IgG, i.e., micromolar affinity (5, 6), but when arrayed
on the cell surface, they avidly bindmultivalent complexes of IgG,
e.g., immune complexes.

The FcγRIIA (also FcγRIIC) and FcγRIIB proteins have
opposing cellular functions. FcγRIIA proteins are activating-type
Fc receptors. In contrast, FcγRIIB is a key immune checkpoint
that modulates the action of activating-type Fc receptors and the
antigen receptor of B cells.When expressed, the FcγRIIC proteins
retain the activating function of the cytoplasmic tail of FcγRIIA
and the binding specificity of FcγRIIB ectodomains.

The focus of this review is the FcγRII family and their
actions as receptors for immunoglobulins. It should be noted that
FcγRIIA also acts as a receptor for pentraxins, a product of innate
immunity that is important in infection and inflammation and
which has been recently reviewed elsewhere (7). Since much of
the biology of the Fc receptors has been determined in the mouse,
it is noteworthy that the human and mouse FcR families differ
significantly, with FcγRIIB being the only FcγRII forms in the
mouse. Also, although the human and mouse FcγRIIB homologs
are highly conserved, there are differences in their splice variants
in the two species (see below). Importantly, cellular expression
can also vary between humans and mice.

Human FcγRII gene polymorphism, mRNA splicing, and
copy number variation (CNV) further diversifies the potential
biological consequences of IgG interactions with the FcγRII
receptor proteins. These properties and roles of each group of
FcγRII proteins are reviewed in detail in the following sections.

PROPERTIES OF FcγRIIA

Molecular Structure
The human FcγRIIA proteins were originally defined by cross-
species gene cloning (8). They are encoded by the FCGR2A gene
(Figure 1) and are comprised of eight exons; two encoding the
5‘ UTR, and leader sequence and the N-terminus of the mature
protein; one exon for each of the two Ig-like domains of the
extracellular region; one exon for the transmembrane domain;
and three exons encoding the cytoplasmic tail and 3′ UTR
(3). Three mRNA transcripts, two of which encode membrane
proteins, arise by alternative splicing of the mRNA (Figure 1).

The most extensively characterized form is the canonical 40
kDa integral membrane protein, FcγRIIA1, that contains all but
the first (C1∗) cytoplasmic sequence (3, 4, 8–10). A second,
but relatively rare, membrane form has been recently described
(11, 12). FcγRIIA3 is identical in sequence to the canonical
FcγRIIA1, with the notable exception of a 19-amino acid insert
in its cytoplasmic tail, arising from the inclusion of the C1∗ exon
which was believed previously to be a vestigial or cryptic exon (4).

This insertion is highly homologous (18/19-amino acids) to the
insertion present in the cytoplasmic tail of inhibitory FcγRIIB1
(11–13). mRNA splicing that successfully gives rise to FcγRIIA3
is associated with an FCGR2Ac.7421871A>G SNP that creates a
splice acceptor site, which greatly increases the inclusion of the
C1∗ exon (11).

An unusual mRNA has been reported that lacks the
transmembrane exon resulting in a potentially secreted 32
kDa polypeptide (14). This FcγRIIA2 form is not extensively
characterized and its physiology is uncertain. However, it
raises the possibility that naturally occurring soluble forms
may act as modulators of immune complex-induced activation
and inflammation and it is noteworthy that recombinant
soluble FcγRIIA inhibits immune complex-induced activation of
inflammatory cells in vitro and in vivo (9).

Cellular Expression
The FcγRIIA proteins are unique to primates (15, 16). FcγRIIA1
is the most widespread and abundant of all FcγR, present
on Langerhans cells, platelets and all leukocytes, with the
exception of most lymphocytes (Table 1) (1, 16, 17). FcγRIIA3
is expressed by neutrophils and monocytes (11) and FcγRIIA2
mRNA is present in platelets, megakaryocytes, and Langerhans
cells (14). The levels of FcγRIIA expression are influenced
by cytokine exposure. Interferon (IFN)-γ, interleukin (IL)-3,
IL-6, IFN-γ, C5a, prostaglandin-E (PGE), and dexamethasone
increase expression, but IL-4, tumor necrosis factor (TNF)-α,
and TNF-β reduce expression (18–21). There are also reports
of FcγRII induction on CD4 and CD8T cells upon mitogen or
TCR stimulation. Both FcγRIIA and FcγRIIB are reported to be
expressed on activated CD4T cells (22, 23).

FcγRIIA Signaling ITAM Activation vs. ITAM
Inhibition
Like other activating-type immunoreceptors, FcγRIIA and
FcγRIIC signal via the Immunoreceptor Tyrosine-based
Activation Motif (ITAM) pathway (24–26) with a major
structural difference. In the case of all other activating-type
immunoreceptors—which includes the antigen receptors as well
as the activating type FcR, e.g., FcεRI, FcγRIIIA—the ligand
binding chain and the signaling subunits are encoded in separate
polypeptides e.g., FcγRIIIA and the common FcR-γ chain dimer.
The assembly of a functional signaling complex requires their
non-covalent association (17). However, in the case of FcγRIIA
and FcγRIIC, the ITAM is present in its own IgG binding chain.
Furthermore, the FcγRIIA ITAM is unusual in that it does not
fit the canonical ITAM consensus sequence and includes three
additional aspartic residues (Table 2), although how this affects
FcγRII function remains unknown (13). ITAM signaling is
essential for FcγRIIA-dependent phagocytosis and the induction
of cytokine secretion induced by its aggregation by immune
complexes. Such high stoichiometry aggregation of receptors
results in receptor-associated src family kinase, particularly Fyn
(27), mediated phosphorylation of the two tyrosines of the ITAM
and the recruitment of Syk and the propagation of activatory
signaling pathways. In human FcγRIIA transgenic mice, Fyn
deficiency is protective in models of FcγR dependent nephritis
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FIGURE 1 | Composition of FCGR2A, FCGR2B, and FCGR2C and their splice variants. Leader (L), ectodomain (D), transmembrane (TM) cytoplasmic tail (c), and

intervening sequence (IVS). Expressed exons are illustrated in color, while spliced exons (selectively expressed) are represented in black. The location and position

number of amino acids affected by well characterized polymorphisms are shown above the exons except for the FCGR2B leader exons where the nucleotide

positions are given. See text for references.

and arthritis, indicating a pivotal pro-inflammatory role for Fyn
kinase in ITAM signaling (27).

Since the original characterization of the activating role
of ITAM pathway was described, it is now apparent that
ITAMs can under certain circumstances mediate inhibitory or
modulating function termed ITAMi (inhibitory ITAM) (28, 29).
Under conditions of low stoichiometric interaction, the receptor-
associated src family kinase Lyn phosphorylates only one of
the two tyrosine residues (mono-tyrosine phosphorylation)
within the ITAM, with two juxtaposed receptors presenting

mono-phosphylated-ITAMs to recruit the two SH2 domains
of the SH2-domain containing protein tyrosine phosphatase 1
(SHP-1). This interaction is not dissimilar to SHP1 binding
via its dual SH2 domains to inhibitory immunoreceptors with
dual ITIMs (30). Then Lyn phosphorylation of Tyr536 of SHP-
1 positively regulates SHP-1 phosphatase activity resulting in the
inhibition of cell activation (27). Animal studies suggest that the
ITAMi effect ameliorates pathological inflammatory responses
and may also be important in controlling “baseline” receptor
activation. This ITAMi effect is not unique to the unusual
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TABLE 1 | Leukocyte Expression of FcγRII forms.

Cell type FcγRIIA FcγRIIB FcγRIICa

T cells ib ib ?

B cells — +++ +

NK cells — —c +

Macrophages +++ ++ ?

Monocytes +++ + ?

Neutrophils +++ + ?

Eosinophils ++ • •

Basophils ++ +++ —

Mast cells ++ —d —

Platelets ++ — —

+++ High, ++ Moderate, + Low, or — No expression. • no data.
aExpressed only in ∼20% of humans;
bExpression induced in some T cell subpopulations;
cExpressed as a result of promoter modification related to FcγRIIC allelism.
dConflicting results.

TABLE 2 | Sequence comparison of ITAMs of activating type FcγR.

Receptor ITAM Consensusa

FcR-γ chain YTGL STRN———QET YETL

FcγRIIA and Fcγ IIC YMTL NPRAPTDDDKNI YLTL

aBold letters in FcRγ chain and FcγRIIA sequences indicate the critical Tyr and Leu

residues of the ITAM consensus motif YxxL/I (6–12) YxxL.

FcγRIIA ITAM (29) as it has been also described for FcαRI
(31, 32) and FcγRIIIA (33), both of which signal through the
common FcR-γ chain dimer which contains canonical ITAMs.

Cellular Responses
FcγRIIA aggregation by IgG cross-linking initiates a variety
of effector responses, depending on cellular expression which
is affected by the local cytokine environment, and cross-talk
between other FcR and TLR (34, 35). Internalization via both
endocytosis and phagocytosis can be mediated by FcγRIIA
in cell lines, i.e., ts20 (36, 37), COS-1 (38), U937 (39) as
well as in primary human cells i.e., neutrophils (40, 41),
monocytes (40), platelets (40, 42), and macrophages (43). FcγR
phagocytosis requires ITAM activation, which also initiates
the ubiquitin conjugation system. Conversely, endocytosis is
dependent only on ubiquitination and clathrin, not ITAM
phosphorylation (36, 37).

The internalization of antigen: antibody immune complexes
by FcγR on antigen presenting cells (especially dendritic cells) is
an important part of antigen presentation for the development
of effective immune responses. This process also increases the
efficiency of T cell activation particularly in response to low
concentrations of antigen (44). The role of human FcγR in
antigen presentation is well documented in in vitro systems
and it appears that all FcγR are important at some level (45–
47). However, more recent analyses have shown FcγRIIA is the
major receptor in the development of so-called “vaccinal effects”

of monoclonal antibody therapy in cancer. It appears that the
therapeutic antibodies targeting cancer cells can induce a long
lasting protective response beyond the acute therapeutic phase
of the therapy (48).

FcγRIIA1 activates neutrophils and other myeloid effector
cells for direct killing of IgG-opsonized target cells including
tumor cells and virus-infected cells (49). Also, FcγRIIA binding
of IgG immune complexes triggers granulocytes to release
inflammatory mediators such as prostaglandins, lysosomal
enzymes, and reactive oxygen species, as well as cytokines
including IFNγ, TNFα, IL-1, and IL-6 (50, 51). The FcγRIIA3
splice variant form is an even more potent activator of human
neutrophils than FcγRIIA1, and is responsible for some severe
adverse reactions to immunoglobulin replacement therapy (11).
The mechanistic basis of this potency relates to its longer
retention time in the cell membrane and the consequential
enhanced ITAM signaling (12). Whilst this enhanced potency
may present a risk factor for hypersensitivity to immunoglobulin
replacement therapy, it may provide some benefit for protection
against infection.

The limited number of studies of FcγRII expression of
human T cells suggest FcγRII crosslinking on TCR-stimulated
CD4T cells enhances proliferation and cytokine secretion,
suggesting an activating function of FcγRIIA (22, 23). The nature
of FcγRIIA expression on CD4T cells is not straightforward nor
completely characterized. Purified CD4T cells when stimulated
with anti-CD3/CD28 induced surface expression of FcγRII
on 10% of cells and intracellular expression in 50%. In
contrast, unstimulated cells express little FcγRII (23). Imaging of
FcγRII-expressing CD4T cells sorted from unstimulated normal
peripheral blood mononuclear cells, or those from HIV-1+

individuals shows cells displaying punctate FcγRIIA staining (23)
or discrete patches of B cell membrane. These B cell membrane
patches include FcγRIIB and CD19 markers (52), consistent with
possible trogocytosis by the activated T cell from the B cell.
Similarly, FcγRIIIA is also expressed on activated CD4T cells,
and this expression appears to be both intrinsic upon cell
activation and acquired by trogocytosis of APC membrane (53).

FcγRIIA plays an important role in the normal physiology
of platelet activation, adhesion, and aggregation following
vessel injury (54). More recent studies indicate FcγRIIA
associates with glycoprotein (GP) Ib-IX-V on platelets and
can thereby be indirectly stimulated by von Willebrand factor
(VWF) or after stimulation of G-protein-coupled receptors
(GPCRs) (54). Interestingly, FcγRIIA signaling on platelets is
regulated by proteolytic cleavage of the cytoplasmic tail, or
“de-ITAM-ising” (55).

PROPERTIES OF FcγRIIB

Molecular Structure
Initially, FcγRIIB was discovered in the mouse by protein
sequence and molecular cloning analyses (56, 57) and the human
FCGR2B gene was then isolated by cross species hybridization.
Human FCGR2B has similar structure to human FCGR2A, being
comprised of eight exons. The two major forms of FcγRIIB—
FcγRIIB1 and FcγRIIB2 (Figure 1)—arise from mRNA splicing
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which results in the inclusion or exclusion of the C1 exon
sequence in FcγRIIB1 and FcγRIIB2 isoforms, respectively (3, 4).
The inclusion of the C1 exon sequence in the FcγRIIB1 results
in tethering to the membrane of B cells, whereas its absence
from FcγRIIB2 allows rapid internalization of the receptor in
myeloid cells. Both forms contain the Immunoreceptor Tyrosine-
based Inhibitory Motif (ITIM) in their cytoplasmic tails. The
extracellular domains are 95% identical to the two domains
of FcγRIIA and almost completely identical to the FcγRIIC
(3, 8, 17). Although the focus of this review is the human
FcγRII, it should be noted that mouse FcγRIIB comprises three
splice variants FcγRIIB1, FcγRIIB1′, and FcγRIIB2, with the
predicated amino acid sequences of the latter two corresponding
to the human FcγRIIB1 and FcγRIIB2 variants. Any functional
differences between the two mouse FcγRIIB1 and FcγRIIB1′

forms are unknown (58). There are also amino acid sequence
differences between human FcγRIIB1 and mouse FcγRIIB1/1′

and the functional consequences of these are also unknown.

Cellular Expression
As indicated in “General Comments” above, the analysis of
expression of human FcγRIIB protein has been historically
difficult because of the extremely high sequence conservation of
the extracellular domains of FcγRIIB, FcγRIIA, and FcγRIIC and
lack of specific monoclonal antibody probes. The high degree of
DNA sequence conservation has also confounded analysis. Much
of the early literature has relied on either PCRs or interpretation
of data using antibodies that are cross-reactive with, or specific
for, FcγRIIA or a combination of these methods and reagents.
The relatively recent development of such FcγRIIA/C and
FcγRIIB specific antibodies (59–61) has now helped to clarify
expression patterns, but there are still differences reported
between groups using these reagents. Some caution should still be
exercised in analysis of the historic literature. Furthermore, cell
expression patterns of FcγRIIB in mouse myeloid derived cells is
substantially different to human FcγRIIB, thus additional caution
is advised in interpreting the data. Nonetheless, it is clear that
FcγRIIB (FcγRIIB1) is highly expressed by B cells, and its mRNA
has also been identified at lower levels on monocytes (Table 1)
(62). The levels of FcγRIIB expression are influenced by cytokine
exposure. Cytokines such as IL-10, IL-6, and dexamethasone
increase expression of FcγRIIB, while TNF-α, C5a and IFN-γ
inhibit expression (18–20).

FcγRIIB (FcγRIIB2) is highly expressed on basophils and at
low levels onmonocytes (63). Expression on other granulocytes is
somewhat complex and controversial. The differences in reported
expression of FcγRIIB on mast cells may reflect technological
limitations or differences in tissue origin of the cells under
investigation. Intestinal and cord blood derived mast cells
have been reported as expressing FcγRIIB on the basis of
mRNA expression (64). In one study using human leukocyte
reconstituted mice and a FcγRIIB specific polyclonal antibody,
FcγRIIB protein was detected (65). However, skin mast cells lack
FcγRIIB surface expression (66) and using a FcγRIIB specific
mAb, peripheral blood derived mast cells do not express FcγRIIB
(A. Chenoweth personal communication). Neutrophils either
lack (60) or express very low levels of FcγRIIB (59), and the

FcγRIIB-specific mAb 2B6 does not usually stain NK cells (60).
However, in that proportion (∼20%) of the population where
FcγRIIC is expressed, NK staining by FcγRIIB antibodies might
be expected as FcγRIIC EC domain is identical to FcγRIIB.
A further complication is that FcγRIIC CNV affects control
elements of the FCGR2B gene permitting FcγRIIB expression in
NK cells (67) (see FcγRIIC below).

One of the more interesting features of FcγRIIB is its presence
on non-leukocyte cells including airway smooth muscle (68) and
liver sinusoidal endothelial cells (69). Its abundance in liver, in the
mouse, accounting for three quarters of the total body expression,
appears to provide a large sink for the removal in IgG immune
complexes, which has been exploited in therapeutic monoclonal
antibodies whose Fc portions have been engineered for high
affinity binding to FcγRIIB (70, 71). This appears to be a “stand
alone” function of FcγRIIB where small immune complexes are
internalized without risk of pro-inflammatory activation.

FcγRIIB Modulation of Immunity
FcγRIIB was the first immune “checkpoint” defined (72), with
mouse studies showing a pivotal role in controlling autoreactive
germinal center B cell activation and survival in mice with
dysfunction resulting in loss of tolerance and autoimmunity (73,
74). Mice with humanized immune systems reconstituted with
stems cells homozygous for the dysfunctional FcγRIIB Thr232

allele develop autoantibodies with specificities characteristic of
lupus and human rheumatoid arthritis (75). This critical action
of its ITIM in controlling the ITAM activation pathway is
extensively reviewed elsewhere (25, 76). The ratio of activating
vs. inhibitory receptors is a key factor in determining the cellular
threshold for cell activation and resulting immune response (18,
77). An ITIM, consensus amino acid sequence YXXL (where X
represents any amino acid), is found in the cytoplasmic domains
of both FcγRIIB1 and FcγRIIB2. The co-engagement of FcγRIIB
with an activating type receptor such as FcγRIIA or the B cell
antigen receptor (25) modulates their ITAM-mediated activation
signal. FcγRIIB expression on innate effector cells modulates
cell activation mediated by activating FcγRs, including dendritic
cell maturation and antigen presentation. FcγRIIB also regulates
signaling from varied innate cell receptors including TLRs and
complement receptors, reviewed in Bournazos et al. (34) and
Espeli et al. (78).

Much of the detail in understanding of the ITIM:ITAM system
of immune cell modulation has been derived from FcγRIIB1
ITIM-mediated regulation of the B cell receptor (BCR) signaling
in mouse B cells. Conventional FcγRIIB-mediated inhibition
requires ligand-dependant co-engagement/aggregation of ITAM-
containing receptors (79, 80). The FcγRIIB ITIM modulation
targets the two major ITAM driven pathways—ITAM tyrosine
phosphorylation, and the generation of phospholipid mediators,
e.g., Phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Briefly,
src kinases such as Lyn kinase, which participate in the
phosphorylation of the ITAM of the ligand-clustered activating
receptors, also phosphorylate the FcγRIIB ITIM of the co-
aggregated inhibitory receptor. Notably, FcγRIIB1 has been
reported to be phosphorylated by Lyn and Blk, whereas FcγRIIB2
solely by Blk (81).
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The phosphorylated-ITIM of FcγRIIB recruits the inositol
phosphatases SHIP1 and SHIP2, as is extensively reviewed
in Getahun and Cambier (25). The preferential recruitment
of SHIP, over SHP1 and SHP2, to the phosphorylated
FcγRIIB cytoplasmic domain is determined by the SHIP SH2
domain’s affinity for the pITIM (82). Notably studies of SHIP
recruitment to the cytoplasmic domain of mouse FcγRIIB1
found phosphorylation of Tyr326, outside the ITIM, bound
the SH2 domain of the adaptor Grb2 which bridged and
stabilized the FcγRIIB:SHIP complex (83). Human FcγRIIB lacks
an equivalent tyrosine, and has a small adjacent deletion. It
fails to recruit Grb2 but still recruits SHIP1 that modulates
BCR-induced Ca mobilization (84). SHIP dephosphorylates
phosphatidylinositol species, with the predominant in vivo
substrate being phosphatidylinositol 3,4,5-trisphosphate and
ultimately recruits p62 Dok to form a highly active membrane
localized enzymatic complex. This inhibits the Ras activation
pathway, decreases MAP kinase activation and reduced PLCγ

function leads to less activation of PKC. SHIP-dependent ITIM
inhibition of the MAP kinase pathway, together with the anti-
apoptotic kinase Akt can thereby affect cellular proliferation and
survival (25).

The same mechanisms defined for BCR regulation are
applicable to human and mouse myeloid cells, where many
observations have been confirmed, particularly for FcγRIIB2
regulation of FcεRI (25, 76). Overall FcγRIIB1 and FcγRIIB2
signaling pathways are similar, however their principal functional
difference lies in their localization in the cell membrane.
The C1 insertion (85) of FcγRIIB1 prolongs membrane
retention, whereas FcγRIIB2 is rapidly internalized. The
equivalent C1∗ sequence in FcγRIIA3 also alters membrane
localization (see above).

An ITIM independent mechanism of B cell regulation by
FcγRIIB has been reported wherein FcγRIIB, by binding antigen
bound IgG, co-aggregates with the BCR and prevents the
membrane organization of BCR and CD19 (86, 87). In another
mode of regulation of the adaptive humoral response, FcγRIIB
has been reported to be expressed on plasma cells and binding
IgG immune complexes and trigger apoptosis (88). Studies have
also identified other mechanisms of FcgRIIB modulation of the
IgE receptor and the BCR the existence of which in human cells
has not been determined. Mouse bone marrow derived mast
cells, which differ phenotypically from human mast cells, showed
an unconventional FcγRIIB ITIM-dependent regulation of the
high affinity IgE receptor, FcεRI, where intracellular mediated co-
aggregation of FcεRI with FcγRIIB occurs independently of the
FcγRIIB ectodomain binding to antigen complexed IgG (89).

Cellular Responses
The specific effects of FcγRIIB signaling are dependent on
the context of the co-engaged activating receptors and the
cell type. In B cells, FcγRIIB1 inhibition of the BCR is a
critical immune checkpoint for regulating antibody production
(25, 90). The powerful nature of this immune checkpoint is
evident from studies in clinical, genetic, and animal models that
show that altering the balance between ITIM modulation and

ITAM activation is central to the pathogenesis and severity of
disease (91).

As humoral immune responses develop, circulating
antigen:antibody complexes simultaneously engage the antigen-
specific BCR via the antigen of the complex and FcγRIIB via
the Fc region, thereby modulating antigen receptor signaling.
In FcγRIIB1, the C1 insertion impairs endocytosis, increasing
the interaction time between FcγRIIB1, and the BCR. The
C1 insert, irrespective of its position in the cytoplasmic tail,
tethers the receptor to the cytoskeleton and so prevents the
receptor localizing to coated pits and so disrupting endocytosis
(92, 93). A di-leucine motif within the FcγRIIB ITIM sequence
is also required for endocytosis (93, 94). Thus, the C1 insert
confers cytoskeletal tethering and membrane retention which
counter other cytoplasmic tail sequences including the di-leucine
residues that would otherwise promote endocytosis.

FcγRIIB2 has also been studied in B cells in experimental
systems where it also co-engages the BCR and regulates its
function. FcγRIIB2 lacks the cytoplasmic C1 insertion and is
rapidly internalized. A rare Tyr235Asp polymorphism occurs
within the unique membrane-tethering 19-amino acid insertion
of FcγRIIB1. FcγRIIB1-Asp235 binding of mouse IgG1 was
slightly lower in comparison to the Tyr235 variant of FcγRIIB1,
as was mIgG1 anti-CD3 induced T cell mitogenesis (95, 96).
FcγRIIB1-Asp235 retained the capacity to form caps and was
effective in down-regulating increases in calcium upon cross-
linking by serum IgG (95).

This prolonged surface expression of actively signaling
FcγRIIB1 may also be important for the elimination by apoptosis
of self-reactive B cells during somatic hyper-mutation (97).
Thus, FcγRIIB1 constrains the selective antigen specificity of
the humoral immune system and directs the B cell production
toward an appropriate antibody repertoire.

FcγRIIB is upregulated after antigen stimulation via immune
complexes on follicular DCs (FDCs) (98). FDCs retain immune
complexes and recycle them periodically to their plasma
membrane, a process believed to be important in development
of B cell immune cell memory (99). The presentation of
immune complexes by activated FDCs expressing FcγRIIB
provides antigens to B cells in a highly immunogenic form
by multimerising the antigens, thus extensively crosslinking
multiple BCRs, minimizing B cell FcγRIIB ITIM-mediated
inhibition and providing co-stimulatory signals (100).

The functional response of a cell that expresses both ITAM-
bearing receptors and FcγRIIB can be altered by their expression
levels. Basophils express activatory FcεRI and FcγRIIA, as well
as FcγRIIB, which can inhibit IgE-induced responses (101, 102).
This balance can be altered by IL-3 which upregulates expression
of both FcγR, but more strongly enhances FcγRIIB2 expression
(101). Under normal physiologic conditions it is believed that
FcγRIIA co-aggregation may, by providing activated Lyn, aid
FcγRIIB inhibitory function (102).

Monocyte-derived dendritic cells (moDCs) that were treated
with IFNγ to upregulate their activating FcγRs (FcγRI and
FcγRIIA) had increased IgG-mediated cellular maturation, while
moDCs treated with anti-inflammatory concentrations of soluble
monomeric IgG (IVIg) to increase FcγRIIB expression had
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decreased cellular maturation (18). Similarly, monocytes with
increased expression of activating FcγRs over FcγRIIB as
induced by IFNγ or TNFα had enhanced IgG-triggered cytokine
production, while monocytes with enhanced FcγRIIB expression
by IL-4 and IL-10 prevented IgG-triggered cytokine production
(103). Furthermore, FcγRIIB−/− mouse macrophages developed
robust inflammatory responses after exposure to subthreshold
concentrations of immune complexes that failed to induce
responses in FcγRIIB-expressing cells, demonstrating a role of
FcγRIIB in setting a “threshold” for cellular activation (104).

PROPERTIES OF FcγRIIC

Molecular Structure
The expression of the membrane FCGR2C is complex. It is
subject to a polymorphism (Gln13STOP) wherein ∼80% of the
population do not express functional FcγRIIC proteins and
also CNV, which in turn impacts expression of the FCGR2B
gene as described above (67, 105). The FCGR2C gene arose by
recombination between FCGR2B and FCGR2A. The functional
transmembrane FcγRIIC protein encoded by this gene is
an activating receptor wherein the extracellular domains are
derived from and are identical to FcγRIIB (exons 1–4), but
the transmembrane and cytoplasmic tail are derived from the
activating type ITAM-containing FcγRIIA (exons 5–8).

Multiple mRNA splice variants of FcγRIIC have been
identified (Figure 1), though their physiology is unclear.
Interestingly, some FcγRIIC-Gln13 individuals still lack FcγRIIC
expression due to alternative splicing that gives rise to multiple
non-functional forms (67). Additionally, the FCGR2C locus
shows CNV, which may contribute to variation in gene
expression, at the transcript and/or protein level, also impacting
other FcγRII expression and function (67, 106).

Expression and Cellular Responses
In individuals expressing the activatory FcγRIIC, it has beenmost
extensively studied on NK cells (Table 1). NK cells expressing
FcγRIIC had increased levels of ADCC upon receptor cross-
linking, causingmediator release and lysis of target cells (67, 105–
108). Although not extensively studied, it appears that FcγRIIC is
also expressed on CD19+ B Cells. Its co-ligation with the BCR
caused enhanced BCR signaling and B cell function, relative to
FcγRIIB ITIM-dependent negative regulation in the absence of
FcγRIIC. This FcγRIIC expression on B cells is associated with
systemic lupus erythematosus (SLE) in humans, possibly related
to the altered or unbalanced ITAM/ITIM signaling (108).

Interestingly, multiple other SNPs, 114945036, rs138747765,
and rs78603008, have been significantly associated with FcγRIIA
or FcγRIIC mRNA expression in B cells in European populations
(109). However, protein expression data is not yet available.

STRUCTURAL BASIS OF FcγRII
INTERACTION WITH IgG

Human FcγRs have distinct binding specificities and affinities for
the four IgG subclasses (2). The determination of affinity and
IgG subclass specificity has relied on a wide range of methods

TABLE 3 | Relative binding of human IgG by FcγR expressed on the cell surface.

Human FcγR Human IgG Subclass

IgG1 IgG2 IgG3 IgG4

FcγRIIA His131 +++ ++ ++++ –

FcγRIIA Arg131 ++ ± ++++ ±

FcγRIIB + – +++ +

FcγRIIC + – +++ +

mostly based on the binding of immune complexes to cell-
expressed FcγR. More sensitive methods have used recombinant
ectodomains and monomeric IgG using highly sensitive cell free
systems such as SPR (5, 6, 110). A survey of the literature on
the measurement of specificity and affinity of these receptors
shows some variation in the methods used and the values
calculated. Even the application of more sophisticated methods
such as SPR show some degree of variation from group to
group. Notwithstanding the variations and limitation in analyses
of the interactions, it is clear that the FcγRII family (FcγRIIA,
FcγRIIB, and FcγRIIC), are sensors of immune complexes and as
such, interact poorly with uncomplexed monomeric IgG (1µM
affinity) but avidly bind immune complexes (5, 6, 15, 110).

There is general agreement that all FcγRII, indeed all FcγR,
bind human IgG1 and IgG3 but there are significant differences
in the interaction with IgG2 and IgG4 (Table 3). The allelic
His131 form of human FcγRIIA is the only receptor which avidly
binds human IgG2 complexes, while FcγRIIA-Arg131 binds IgG2
poorly (Table 3). However, it is possible that under circumstances
of high local concentrations of opsonizing antibodies that
binding interactions occur with FcγRIIA-Arg131 though whether
there is a functional outcome is unknown (6, 111).

In contrast, FcγRIIB binds IgG4 but not IgG2 and moreover,
binds IgG1 and IgG3 an approximately 10-fold lower affinity
than the activating FcγRIIA. This is consistent with its powerful
physiological inhibitory function as IgG binding affinities equal
to or higher than the activating receptors might otherwise
prevent pro-inflammatory responses that are necessary in
resisting infection. Not surprisingly, FcγRIIC has the same IgG
binding properties at FcγRIIB (6).

Other factors that affect interactions between IgG and the
FcγRII are the size of the IgG immune complex (112), the
distribution of epitopes (111, 113), the geometry of the Fc in
the complex, and receptor localization in membrane domains
(114) which may also influence the avidity of immune complex
binding. The state of the cell expressing the receptor (115)
can also influence interaction with IgG. FcγRIIA function
may be modified by “inside-out signaling” whereby external
stimuli such as granulocyte-macrophage colony-stimulating
factor (GM-CSF), IL-5, and IL-3 in eosinophils (116) and
N-formylmethionyl-leucyl-phenylalanine (fLMP) in neutrophils
increase receptor avidity (117). The mechanism for this FcγRIIA
“activation” is unknown but could involve receptor dimer
forms (5, 115, 117, 118). This inside-out signaling has also
been identified for the high affinity IgG receptor, FcγRI,
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FIGURE 2 | The interaction of IgG-Fc with FcγRIIA and FcγRIIB is similar. The

perspectives shown are of two ectodomains of the (A) FcγRIIA [adapted from

3RY6 (61)] and (B) FcγRIIB [adapted from 3WJJ (123)] (shown in dark blue) in

complex with IgG-Fc (shown in gray). The structural components of the

receptor contributing to IgG binding are the two tryptophan residues that form

the Trp sandwich (red), the BC loop (green), the C′E strand (yellow), and the

FG loop (purple), with the “high/low resonder” polymorphic residue His131Arg

highlighted (orange).

where it is associated with cytoskeletal-dependent clustering of
receptors (119).

X-ray crystallographic structural data is available for all FcγR
but only in complex with the native or mutated IgG1 (61, 120–
122). It is clear that the interaction of FcγRIIA and FcγRIIB
with IgG1 is asymmetric. The “bent” FcγR extracellular region
of one FcγR molecule inserting between, and making contacts
with, both IgG1 H-chain Fcs, as is also the case with other FcγR
(Figure 2) (2, 124). The key conclusion from these studies is that
the principal contact regions of the FcγRIIA and FcγRIIB are
similar and occur predominantly within the second domain BC
loop, C strand, C′E loop, and the FG loop, with a contribution
of the interdomain linker. The BC loop and the interdomain
linker provide the two critical tryptophan residues, conserved in
all FcγR, that sandwich the Pro331 of the IgG1 CH2 FG loop.

The lower hinge of IgG has a dominant role in determining
the specificity of FcγR interactions. In the case of IgG1,
the lower hinge residues, Pro233Leu234Leu235Gly236Gly237,
of both H-chains form extensive contacts with FcγRIIA
(61). Interestingly, this region is quite different in IgG2
(Pro,Val,Ala,Gly) and suggests that the IgG2 interaction with
FcγRIIA may be quite distinct at the atomic level but as yet

no structure of IgG2 in complex with FcγRIIA is known.
Nonetheless, the IgG1:FcγRIIA complex structure suggests that
the preferential IgG2 binding by FcγRIIA-H131 over FcγRIIA-
R131–the “high/low responder” polymorphism (125)—may be
explained structurally by the smaller histidine side chain more
readily accommodating interaction with the Fc adjacent to the
lower hinge compared to the longer arginine side chain (61).

The structural basis for the effect of the rare Gln127Lys
polymorphism that also affects IgG2 binding is interesting (126).
The Lys127 does not appear to make contact with the IgG1 Fc and
sits adjacent to the binding region, so that the effect on Fc binding
is presumably indirect. This indicates a possible selective pressure
for IgG2 binding by this receptor (126).

ROLES OF FcγRII IN HEALTH AND
DISEASE

The balance between activation and inhibitory signaling is
important in the control of healthy antibody dependant
responses and disturbance to this balance can have adverse, but
in some cases positive, consequences to health.

Genetic polymorphism studies of human FCGR2 genes
have helped to establish roles of FcγRII proteins in several
autoimmune diseases and in resistance or susceptibility to
infectious diseases (Table 4). In vivo mechanistic studies in
experimental animal models, including transgenic and gene
replacement systems, have also been helpful in establishing
specific protective or deleterious roles of FcγRII in infectious
disease, inflammation, autoimmunity, and cancer and have been
reviewed extensively elsewhere (139–143).

Infection
The in vivo roles of the FcγRII receptor family in humans
have been derived by extrapolation of animal studies and by
genetic studies of human populations. The FcγRIIA high/low-
responder polymorphism influences susceptibility to infections,
as FcγRIIA-Arg131 has poor IgG2 binding (144, 145). Individuals
expressing FcγRIIA-His131 are more resistant to infection by
Streptococcus pneumonia, Haemophilus influenza, and Neisseria
meningitides. This is potentially due tomore avid binding of IgG2
by FcγRIIA-His131 over FcγRIIA-Arg131, consequently resulting
in more efficient effector responses such as uptake by phagocytes,
induction of degranulation and elastase release by granulocytes
in vivo (144, 146, 147).

FcγRs do not function in isolation under physiological
conditions in vivo and it is notable that co-operation between
Toll-like receptors (TLRs) and FcγRs is an important feature of
effective pathogen elimination (148). TLRs are often co-expressed
with FcγRIIA and co-engagement results in enhanced functional
responses of these individual receptors, e.g., enhanced TNFα,
IL-23, and IL-1β release by DCs (35, 149, 150).

The role of FcγR in HIV is complex and apparently conflicting
data may reflect different aspects of HIV infection and clinical
outcomes. In a small study of immunocompetent patients who
had undergone successful and early antiretroviral treatment,
who expressed FcγRIIA-His131, and had a IgG2 response
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TABLE 4 | Function or clinical association of polymorphic residues of FcγRII.

Receptor Polymorphism Function/clinical association Reference

FcγRIIA Gln27Trp

(rs9427397, rs9427398)

Impaired calcium mobilization and MAP kinase phosphorylation; associated with CVID (127)

Gln127Lys Gln127 interferes with the interaction of adjacent receptor residues with IgG2 (126)

His131Arg

(rs1801274)

His131 able to bind IgG2; both forms associated with autoimmune disease; allograft

rejection and mAb cancer treatment outcomes

(128, 129)

c.7421871A>G Permits alternative splicing of the C1* exon resulting in expression of “hyperactive”

FcγRIIA3. Risk factor for IVIg anaphylaxis.

(11, 12)

Hypomethylation Increased susceptibility genes for Kawasaki disease and IVIg resistance (130)

FcγRIIB Promoter haplotype

(rs3219018, rs34701572)

Deregulated FcγRIIB expression may contribute to pathogenesis (59, 131)

Ile232Thr

(rs1050501)

Thr232 allele does not partition to lipid rafts and is associated with impaired regulation of

ITAM signaling, predisposing to SLE but protective for malaria

(132–137)

Tyr235Asp Asp235 has reduced binding, internalization and signaling (95, 96)

FcγRIIC Gln13stop Commonly referred to as the ORF/Stop polymorphism, determines functional expression

of receptor, may contribute to autoimmune disease

(105, 106)

Gln57stop

(rs1801274)

Unknown mechanism, associated with autoimmune disease and vaccine efficacy for HIV (106, 138)

to a gp120 vaccine regime, there was a partial control of
viral replication during interruption of anti-retroviral therapy
(151). However, analysis of the Vax004 gp120 vaccine trial
found no evidence of association of FcγRIIA polymorphism
with protection against HIV infection, although this was an
unsuccessful vaccine trial overall (152). HIV studies have
emphasized the protective role of NK cell FcγRIIIA in antibody
dependent cellular cytotoxicity. However, recent studies have
found a potent role for FcγRIIA in the protective functions of
macrophages and neutrophils, which are abundant effectors at
the mucosal sites of HIV acquisition (153). HIV co-infections
generate an even more complex clinical picture. FcγRIIA-His131

homozygous individuals are more susceptible to developing
AIDs-related pneumonia, and have an increased risk of placental
malaria in HIV-infected women (154) and other perinatal
infections (155, 156).

While few resting CD4T cells express FcγRIIA, these cells
are highly relevant to HIV research. Resting CD4T cells latently
infected with HIV are an important target in strategies to
eliminate HIV in anti-retroviral therapy (ART) patients, as
these quiescent cells provide safe harbor for “silent” virus that,
upon reactivation, causes viral recrudescence within weeks of
treatment interruption. FcγRIIA was reported as a surface
marker of this key quiescent population in ART patients (157)
but other studies found no enrichment of HIV proviral DNA
by sorting CD4T cells based on FcγRIIA expression (52, 158).
Rather than on resting CD4T cells, FcγRII expression was
mostly on activated CD4 cells associated with transcriptionally
active virus (159). Furthermore, another study sorted a CD4+

population that apparently expressed FcγRIIB, not FcγRIIA.
However, these FcγRIIB+ cells derived from contaminating
B cells, occurring as T-B cell doublets, and also from single
CD4T cells, with a punctate staining pattern that included other
B cell markers, and was suggestive of trogocytosis rather than
intrinsic CD4T cell expression (52). These studies indicate some

of the technical challenges that can accompany determining
FcγR expression.

Though the numbers are small there is suggestive evidence
that polymorphism in the FCGR2C locus, in particular FCGR2C-
126 C>T SNP was associated with a protective anti-HIV
vaccination response. In the RV144 vaccine trial, individuals
homozygous for FCGR2C-126C/C had an estimated vaccine
efficacy of 15% whereas individuals homozygous for the
FCGR2C-126T/T or heterozygous−126 C/T had an estimated
vaccine efficacy of 91% (138). Whether this association relates to
effector function via a functional FcγRIIC protein or is due to
linkage to another effector system encoded in this chromosomal
region is uncertain (109).

FcγRs also have an established role in antibody-dependent
enhancement (ADE) of dengue virus (DENV) infection.
Immune complexes of DENV opsonized with non- or sub-
neutralizing levels of antibodies interact with FcγRs on
monocytes, macrophages, and dendritic cells, led to increased
uptake, viral replication, and more severe infection (160). In
keeping with its modulating role, FcγRIIB inhibits ADE in
experimental systems (161). Indeed, while FcγRIIA facilitates
DENV entry, mutation of the ITAM to an ITIM significantly
inhibited ADE, and conversely, replacing the inhibitory motif in
FcγRIIB with an ITAM, conferred ADE capacity (162).

The hypo-functional FcγRIIB-Thr232 variant is enriched in
populations from malaria endemic areas. This suggests that
reduced FcγRIIB modulation of responses and a consequential
enhancement of B cell and inflammatory cell activation
confers a survival advantage in these populations (132, 163).
Indeed, enhanced activatory FcR responses including increased
phagocytic capacity and TNF production by innate cells and
enhanced B cell responses is evident by elevated malaria specific
antibody titers (164).

Interestingly, the FcγRIIB-Thr232 polymorphism has been
shown to confer increased phagocytosis of antibody opsonized
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bacteria by monocyte-derived macrophages (132). Models
suggest FcγRIIB is integral for the balance between efficient
pathogen clearance and the prevention of the cytokine-mediated
effects of sepsis (163). In geographic areas where there is less
infectious disease pressure, FcγRIIB-Thr232 is associated with
susceptibility to autoimmunity.

FcγR in Autoimmunity
Imbalance between inhibitory and activatory FcγR functions
predisposes individuals to pro-inflammatory autoimmune
disease. FcγRIIA activation induces the production of pro-
inflammatory cytokines, including IFN and TNFα, which
are active in the promotion of inflammation, systemic lupus
erythematosus (SLE), Kawasaki disease (KD), Grave’s disease,
and Rheumatoid Arthritis (RA) (35, 165–167).

The FcγRIIA-His131 allelic form is associated with other
autoimmune diseases, including Guillain-Barré syndrome,
ulcerative colitis and KD, possibly due to increased inflammatory
cell activation via IgG2 (168–170).The FcγRIIA-Arg131 allelic
form is associated with susceptibility to SLE, angina pectoris,
acute coronary syndrome (ACS), myasthenia gravis, and RA
(171–174). This may be related to the impaired ability of
FcγRIIA-Arg131 to process and recycle IgG2, causing the release
of pro-inflammatory cytokines, aggravating disease (175, 176).

Other FcγRIIA polymorphisms, although less well
characterized, are associated with inflammatory diseases.
Recently a glutamine/tryptophan polymorphism at position 27
(Gln27Trp) has been identified, where homozygous individuals
were over represented in CVID (127). No difference in expression
was observed and FcγRIIA-Trp27 had modest impairment of
calcium mobilization and MAP kinase phosphorylation
in vitro (127).

Epigenetic modifications of FCGR2A such as
hypomethylation have also been described in CVID patients,
particularly at the promoter CpG site cg24422489 (130, 169). This
increased susceptibility for KD and resistance to Ig replacement
therapy, with significant hypomethylation of FcγRIIA in patients
with acute KD and coronary artery lesions (130, 169, 177).

The recently described rare intronic A>G SNP that controls
expression of the splice variant FcγRIIA3 occurs in <1% of
healthy subjects (11, 12). However, it is associated with KD,
immune thrombocytopenia (ITP), and CVID (11). Furthermore,
severe adverse reactions in response to immunoglobulin
replacement therapy occurred in patients expressing FcγRIIA3
and neutrophil activation (mediator and elastase release) was
enhanced. Increased signaling by FcγRIIA3 was due to its altered
membrane localization and longer membrane retention time (11,
12). Thus, increased inflammatory responses toward therapeutic
IgGmay paradoxically diminish the utility of themajor treatment
regime in this subset of CVID patients.

Polymorphism and CNV of activatory FcγRIIC is associated
with increased severity of RA and ITP (106, 178). This has been
attributed to expression variance in these individuals causing an
imbalance between activatory and inhibitory signals.

Since the inhibitory FcγRIIB forms modulate the activation
of B cells and innate effector cells, decreased expression of the
FcγRIIB leads to dysregulated antibody function and increased

antibody-dependant inflammatory cell responses and thus
increased susceptibility to autoimmune diseases. Polymorphisms
in the FCGR2B promoter or transmembrane domain of FcγRIIB
influence receptor expression and signaling potency and are
associated with susceptibility to autoimmune diseases including
SLE, Goodpasture’s disease, ITP, and RA (133–135, 156, 179, 180).
Multiple polymorphisms in the promoter region of FCGR2B have
been identified. The promoter haplotype FCGR2B−386G>C
SNP in combination with FCGR2B-120T>A SNP (FCGR2B-
386C +−120A) enhances promoter activity and transcription,
however this enhanced haplotype has low prevalence (59, 131).
FCGR2B-343G>C SNP is enriched in European American SLE
patients and homozygous expression of FCGR2B-343C is linked
to SLE susceptibility (131, 179). This is due to decreased AP1
transcription complex binding, which causes decreased FcγRIIB
expression on B cells and macrophages and altered antigen
clearance (179).

The frequency of the transmembrane polymorphism
FcγRIIB-Thr232Ile differs among different ethnic populations,
with FcγRIIB-Thr232 associated with SLE in Asian but not
African American or European populations (134). FcγRIIB-
Thr232 shows reduced lateral mobility in the membrane
which impairs its ability to inhibit the co-localization of BCR
and CD19 microclusters and consequent B cell activation
(181). This causes increased B cell and myeloid cell activation
(133, 136, 137), which elevates B cell (antibody) responses and
heightens IgG-dependant pro-inflammatory responses, resulting
in autoimmunity.

Cancer
The roles of FcγR in cancer relate largely to the harnessing
of antibody-dependant effector functions such as ADCC or
ADCP by therapeutic mAbs during the treatment [reviewed in
(2, 139)]. However, it also appears that mAb therapy may also
have long term therapeutic benefits. Studies on DCs indicate
that FcγRIIA activation is necessary and sufficient to induce a
strong T cell anti-tumor cellular immunity inducing long term
anti-tumor vaccine-like or “vaccinal effects” in humanized mice
(48). Engagement of FcγRIIA induced DC maturation and up-
regulation of costimulatory molecules, priming them for optimal
antigen presentation and cross-presentation, thus stimulating
long-term anti-tumor T cell memory (48).

Conversely, the inhibitory role of FcγRIIB may be
disadvantageous to antibody-based therapies and other immune
stimulating therapies. Thus, blocking inhibitory function of
FcγRIIB on effector cells or antigen presenting cells such as DCs
might be a strategy to enhance anti-tumor immune responses
during immunotherapy (18, 182, 183).

HARNESSING OR TARGETING FcγRII FOR
ANTIBODY BASED THERAPIES

Monoclonal antibodies are a versatile class of biotherapeutic
drugs because of the multifunctional nature of the antibody
molecule. IgG-based therapeutic mAbs are effective for the
treatment of a variety of diseases due to their high specificity
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and affinity for their target antigen and, in some cases, their
strong induction of FcγR effector functions. Depending on
the nature of the disease and molecule, the mAb efficacy
may depend on one or more mechanisms of action, ranging
from simple antigen neutralization, complement-dependent
cytotoxicity, FcγR-dependant cellular effector functions, or
inhibition via FcγRIIB. Thus, effective patient responses can
be dependent on FcγR based mechanisms, e.g., altered binding
due to the FcγRIIA-His131Arg polymorphism, which influence
the efficacy of therapeutic mAbs such as rituximab and
cetuximab (184, 185).

The efficacy of the anti-EGFR mAb, cetuximab, and
subsequent progression free survival was associated with
expression of the His131 variant of FcγRIIA (185). Patients with
the FcγRIIA-His131 genotype also responded better to rituximab
treatment in non-Hodgkin’s lymphoma (184). Conversely,
FcγRIIB expression on lymphoma cells is a risk factor for anti-
CD20 rituximab therapy failure due to FcγRIIB internalizing the
CD20:rituximab complex and thereby reducing exposure of the
opsonized lymphoma cell to the immune effector systems (186).

Inhibition of activatory FcγR could block early development
of inflammatory disease. This has been explored experimentally
in humanized mouse models of RA, using antibody fragments
(or small molecules) designed to bind human FcγRIIA to inhibit
disease (29, 187). Synthetic FcR mimetics have also been used to
block the function of FcγRIIA in vitro (188) and the modulation
of FcγRIIA and FcγRIIB function in humans (189).

FcγRIIB is a powerful modulator of ITAM-dependent
receptors such as the BCR or high affinity FcεRI. Strategies to
harness this powerful inhibitory capacity are being developed
by engineering mAb Fc regions with enhanced and/or selective
engagement with FcγRIIB. Such strategies rely on the co-
engagement of FcγRIIB with the mAb-targeted activating
receptor. This engineering of therapeutic mAbs with increased
affinity to FcγRIIB has diverse clinical applications. Indeed, anti-
CD19 binds the BCR complex and the engineered Fc co-engages
FcγRIIB with increased affinity, suppressing B cell activation
without B cell depletion (190, 191). This novel approach to
treat autoimmune disease demonstrates the importance of
understanding FcγR biology and interactions with IgG in order
to optimally exploit antibody functions for specific therapies.

Another example is the anti-IgE, omalizumab, an effective
treatment for allergic asthma by neutralizing IgE binding to
FcεRI. Mutations introduced in XmAb7195, an omalizumab
“equivalent” antibody, enhanced affinity for FcγRIIB. Like
omalizumab, XmAb7195 binds to and neutralizes circulating IgE
(71). However, its enhanced Fc interaction with FcγRIIB may
also promote co-aggregation of FcγRIIB with the BCR of IgE+
B cells, and may suppress activation of the BCR, diminishing
allergic antibody production. In addition, data from mouse
studies suggest that the XmAb7195:IgE complexes are rapidly

removed from the circulation via FcγRIIB expressed in the liver
endothelium (71).

FcγR Targeted Therapies
In some autoimmune diseases, auto-antibodies activate
inflammatory cell effector functions against self-antigens leading
to tissue destruction. One strategy used to ameliorate this
destructive pathogenesis is the use of soluble FcγRs, which
compete for auto-antibody binding with cell-based FcγRs
thereby preventing induction of the cell-based effector functions
(1, 9). Pre-clinical studies have demonstrated that the use of these
soluble FcγRs suppresses the Arthus reaction, collagen-induced
arthritis, and SLE (192, 193). A soluble recombinant form
of FcγRIIB, named SM101, is a potential treatment for the
treatment of ITP and SLE and has progressed into clinical trials
(194, 195).

Small chemical entities (SCEs) specific for FcγRIIA have also
been reported to inhibit immune complex-induced responses
including platelet activation and aggregation, and TNF secretion
by macrophages in vitro (187). Furthermore, in vivo testing
of these SCEs in FcγRIIA transgenic mice also inhibited
the development and stopped the progression of collagen-
induced arthritis (CIA) (187). Hence, these SCE FcγRIIA
antagonists demonstrated their potential as anti-inflammatory
agents for pro-inflammatory immune complex-dependent
autoimmune diseases.

CONCLUSIONS

FcγRII receptors and their variants play important roles in
the healthy immune response to infection, as well as in the
pathologies of autoimmunity and the efficacy of therapeutic mAb
treatments in cancer. Our expanding knowledge of these widely
expressed FcγR and their signaling pathways may provide insight
as to how we can exploit this intricate immunomodulatory
system for therapeutic and diagnostic purposes. Harnessing FcR-
dependent cellular effector systems through therapeutic mAbs, or
by blocking effector functions, is becoming an increasingly useful
tool to treat an extensive range of diseases.
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