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Inflammation is a central feature and is implicated as a causal factor in preeclampsia

and other hypertensive disorders of pregnancy. Inflammatory mediators and leukocytes,

which are elevated in peripheral blood and gestational tissues, contribute to the

uterine vascular anomalies and compromised placental function that characterize

particularly the severe, early onset form of disease. Regulatory T (Treg) cells are

central mediators of pregnancy tolerance and direct other immune cells to counteract

inflammation and promote robust placentation. Treg cells are commonly perturbed

in preeclampsia, and there is evidence Treg cell insufficiency predates onset of

symptoms. A causal role is implied by mouse studies showing sufficient numbers

of functionally competent Treg cells must be present in the uterus from conception,

to support maternal vascular adaptation and prevent later placental inflammatory

pathology. Treg cells may therefore provide a tractable target for both preventative

strategies and treatment interventions in preeclampsia. Steps to boost Treg cell

activity require investigation and could be incorporated into pregnancy planning and

preconception care. Pharmacological interventions developed to target Treg cells in

autoimmune conditions warrant consideration for evaluation, utilizing rigorous clinical trial

methodology, and ensuring safety is paramount. Emerging cell therapy tools involving in

vitro Treg cell generation and/or expansion may in time become relevant. The success

of preventative and therapeutic approaches will depend on resolving several challenges

including developing informative diagnostic tests for Treg cell activity applicable before

conception or during early pregnancy, selection of relevant patient subgroups, and

identification of appropriate windows of gestation for intervention.

Keywords: pregnancy, preeclampsia, placenta, embryo implantation, maternal vascular adaptation, inflammation,

Treg cells, immune tolerance

INTRODUCTION

Preeclampsia and related hypertensive disorders complicate 3–5% of pregnancies. They are
a leading cause of maternal deaths and perinatal morbidity and mortality (1) and are
enormously expensive to health care systems, with an estimated cost in the US of $2.18
billion for the first 12 months of life alone (2). Preterm birth and fetal intrauterine
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growth restriction (IUGR) are common sequalae, causing
developmental challenges for the neonate that adversely impact
cardiovascular, metabolic, and neurodevelopmental health (3).
Preeclampsia also has long-term consequences for maternal
cardiovascular health (4). Despite extensive research, the
pathophysiological origins of preeclampsia remain unclear and
effective preventative interventions are lacking. Current clinical
management is aimed at alleviating symptoms and delaying
delivery, rather than preventing occurrence by modifying the
underlying cause (5, 6).

An emerging view is that critical initiating events before
pregnancy and in the conception and implantation phase
determine preeclampsia susceptibility, eliciting changes in
placental development much earlier in gestation than when
symptoms appear (7–9). This is particularly the case for the
severe, early onset form of preeclampsia where failed maternal
vascular adaptation to pregnancy is implicated—but also likely
contributes to later onset disease (10, 11). There is strong
evidence that failure of the maternal immune response to
adapt correctly in early pregnancy underpins the placental
and cardiovascular anomalies that become evident in later
gestation. Disturbance in the immune response appears to
be central and causal of later placental and hypertensive
symptoms (8, 12, 13).

The adaptive immune response, with its typical features
of immunological priming and memory, appears integral to
the pathophysiological origin of the condition. Preeclampsia is
more common in first pregnancies, particularly after limited
sexual contact with the conceiving partner due to short
sexual cohabitation, use of barrier contraceptive methods or
assisted reproduction (14–16). Prior pregnancy with the same
partner offers protection, but this is partner-specific and is
lost with a new partner, implying alloantigen specificity (17).
Assisted reproduction with donor oocytes, where there is
no prior contact with the donor’s alloantigens, is associated
with a 4.3-fold increase in preeclampsia compared to natural
conception (18). The risk is also increased with donor
sperm but this is reduced with multiple exposures to the
same donor (19). Pregnancy-induced memory in T cells
(20) and in uterine NK cells (21) likely contributes to the
protective benefit of prior pregnancy, and mechanisms by
which seminal fluid may also induce memory are emerging
(22). Recognizing this protective role for the adaptive immune
response offers scope for new approaches to tackle this
prevalent condition.

All women show evidence of altered immunity and
elevated inflammatory activation in pregnancy. Immune
adaptation for pregnancy commences during the pre-
implantation phase when conception and implantation
evoke a controlled inflammatory response in the female
reproductive tract, which must be rapidly resolved by
specific cytokines and pro-tolerogenic mechanisms into
an anti-inflammatory milieu, in order for pregnancy to
progress (23). In preeclampsia there are excessive pro-
inflammatory mediators and inappropriate activation of
effector immune cells, detectable in peripheral blood and
gestational tissues from the first trimester (24, 25), implying

incomplete or insufficient establishment of anti-inflammatory
mechanisms (Figure 1).

In healthy pregnancy, inflammation associated with
conception and implantation is rapidly resolved, and
then remains suppressed by anti-inflammatory protective
mechanisms, amongst which the specialized subset of CD4+

T lymphocytes called regulatory T cells (Treg cells), are
pivotal (26–28). Through their critical roles in constraining
inflammation, suppressing effector immunity, and modulating
vascular function, Treg cells are emerging along with uNK cells
and macrophages as key coordinators of implantation and early
placental development (23, 29–31).

In preeclampsia, Tregs in the maternal peripheral blood and
decidua are fewer in number (26, 28, 32) and their suppressive
function is impaired (33, 34), while pro-inflammatory Th17
cells (27), CD8+ effector T cells and trophoblast apoptosis
(28) are increased. The underlying reasons are unclear, but
number and functional capacity of Treg cells are known
to vary between individuals and are influenced by agents
and exposures identified as pre-pregnancy antecedents
of preeclampsia and other adverse pregnancy outcomes.
Risk factors for impaired Treg activity include elevated
inflammatory load associated with obesity and metabolic
dysfunction (35), autoimmune conditions and systemic
inflammatory exposures (36, 37), nutritional deficiencies
(38, 39), and age (40). Their abundance and phenotype in
the uterus are furthermore regulated by relevant clinical
factors including prior pregnancy, disparity between male and
female partner alloantigens, and seminal fluid contact (23).
Other obstetric disorders including fetal growth restriction,
gestational diabetes, and spontaneous preterm birth also have
an inflammatory etiology, but amongst these conditions, the
causal link between Treg cell dysregulation and preeclampsia is
most clear.

In this review, we make the case that interventions to
boost the number, functional competence and stability of Treg
cells may offer realistic preventative and therapeutic strategies
to protect against preeclampsia in at-risk women. Several
pharmacological agents and cell therapy approaches to target
Treg cells are in clinical trials or under development for auto-
immune disorders and organ transplantation (37, 41, 42). We
argue that as Treg therapies move closer to reality in other
clinical settings, these interventions warrant evaluation for their
potential utility in preeclampsia and related obstetric disorders
with an immune etiology.

TREG CELLS—ESSENTIAL FOR
MATERNAL ADAPTATION TO PREGNANCY

Several mechanisms of active immune tolerance arise in early
pregnancy to dampen inflammation and suppress allo-reactive
immune responses that otherwise threaten conceptus survival.
These include attenuated expression of polymorphic MHC
molecules on placental tissues, trophoblast production of anti-
inflammatory and pro-tolerogenic cytokines and hormones, and
epigenetic modulation of decidual cell chemokine expression to
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FIGURE 1 | A robust immune response is essential for healthy pregnancy. Regulatory T cells (Treg cells) are a critical and rate-limiting element of the anti-inflammatory

protection required to suppress inflammation and prevent adverse effects of anti-fetal effector immune responses. Treg cells arise as a consequence of an

inflammation-like response during the peri-conception phase, and their abundance, suppressive function and stability are influenced by events prior to and during

early pregnancy. Insufficient numbers, reduced suppressive function or instability are linked with preeclampsia and IUGR, potentially mediated by insufficient Treg cell

capacity to support normal placental development and to suppress the elevated inflammatory load typical of this condition.

prevent effector T cells (Teff) cells accumulating at the maternal-
placental interface (43–45).

Amongst the various mechanisms of maternal tolerance,
CD4+ Treg cells are essential for embryo implantation and early
placental development (46, 47). Their capacity to constrain and
resolve the inflammation elicited during embryo implantation,
and suppress generation of immune effector cells in local lymph
nodes, is pivotal to controlling inflammation and promoting
immune tolerance over the course of gestation, until an
inflammatory shift emerges again at parturition (Figure 1). This
function is consistent with essential roles for Treg cells in
immune homeostasis throughout the body, where they prevent
autoimmunity to self-antigens, suppress Teff cells reacting to
non-dangerous foreign antigens, regulate and limit excessive
inflammation (48–50), and have important roles in tissue repair
and homeostasis (51).

Different subsets of T cells with regulatory functions exist.
CD4+ Treg cells, CD8+ Treg cells, gamma/delta T cells, Tr1
cells, and NKT cells can all exert suppressive functions and
appear to operate collaboratively to control immune responses.
CD4+ Treg cells are of particular interest because of their
strong association with preeclampsia, and their potential for
therapeutic manipulation (41). CD4+ Treg cells comprise about
1–3% of total T helper cells in humans and 3–10% in mice,
and are defined by their expression of the master transcription
factor Forkhead Box P3 (FOXP3). As well as FOXP3, CD4+

Treg cells constitutively express surface molecules including the
IL2 receptor α-chain (CD25), the immune checkpoint receptor

cytotoxic T-lymphocyte protein 4 (CTLA4), and glucocorticoid-
induced tumor necrosis factor receptor (GITR), and in humans
are CD127− or CD127low (49, 52).

There are two types of CD4+ Treg cells (referred to hereon
as “Treg cells”). Thymus-derived Treg cells (tTreg cells) emerge
from the thymus after self antigen-driven selection as functional
suppressor T cells. Peripheral Treg cells (pTreg cells) differentiate
from naïve CD4+ precursors after contact with antigens in
peripheral lymph nodes or tissues (52). Differentiation of naïve
CD4+ T cells into pTreg cells requires cognate antigen to
be presented by antigen-presenting cells (APCs) such as pro-
tolerogenic dendritic cells (tDCs) in the presence of IL2 and
TGFB. The CD4 cells are thereby induced to express FOXP3
and become committed to suppressive function (53). These cells
then promote a cycle of de novo Treg cell generation and drive
the development of long-lasting immunologic memory, which is
reinforced by persistent antigen exposure (54). Like pTreg, tTregs
can also be induced to proliferate and acquire greater suppressive
function by antigen contact in the periphery (51, 55, 56). In
humans, tTregs and pTregs are not readily distinguishable but
in mice, tTregs express neuropilin 1 (Nrp1) while pTregs are
generally Nrp1 low or negative (52).

pTreg cells and tTreg cells exert anti-inflammatory and
immune suppressive activity by secreting a range of soluble
factors including IL10 and TGFB, as well as through cell contact-
dependent mechanisms. Importantly, Treg cell suppressive
function inhibits proliferation and cytokine release from pro-
inflammatory CD4+ Teff cells, T helper 1 (Th1) and T helper
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17 (Th17) cells, which typically produce pro-inflammatory IFNG
and IL17, respectively. Activated Treg cells interact with DCs
through CTLA4, to cause down-regulation of DC co-stimulatory
molecules CD80 and CD86, which drive Teff cell activation (49).

ALTERED TREG CELLS ACCOMPANY AND
MAY PRECEDE PREECLAMPSIA ONSET IN
WOMEN

In women, T cells comprise 10–20% of decidual immune cells
in the first trimester (57). Many decidual T cells are CD8+,
including regulatory subsets (58, 59). Amongst the CD4+ T
cells, around 10–30% express FOXP3, which is a substantial
enrichment compared to peripheral blood (60–62). The Tregs
comprise of both tTregs and pTregs and exhibit heterogeneous
phenotypes that vary across the menstrual cycle and phase of
pregnancy (32, 63, 64).

There is substantial evidence that many pregnant women with
preeclampsia have fewer and less functionally competent Treg
cells, accompanied by increased Teff cell activity, particularly
Th1 and Th17 cells in decidual tissue and peripheral blood (26–
28, 34, 65, 66). In a recent meta-analysis, a total of 17 independent
primary studies were evaluated, and all but 2 showed consistent
evidence of association between both severe, early-onset and late
onset preeclampsia with fewer Treg cells in the third trimester
(67). As well as reduced numbers, the suppressive function
of Treg cells is often compromised in preeclampsia (33, 34,
68). The decrease in Treg cells may be proportional to the
severity of disease (26), although relationship with time of disease
onset and co-incidence of fetal growth restriction have not
been consistently documented. There is evidence of an altered
balance in Treg cell subsets in preeclampsia, with reports of
fewer peripheral blood naïve HLADRneg CD45RA+ Treg cells
(68, 69) and fewer CD45RA+CD31+ recent thymic emigrant
Tregs (64) in peripheral blood. Decidual Treg populations may
be differentially affected, given decidual tDCs exhibit a reduced
capacity to induce pTreg in preeclampsia (32).

Treg cell changes become evident in peripheral blood and
gestational tissues shortly after conception and accumulate in
decidua reaching their highest levels in early to mid-gestation,
before decreasing as term approaches (28, 61, 70). A recent
study utilizing chorionic villous sampling (CVS) at week 10–12
of gestation, showed that women who progress to preeclampsia
demonstrate dysregulated expression of decidual and immune
cell genes from this early time (71). In another study, elevated
expression of IL6 which counteracts Treg stability and promotes
Th17 generation (72), as well as reduced numbers of alternatively
activated M2 macrophage and T cell markers, were detected
in CVS tissues of women who later develop preeclampsia
associated with fetal growth restriction (IUGR) (73). Although
longitudinal studies to track Treg cells over the course of
gestation are not yet reported in women with preeclampsia,
there is good evidence that low abundance of circulating Treg
cells in the first trimester is predictive of miscarriage before 12
weeks (74). Collectively, these observations underpin a working
hypothesis that disturbed immune adaptation in early pregnancy

precedes impaired placental development, setting the scene for
later emergence of preeclampsia and related complications of
pregnancy (8, 10, 29, 75).

This fits an emerging paradigm which positions early
pregnancy as the origin of disorders of deep placentation
that underpin early onset, severe preeclampsia, and also
contribute to IUGR, preterm labor, premature rupture of
membranes, and late spontaneous abortion (11, 76, 77). So-
called shallow placentation arises from insufficient trophoblast
invasion and failure to adequately remodel spiral arteries and
to achieve high capacity maternal blood flow, which further
compromises placental development and function, and leads to
IUGR (1, 7, 8).

Treg cells are emerging as key regulators in the decidual
leukocyte network which controls implantation and placental
development. Through interactive cross-regulation, growth
factor secretion and extracellular matrix remodeling, this
network controls the decidual immune environment which
facilitates trophoblast invasion and cytotrophoblast shell
development, and enables remodeling of the decidual vasculature
to support placental development (10, 78).

Inappropriate function or insufficient numbers of Treg cells in
the decidua are linked with inadequate extravillous trophoblast
invasion, and poor spiral artery remodeling, in turn destabilizing
placental development and resulting in “shallow” placentation
(12, 79). There is also a clear link between Treg deficiency and
both recurrent implantation failure and recurrent pregnancy
loss, where more severe forms of impaired uterine receptivity
arrest trophoblast invasion and early placental development
(80, 81). Thus, it is not difficult to envisage how insufficient
Treg cells in the preconception and peri-conception phase could
be a key upstream trigger for the sequence of events leading
to impaired vessel remodeling and shallow placentation, which
ultimately cause the overt symptoms of preeclampsia in later
gestation (Figure 2).

TREG CELL REGULATION OF THE
DECIDUAL IMMUNE ENVIRONMENT

Mouse models have been instrumental for defining mechanisms
through which Treg cells exert anti-inflammatory activity
to influence the decidual environment and early placental
development. Kinetic studies show that Treg cells accumulate
in the uterine decidua from very early in pregnancy, and that
these originate after naïve T cell activation and proliferation in
local lymph nodes, causing numbers to expand through the first
half of gestation (20, 46). After recruitment into the implantation
site, Treg cells comprise around 30% of decidual T cells in the
mouse (46).

Extensive experiments wherein Treg cells are selectively
depleted, or overwhelmed by exacerbated Teff cell responses,
show an essential role for Treg cells in preventing generation
of destructive immunity to fetal alloantigens (82–85). Without
sufficient Treg cells, an aggressive Th1 and Th17 mediated-
response causes fetal loss in allogeneic but not syngeneic
pregnancy (46).
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FIGURE 2 | Immune imbalance associated with insufficient or incompetent

Treg cells are implicated as an upstream cause of preeclampsia, particularly in

severe, early onset disease. In a working model of the sequence of

pathophysiological events, fewer Treg cells generated at conception impact

the decidual environment at implantation, to limit trophoblast invasion,

constrain maternal vascular adaptation, and vessel compliance. The resulting

“shallow” placentation causes vascular inflammatory injury accompanied by

elevated soluble Fms-like tyrosine kinase (sFlt) and soluble endoglin (eEng),

reducing placental function, and causing maternal organ injury and in utero

growth restriction (IUGR) of the fetus.

Depending on the severity and timing of manipulation, Treg
depletion can manifest as implantation failure, miscarriage or
fetal growth restriction. Several studies show the pre- and
peri-implantation phase is highly vulnerable. Administration of
anti-CD25 Ab before or shortly after mating causes complete
implantation failure (86–88). Depleting FOXP3+ cells from
FOXP3-Dtr mice during early placentation increases later
fetal resorption (85, 89), but depletion in mid-gestation only
moderately reduces fetal viability (20), unless mice receive a
second hit inflammatory challenge such that Treg depletion
exacerbates the adverse impact (90–92). Mice deficient in
T cells due to Rag1-null mutation are highly vulnerable
to inflammation-induced fetal loss, but this is reversed by
administering CD4+ T cells that differentiate to Tregs after
transfer (90). Midgestation depletion of CD25+ cells using anti-
CD25 mAb has a less severe impact than in early pregnancy,
but this may be because Teff cells are also removed (86,
93). Additionally, other tolerogenic mechanisms including IL10
secretion by uNK cells (94) may compensate for Treg deficiency
once placental development is complete.

Mouse models with a high rate of spontaneous fetal loss also
demonstrate a critical role for Tregs in embryo implantation.
CBA/J females mated with DBA/2J males have fewer decidual
Tregs and elevated Th1 cells (87, 95). Adoptive transfer of

Tregs from donor CBA/J females mated with Balb/c males
boosts decidual Tregs and corrects fetal loss (87), but only if
Treg transfer occurs before embryo implantation (87). These
findings confirm that Tregs are most essential in the uterus
during the peri-implantation period, consistent with a central
role in orchestrating the transition to an anti-inflammatory mileu
required for placental development (Figure 1).

Treg cells co-localize in clusters with uNK cells and other
leukocytes in the human decidua basalis (78), where they
exhibit activity expected to potently influence the local immune
environment by enforcing an anti-inflammatory phenotype in
other leukocyte lineages. In particular Tregs regulate uNK
phenotype, through releasing TGFB and IL10 to control DC
release of uNK viability factor IL15 (96), and suppress uNK
cytolytic activity (91, 97). This may be particularly important
in first pregnancy, given that uNK cells acquire memory and
assume a more differentiated “trained” phenotype in subsequent
pregnancies (21). Whether there is an interaction between
antigen-experienced Tregs and trained uNK cells, remains to
be investigated.

Treg cells also regulate M2 macrophages (98), mast cells
(99), and tDCs, releasing heme oxygenase-1 which maintains
immature DCs (100) and promotes indoleamine 2,3-dioxygenase
(IDO) production to impair Th1 cell survival (101, 102).
M2 macrophages and tDCs promote further Treg generation
(98, 100) and produce an array of cytokines that reinforce a
pro-tolerogenic decidual environment, including TGFB, CSF2
(GMCSF), IL4, IL10, CSF3 (GCSF), and prostaglandin E (103).
Decidual Tregs also express other hallmark mediators of Teff
suppression CD25, CTLA4, and PD-L1 (61, 91, 104–106).

Uterine NK cells and DCs are implicated as key regulators
of decidual transformation (107–109) so through regulating
uterineDC and uNKphenotype, Tregs would indirectly influence
the extent and quality of the decidual response. Furthermore,
trophoblasts engage with Tregs in a reciprocal interaction
to modulate the secretory profile of both lineages (110).
Together, these coordinated interactions allow Tregs to constrain
inflammation and limit oxidative stress caused by trophoblast
invasion during early placental development (13, 25, 111).

TREG CELLS INFLUENCE MATERNAL
VASCULAR REMODELING AND EARLY
PLACENTAL DEVELOPMENT

Treg cells are emerging as critical participants in the process
of maternal vascular remodeling, through their modulating
effects on the decidual leukocyte network (Figure 3). There is
extensive evidence to demonstrate key roles for uNK cells (30,
112), macrophages (31), and mast cells (99) in decidual vessel
transformation, and in collaborating with invading trophoblasts
to restructure the endothelial surface and smooth muscle wall
(7, 13, 104). As detailed above, Treg cells exert potent anti-
inflammatory actions on uNK cells (91, 97), M2 macrophages
(98), mast cells (99), and tDCs (100), thereby influencing the
vascular remodeling process.
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FIGURE 3 | Events during early placental development require immune cells in

the decidua to support maternal blood vessel (MV) adaptation and spiral artery

(SA) transformation. Treg cells interact with uNK cells, M2 macrophages, and

tDCs to suppress inflammation and provide secretory factors regulating

extravillous trophoblast (ET) invasion, and functional changes in endothelial

cells (EN) and surrounding smooth muscle (SM). Severe early-onset

preeclampsia is accompanied by insufficient Treg cells, which in turn would be

expected to contribute directly and indirectly through immune cell networks to

impair vascular adaptations required for robust placental development. Left

hand part of Figure is adapted from Steegers et al. (1).

This is unsurprising given growing evidence that Treg cells
play important roles in modulating cardiovascular function, and
vascular homeostasis throughout the body (113). In hypertensive
mouse models, Treg cell infusion reduces blood pressure and
vascular damage, and reverses hypertensive sequelae (114,
115). Treg cell-derived cytokines, particularly IL10 and TGFB,
suppress inflammatory endothelial cell activation and inhibit
development of atherosclerosis (113).

Rodent models of preeclampsia support a critical function for
Treg cells in the pathophysiological events underlying abnormal
placental development, through coordinated interactions with
uNK cells, DCs, and macrophages (Figure 3). Experiments
in mice deficient in T cells and/or NK cells show that
T cells interact with uNK cells to influence the maternal
hemodynamic response to pregnancy (116, 117). When cause-
and-effect relationships are explored by antibody-mediated or
genetic modulation of T cell subsets, Treg cells are implicated
as having causal roles in the maternal and fetal symptoms of
preeclampsia models.

Treg-deficient mice consistently show impaired uterine
spiral arterial modification, reduced placental blood flow,
and fetal growth restriction (85, 89, 118). Depletion of
FOXP3+ Tregs in early pregnancy causes later dysfunction
in uterine arteries accompanied by increased endothelin-
1 production (89). Peripheral Treg cells are particularly
implicated, as indicated by experiments in mice with a null
mutation in the CNS1 gene which is a FOXP3 enhancer
element essential for pTreg cell but dispensable for tTreg
generation. CNS1 is only present in eutherian mammals,
suggesting its introduction into the FOXP3 locus to enable
pTreg generation, in turn facilitated evolution of placentation
(85). In CNS1-null mice, impaired remodeling of material

spiral arteries underpins defective placental development (85).
Compromised trophoblast invasion and failed transformation of
spiral arteries is also seen in mice where neutrophil depletion
causes insufficiency of pro-angiogenic, neutrophil-induced Treg
cells (118).

In the reduced uterine perfusion pressure (RUPP) model of
preeclampsia in rats, reduced uterine artery flow is induced
by clip placement on the abdominal aorta and right and left
uterine artery arcades at day 14 of gestation, resulting in
placental ischemia and oxidative stress. The model replicates
human preeclampsia symptoms with hypertension accompanied
by increased circulating VEGF, sEng, Flt1, and placental growth
factor (PlGF), plus elevated inflammatory cytokines and IUGR.
A substantial (∼50%) reduction in decidual and placental
Treg cells, and elevation in total CD4+ T cells and Th17
cells, is a consequence of the RUPP intervention. Remarkably,
the preeclampsia symptoms induced in this model are T
cell dependent since the RUPP intervention does not cause
hypertension and IUGR in T cell deficient athymic rats, and
disease can be induced by passive transfer of Th17 effector CD4+

T cells (119). Treg cell deficiency is a key driver of hypertension
and IUGR and these symptoms are mitigated when Treg cells
from pregnant control donor rats are administered shortly after
the RUPP procedure (120). Treatment strategies applied to boost
endogenous Treg cells, including IL10 administration (121) or
low dose CD28 superagonist (120), also reduce hypertension
and IUGR.

Rodent models show that the protective effects of Treg
cells are crucial from the early implantation phase, when
vascular adaptation and early placental development begin.
Several studies using different approaches to deplete Treg cells
at various time points show the peri-implantation phase is most
severely affected, with extensive Treg cell depletion at embryo
implantation causing complete implantation failure (46, 86, 87).
Experiments in the abortion-prone CBA/J x DBA/2 mouse
model indicate transferred Treg cells can rescue the underlying
placental defect, but only if Treg cells are transferred from healthy
pregnant mice at or before the time of embryo implantation
(87). Treg cell replacement influences other immune cells
in the decidua, including mast cells, to repair placental and
vascular defects and prevent sFlt elevation and fetal loss (99).
Consistent with a critical role for peri-implantation Treg cells,
a genetic model of preeclampsia involving overexpression of
human angiotensinogen and renin in rats showed greater
responsiveness to Treg cell therapy when it was applied in early
gestation (122).

Even subtle disturbances to the T cell response in
early pregnancy may impact later pregnancy progression.
This may be the consequence of an altered environment
during T cell activation, as we have recently demonstrated
for CD8+ T cells in pregnancy (123). Other studies in
mice show that reduced numbers or altered function
of Treg cells at conception can disrupt fetal-placental
development without immediate adverse effects, but with
a legacy that becomes apparent in mid- or late gestation,
particularly when a “second-hit” inflammatory challenge is
applied (106, 124).
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THE TREG CELL RESPONSE IS
DETERMINED IN THE PRE- AND
PERI-CONCEPTION PHASE

The conditions under which the Treg cell populations of
pregnancy originate are likely to be critical to the reduced
quantity and impaired quality of the Treg response in
preeclampsia. Uterine recruitment of Tregs in readiness for
possible embryo implantation commences in the proliferative
phase of each cycle, with an estrogen-driven increase peaking
around ovulation (125). CD4+ FOXP3+ cells, thought to be
pTregs based on expression of the Helios marker, are a major
subset amongst the expanding Treg populations in blood and
decidua in early human pregnancy (32). Helios+ Treg cells
appear to be preferentially recruited into the decidua in the first
trimester (63). Amongst peripheral blood tTregs the population
of CD45RA+CD31+ cells, which have recently emigrated from
the thymus, expand prominently in the first trimester and
differentiate into CD45RA−CD31− memory Tregs (64).

The majority of decidual T cells in women have a memory
phenotype (CD45RA− or CD45RO+) (59, 126) and show
evidence of fetal antigen specificity (62), which indicates antigen
exposure must occur to elicit the full Treg cell response. HLA-
C is the only polymorphic HLA expressed by human placental
trophoblasts, and fetal-maternal HLA-C mismatch is associated
with a greater expansion in decidual Tregs (127). Many decidual
Tregs show fetal HLA-C antigen specificity (62, 128), but whether
other reproductive or tissue antigens are involved has not
been investigated.

In preeclampsia, Treg cell deficiency is most pronounced
in pTreg cells (32), as well as CD45RA+CD31+ recent thymic
emigrant tTregs less able to acquire a memory phenotype (64).
This implies there may be an underlying problem with antigen
priming. Consistent with this, dysfunctional DCs with reduced
HLA-G and ILT4 (32), and/or insufficent PD-L1 (129), have been
reported in preeclampsia.

Contact with fetal alloantigens must occur under conditions
that favor antigen presentation and stable Treg cell (not
Teff cell) development. These conditions occur in two waves
in the reproductive process. Paternally-derived transplantation
antigens shared by the fetus are first and most frequently
contacted during transmission of seminal fluid at coitus,
at conception and in pre-conception cycles (22). Seminal
fluid primes the activation of pTregs that are specific for
paternal transplantation antigens which will later be expressed
by fetal and placental cells. Additionally, once pregnancy is
established and maternal blood comes into contact with the
syncytiotrophoblast surface, placental exosomes are released
into maternal blood, providing a second wave of alloantigen
exposure (130, 131).

Again, mouse models have been informative in tracing the
origins and regulation of Treg cells and point to specific events
as critical for generation of the Treg cell pool in early pregnancy
(132). The two stages of T cell activation can be tracked through
the first half of gestation using T cell transgenic mice (93). The
strength of seminal fluid as the initial priming event is first seen
as a burst of T cell proliferation in the peri-conception phase,

evident in cells recovered from the uterus-draining para-aortic
lymph nodes (dLN) on day 3.5 post-coitus (pc), followed by a
steady progressive increase during the post-implantation phase
once placental morphogenesis is complete (93).

The first wave of proliferation of Treg cells can be detected
within days of insemination in the lymph nodes draining the
reproductive tract, in the peripheral blood, and spleen (46, 133).
Seminal fluid contains paternal alloantigens and high levels
of TGFB, and elicits an inflammation-like response in female
reproductive tract tissues. DCs and macrophages recruited into
female tissues take up seminal fluid alloantigens, traffic to the
dLN and present antigen to naive T cells (93). Treg expansion
is maximized in allogeneic compared with syngeneic matings,
demonstrating a contribution of male alloantigens (134), but
endogenous antigens might also contribute to the activation
and expansion of Tregs in early pregnancy (135). Amongst
the responding pTregs, paternal antigen-reactive pTreg cells are
selectively enriched (133, 136). Data from mice with a mutation
in the CNS1 gene show elevated fetal loss when pTreg alone
are deficient, suggesting that pTreg cells have non-redundant
functions important for viviparous pregnancy (85).

A population of tTreg cells of thymic origin also expand
systemically prior to conception. These cells are recruited into
the uterus after proliferation in the dLN during the estrous stage
of the reproductive cycle in mice, in response to rising estrogen
at ovulation (125, 137). After mating, factors in seminal fluid
induce tTreg to proliferate and express elevated FOXP3 and
CTLA4, both markers of suppressive competence, accompanied
by demethylation of the Treg-specific demethylation region
(TSDR) in the FOXP3 locus (138). This expansion of tTreg cells
occurs in parallel with the seminal fluid antigen-driven expansion
of pTreg cells. This population may well have different functional
qualities to pTreg, although these are still to be defined.

After recirculation via peripheral blood, Treg cells are
recruited into the fetal-maternal interface in response to
chemokines secreted by uterine epithelial cells including CCL19
(133), and may be stimulated to undergo further rounds of
proliferation locally in the uterine tissue (46). The resulting
expansion of the Treg cell pool induces a state of hypo-
responsiveness to paternal alloantigens, concurrent with embryo
implantation when the conceptus first contacts maternal tissues
(136, 139). The kinetics of Treg cell induction in the peri-
conception phase ensures sufficient abundance of Treg cells in
the endometrium at embryo implantation, when their function
is most critical (86, 87, 140). Continued release of paternally-
inherited alloantigen from trophoblasts over the course of
pregnancy sustains the T cell response until post-partum (20, 93).
After birth, a population of paternal alloantigen-reactive Tregs
are sustained, and in the event of a subsequentmating with amale
expressing the same alloantigens, there is accelerated expansion
of Treg cells driven by proliferation of fetal-specific Treg cells
retained from the prior pregnancy (20).

Mouse studies imply that the immune response initiated at
seminal fluid priming is a crucial initiating step and highly
vulnerable phase for Treg cell tolerance to be established.
In particular, responding pTreg cells require appropriate
environmental signals including the cytokines IL2 and TGFB,
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to ensure naïve T cells differentiate into Treg cells and not Th1
or Th17 effector T cells (93, 133). Both the size of the Treg
cell pool and the suppressive competence of pTreg cells will be
determined by the strength of the antigenic challenge, and the
nature of the cytokine context in which antigen contact occurs—
parameters which are determined by seminal fluid composition
as well as female tract factors. Since newly generated pTreg cells
that have only recently commenced FOXP3 expression appear
more vulnerable to phenotype switching and lineage instability
(141), the extent to which pTreg cells primed at coitus will
commit to a secure Treg fate will be substantially influenced
by the conception environment. Relevant factors impacting this
environment would include MHC disparity between male and
female partners, the abundance and phenotype of DCs involved
in antigen presentation, and bioavailability of local cytokines,
hormones and other positive and negative regulators including
microRNAs and the local microbiome (23).

Similar events occur in women, where the cervical immune
response to seminal fluid mirrors the mouse response, causing
elevated cytokine production, recruitment of leukocytes and T
cell activation (22, 142), consistent with prior seminal fluid
contact contributing to priming the paternal antigen-specific
Treg cell response of pregnancy (62). It is yet to be proven
that seminal fluid induces pTreg cells in women, and other
factors must contribute to uterine Treg accumulation since IVF
pregnancy can be established without seminal plasma contact.
Expansion of uterine Tregs after conception may be further
facilitated by human chorionic gonadotropin (hCG) secreted
by invading placental trophoblasts (143). This builds on the
hormone-driven expansion of Treg cells in the follicular phase
of the menstrual cycle, correlating with progressively elevating
serum E2 levels (125). However, the in vivo cervical response
and an array of in vitro studies demonstrating that seminal fluid
skews DC cells to an tDC phenotype and induces Treg cells
in vitro, is consistent with a key role for seminal fluid in women
(22, 144, 145). A priming effect of seminal fluid contact in women
also explains the benefit of cumulative seminal fluid contact with
the conceiving partner in protecting from preeclampsia (17, 146).

IS INSUFFICIENT PRIMING A CAUSE OF
TREG CELL DEFICIENCY
IN PREECLAMPSIA?

An important question is why some women have fewer
Treg cells and/or impaired Treg function at the outset of
pregnancy. The nature and significance of factors that cause
variation in the uterine Treg cell response are unclear and
require investigation. As detailed above, antigen priming in the
appropriate environmental context is a critical factor in the
strength and quality of any peripheral tissue Treg cell response. In
the reproductive tissues, the strength and quality of antigen and
immune-regulatory signals in the female reproductive mucosa
during priming would be paramount, as well as the number and
timing of prior exposures to the conceiving partner’s seminal
fluid and any previous pregnancies with that partner (25).

This raises the possibility that some women develop
preeclampsia after conceiving without adequate prior priming
to male partner alloantigens. It seems likely that pTregs reacting
with paternal alloantigens would be more vulnerable than tTregs
to variations in population size, antigen experience and memory,
functional competence, and stability. Because newly generated
pTregs are particularly susceptible to phenotype-switching and
lineage instability (141), the priming environment would be
a key determinant of a secure fate amongst pTreg with male
partner alloantigen specificity. Recent evidence in mice that
seminal fluid contact regulates tTreg cells, inducing proliferation
and reinforcing a suppressive phenotype through epigenetic
modulation, suggests tTreg as well as pTreg are impacted (138).

Priming may be dysregulated due to seminal fluid
composition or female responsiveness to seminal fluid signals
(22, 25). It has been shown that recurrent miscarriage patients
produce more CD4+IL17+ and CD4+IFNG+ cells and fewer
CD4+CD25+FOXP3+ Tregs, compared to fertile controls, when
CD4+ T cells are cultured with DCs and partner’s seminal fluid
antigens (147). The balance of immune-regulatory agents in
seminal fluid, particularly pro-tolerogenic TGFB, varies between
men, and within men over time (148). The anti-tolerogenic
cytokine IFNG, which drives generation of Th1 immunity,
fluctuates substantially and can become elevated in seminal fluid
in the event of infection or other inflammatory conditions (149).
IFNG interferes with synthesis of CSF2 required to drive the T
cell proliferative response at conception (150, 151), skews Th0
differentiation toward Th17 cells (48, 152), and increases Treg
susceptibility to transdifferentiate into Th17 cells (153).

CLINICAL AND LIFESTYLE FACTORS
IMPACTING THE TREG CELL RESPONSE

A suboptimal Treg cell adaptation for pregnancy could also occur
in women due to intrinsic Treg deficiency. The specific factors
determining between individual variation in Treg numbers and
functional capacity are yet to be fully defined. An interaction
between genetic, epigenetic, and environmental factors seems
likely, based on data from animal models and limited studies
in population cohorts (154). The thymic output of tTreg, and
peripheral tissue induction of pTreg cells, are independently
regulated and can be affected by a range of metabolic and
nutritional parameters, inflammatory exposures, autoimmune
conditions, and age (35–40). Common health conditions that
affect the immune system including intestinal microbial dysbiosis
and dietary deficiencies, particularly vitamin A and vitamin D,
have been associated with poor adaptive immunity and may be
a common cause of compromised Treg activity (38). Exposure
to sunlight (55) and exercise (56) are also recently identified to
support Treg homeostasis, but how these are linked to variation
in human Treg parameters are yet to be defined.

In hyper-inflammatory conditions caused by autoimmune,
infectious or metabolic disorders some pTreg cells exhibit
phenotypic plasticity and instability, with increased disposition
to shift phenotype, or lose FOXP3 expression and become
reprogrammed into a Teff fate (154). Studies in mice and
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humans demonstrate that FOXP3+ T cells can be induced by
inflammatory stimuli to express IL17 and IFNG characteristic
of Teff cells (155, 156), and may then transdifferentiate into
effector Th17-like cells, known as “exTregs,” which can amplify
inflammatory pathology (157).

Epigenetic regulation of FOXP3 through demethylation of
the TSDR region is a key factor in the resilience of Tregs to
inflammatory stress, that controls whether T cells can express
sufficient FOXP3 to overrule Teff functions and maintain a
Treg suppressive phenotype (158). Increased TSDR methylation
and associated underexpression of FOXP3 is a feature of some
autoimmune conditions (159).

There is little information on whether Treg cells exhibit
signaling defects, lineage instability or methylation changes in
preeclampsia. Given the evidence of elevated Th1 and Th17
cells counteracting the decrease in Treg number and function
in preeclampsia, defects in both Treg cell induction and/or
stability seem plausible, and would explain the concurrent
reduction in Treg cell suppressive function (34, 68). Although
large populations have not been examined, exploratory studies
in preeclampsia suggest an elevated incidence of gene variants
within the promoter region of FOXP3 that may affect expression
levels and hence Treg stability (160, 161). Elevated IL6
trans-signaling, which is known to promote Treg instability
and transdifferentiation, has been described in women with
recurrent miscarriage (162). IL6 is associated with reduced
TGFB output and IL2-mediated STAT5 signaling (163), and
is a possible candidate contributing to impaired Treg capacity
in preeclampsia, given that elevated expression of IL6 is
seen in gestational tissues of women who later develop the
condition (73).

POTENTIAL INTERVENTIONS TO TARGET
TREG CELLS IN PREGNANCY

Recognition that excessive inflammation secondary to
insufficient anti-inflammatory protection is a key driver of
preeclampsia gives rise to the prospect of targeting the immune
response to prevent or suppress progression of the disease. In
particular, Treg cells provide an attractive target, because of (1)
the clear link between compromised Treg cells and preeclampsia;
(2) a logical mechanistic pathway placing insufficient Treg
cells as an upstream event in the placental and systemic
pathophysiological sequalae; (3) compelling evidence from
preclinical rodent models showing that insufficient Treg cells
can elicit preeclampsia-like symptoms, while boosting Treg
cells mitigates symptoms, and (4) encouraging progress in
development of Treg cell therapies for other autoimmune and
inflammatory conditions.

Interventions to boost Treg cell populations and their
suppressive competence are under development and show
promise in autoimmunity and tissue transplantation (41, 42), and
more recently have been considered for cardiovascular disease
(113). Treg cell therapies relevant to preeclampsia could take one
of three alternative approaches: (1) lifestyle and health advice
during preconception planning to assist immune adaptation

to pregnancy; (2) neutraceutical, pharmacological, or other
strategies to increase Treg cell numbers and/or function in
an antigen non-specific, systemic manner, or (3) cell therapy
treatments that involve ex vivo generation and/or expanding Treg
cells in a highly-individualized process. These clearly represent
different degrees of technical challenge, invasiveness, cost and
risk. While lifestyle adjustments or dietary supplements are
generally safe and tractable, cell therapies are labor-intensive,
expensive, and higher risk.

The evidence base for approaches to target Tregs in
other clinical settings is building (41, 42), but to date little
consideration has been given to applications in reproductive
conditions. To advance new treatments targeting Treg cells for
preeclampsia prevention and mitigation, research on several
fronts is required. Most immediate goals should be to develop
appropriate diagnostics, and to investigate and validate pre-
pregnancy planning interventions to boost Treg cells. There
should also be careful consideration of the rationale for initiating
clinical studies, using robust clinical trial methodology, to
evaluate pharmacological and/or cell therapy treatments for
application when Treg deficiencies are not responsive to lower
intervention approaches.

Diagnosis of Treg Cell Deficiency
To progress understanding of Treg cell insufficiency in
preeclampsia, and to develop therapeutic options targeting
these, it is essential that effective diagnostic tools are developed
and validated. These should detect common and informative
defects in Treg cell parameters that define competency for
healthy pregnancy, and ideally be applied to peripheral blood
if preference to endometrial biopsies. Treg tests should be
appropriate for routine use during pregnancy planning or early
after conception, to provide a therapeutic window for early
treatment interventions to prevent progression to miscarriage
or later obstetric conditions. To date little work has been done
to investigate Treg cell deficiency before conception, or in early
pregnancy, in the blood or endometrium of women who go on
to develop preeclampsia. Ongoing studies to address the pre-
pregnancy origins of preeclampsia may begin to address this (9).

A recent meta-analysis of Treg cell parameters quantified in
preeclampsia highlights the considerable variability in markers
that different groups have measured to date (67). A useful step
will be to develop a consensus definition of minimum essential
Treg markers to facilitate harmonization across future studies,
and to determine the best stage in preconception cycles or early
pregnancy for analysis (164). Given the significance of tTreg cells
vs. pTreg cells, and of naïve vs. memory cells in preeclampsia
(68, 69), extensive marker panels to discriminate these subsets
in flow cytometry-based tests will be most informative. Along
with standardmarkers CD4, CD25, CD127, and FOXP3, markers
that reflect memory, suppressive capacity, and activation status
amongst Treg cells should be measured. These may include GITR
which is emerging as a superior marker of active, functional
Tregs (165), plus CTLA4, CD45RO, HLADR, and potentially
intracellular cytokines or transcription factors which appear
particularly informative in the preeclampsia setting (27, 34).
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Ideally, Treg cell assays should also inform on suppressive
competence in a paternal antigen-specific manner. Assessment
of suppressive function by in vitro-based assays and/or analysis
of FOXP3 methylation status has been the gold standard for
assessment of suppressive potential, but new markers such
GITR, CD154, and PI16 may supersede these tests and be
more amenable to a clinical diagnostic setting (165–167). With
increasing availability of tetramer-based diagnostic tools for
identifying TCR specificity, identification of partner alloantigen-
reactive Treg cells may in time become feasible.

Optimal Timing for Interventions
A major challenge for developing strategies to target Treg
cells in pregnancy is timing—how and when would Treg cell
deficiency be diagnosed, and how would this relate to the
window of opportunity for intervention? With evidence that
Treg cells are most critical during the implantation and early
placentation phase of pregnancy, interventions in cycles prior
to conception, or as soon as possible after conception would
likely bemost advantageous. The timing would need to align with
hormone-driven regulation across themenstrual cycle, andmight
leverage events controlling estrogen and progesterone-regulated
expansion of the Treg pool (125). Interventions would need to
be coupled with Treg screening of high risk women during pre-
pregnancy planning or early after conception to allow the best
chance to identify patient subgroups that could be amenable
to therapy.

Treg Cells and Preconception Care
A tractable approach worthy of further investigation is advice
on immune system health and boosting immune priming during
preconception planning. In nulliparous women, the available
evidence suggests on average, 3–6 months of sexual cohabitation
without using barrier contraceptives is required for sufficient
seminal fluid priming to minimize the chance of preeclampsia
(15). Consistent with this, in a recent study of 340 women,
women in the highest 10th percentile of exposure to partner’s
seminal fluid had a 70% reduced odds of preeclampsia relative
to women in the lowest 25th percentile (168). Thus, advising
nulliparous women to avoid use of barrier contraceptive methods
and to consider increasing vaginal coitus prior to conceiving
may reduce preeclampsia risk. A key question is the impact of
different non-barrier approaches to facilitating immune priming,
such as oral contraceptive pill or intrauterine device, which
both deliver immune-modulating hormones. Further studies
are required to evaluate the impact on preeclampsia rates of
preconception advice on seminal fluid contact and contraceptive
choice, and to investigate whether a partner-specific Treg cell
response is involved.

Detecting and correcting any immune imbalance due to
clinical, nutritional and/or, lifestyle factors is also likely to be
effective for pregnancy planning and reducing susceptibility
to preeclampsia. Elevated inflammatory load due to chronic
infection, smoking, diabetic and pre-diabetic conditions, obesity
and/or microbiome dysbiosis in women would be expected to
adversely affect intrinsic Treg cell parameters and responsiveness
to priming (35, 169), while in men these conditions may increase

seminal fluid IFNG and reduce capacity to elicit a healthy
female response (149). A range of autoimmune conditions
known to impact reproductive function likely have a shared
underlying etiology and correcting the immune disorder with
validated approaches would reasonably yield dividends for
pregnancy health (170). Microbiome disorders, and vitamin and
micronutrient deficiencies also affect Treg cells, and treating
these might have utility in boosting Treg cell activity in the
reproductive setting, as has been shown for some other immune
disorders (38). It will be important for future studies to trial the
efficacy of alternative approaches to pre-pregnancy care, in order
to determine the most effective interventions.

Pharmaceutical Interventions to Expand
Treg Cells for Pregnancy
High-risk women with a previous pre-eclamptic pregnancy are
an obvious target for preconception care to boost immune
tolerance. However, duration of sexual cohabitation is unlikely
to be limiting in this patient group, and couple-intrinsic
issues such as insufficient HLA disparity between partners,
or HLA incompatibility resulting in low immunogenicity of
male alloantigens, could theoretically interfere with priming and
expansion of the Treg cell pool. In selected women with a
demonstrated intrinsic Treg deficiency, approaches that target
Treg cells might warrant consideration.

Agents of potential utility to induce Treg cell-mediated
tolerance in women include cytokines and other biological
agents. Two cytokines that been used clinically to attempt to
enhance embryo implantation and placentation, CSF3 (171)
and CSF2 (172), act on myeloid immune cells and promote
recruitment and function of tDCs in the reproductive tract
mucosa. Mouse studies are consistent with their fertility-
promoting effects being mediated via tDC-mediated induction
of Treg cells (151, 173), but their effect on T cells has not
been studied in women. IL10 and several microRNAs that
act to expand the Treg cell pool and increase functional
competence, and are known to be induced naturally in the
female tract response to seminal fluid, are also worthy of
investigation (106, 174).

Several existing drugs deployed in pregnancy may act at
least partly through Treg cells. Studies in mice suggest that
progesterone mediates suppression of the Teff cell response,
affecting CD4+ T cell and Treg cell phenotype (175, 176).
Progesterone effectively suppresses the generation of Th1 cells
and Th17 cells and induces Treg cell differentiation (177–179).
Treg cells induced by progesterone have increased capacity
to suppress the activation and expansion of Teff cells (177,
178). This fits with evidence of progesterone-regulated increases
in uterine Treg cell populations in mice and in women
(125, 137). Physiological levels of progesterone increase the
functional population of CD4+FOXP3+ cells in pseudopregnant
mice and increase the splenic CD4+FOXP3+ cell proportions
in mid gestation (180). Progesterone also acts to selectively
repress IFNG gene expression in CD4+ T cells (181), allowing
enhanced induction of Treg cells and suppression of Th1
and Th17 differentiation (84, 182). A Cochrane meta-analysis
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demonstrated a benefit of progesterone for reducing recurrent
miscarriage in women (183), but whether this impacts Treg
cells is unknown. Furthermore, the outcomes in this setting are
confounded by the large proportion of losses related to embryo
chromosomal abnormalities, rather than immune dysregulation
in the endometrium (184). There is no proven clinical benefit
of progesterone in preeclampsia, and a Cochrane review did
not find sufficient evidence to support its clinical use to prevent
preeclampsia when administration was commenced between 16
and 28 weeks gestation in 4 clinical trials (185). Administration
in early pregnancy would likely be required to improve Treg
cells at the relevant developmental phase, but the effect of early
administration of progesterone on susceptibility to preeclampsia
has not been assessed.

Although immune suppressive glucocorticoid drugs
conventionally used in autoimmune conditions are sometimes
administered in assisted reproduction settings, these suppress
both Treg cells and Teff cells, and carry risks when used
in pregnancy (186). Intravenous immunoglobulins (IVIg)
and Intralipid have also been empirically used in artificial
reproductive technology settings to enhance implantation and
in recurrent miscarriage clinics to reduce miscarriage rates
(187). IVIg did not demonstrate an improvement in livebirth
outcomes in 8 small studies in 303 women who suffered
recurrent miscarriage (188). Although there is some evidence
to suggest that intralipid infusions are associated with immune
suppression and alter NK cell activity (189), their effects on Treg
cell parameters has not been measured and their clinical benefit
for implantation disorders or miscarriage is unproven in clinical
trials. The impact of administering intralipid and IVIg infusion
in early pregnancy on the development of early or late onset
preeclampsia has not been assessed.

There are several drugs under development for autoimmune
diseases, including immune checkpoint regulators and other
immune-active biologics, that may afford greater selectivity for
Treg cells than the immune modulating treatments described
above (42). These approaches may be worthy of cautious
evaluation in reproductive conditions. Drugs targeting immune
checkpoint regulators CTLA4 and PD-1 offer enormous
potential, and studies in preclinical models offer encouragement.
A recent study in rats where preeclampsia-like symptoms
are induced by L-NAME administration showed treatment
with PD-L1-Fc protein was effective in reversing Treg/Th17
imbalance and mitigating placental damage (129). Substantial
promise for a CD28 superagonist treatment was demonstrated
in a rat model of preeclampsia induced by overexpression of
human angiotensinogen. Administration of CD28 superagonist
was highly effective in increasing Treg cells and alleviating
maternal hypertension, proteinuria and IUGR, particularly when
treatment was applied from the pre-implantation phase (122).
Low dose IL2 has been used to expand Tregs in several
conditions, including in abortion-prone mice where protection
against fetal loss was achieved (135).

Other relevant agents include humanized antibodies against
T cell markers such as anti-CD3, anti-CD52, and anti-CD45
RO/RA which reestablish immune tolerance by selectively
depleting Teff cells and retaining Treg cells (37). Other

approaches utilize cytokine specific monoclonal antibodies to
promote Treg cells—these include anti-TNFA which is approved
for use in rheumatoid arthritis and Crohn’s Disease, or
protolerogenic cytokines such as TGFB and IL10 (37).

Epigenetic regulation of FOXP3 to impart elevated suppressive
function and stability in Tregs is another candidate approach.
Inhibitors of DNA methyltransferases such as 5-aza-2′-
deoxycytidine (Aza), or factors involved in DNA methylation
such as Ten-eleven translocation (TET) protein, have been
utilized in vitro to drive hypomethylation of the FOXP3
locus, resulting in strong, stable FOXP3 expression in Treg
cells (190–192). In mouse models, administration of DNMT
inhibitors enhances Treg number, FOXP3 expression and
suppressive capacity which assists in reducing inflammation
associated with LPS-induced lung injury (193), and prolongs
cardiac allograft survival (194). Histone deacetylase (HDACs)
inhibitors have also been shown to boost Treg cells and improve
suppressive function, resulting in decreased inflammatory bowel
disease and increase tissue graft survival in mice (195). These
agents carry risks as well as potential, so any application in
a reproductive setting would need to be carefully evaluated,
initially in preclinical studies.

Cell Therapy Interventions to Boost Treg
Cells for Pregnancy
Cell therapy provides a challenging but highly personalized
and thus potentially more effective approach to tackling
Treg-mediated conditions (37). Cell therapy involves either
(i) isolating in vivo differentiated Treg cells and expanding
them ex vivo or (ii) generating and expanding pTreg cells
in vitro, before subsequent reinfusion. These approaches are
in development for transplantation and severe autoimmune
disease, but would currently be difficult to justify for a non-
life-threatening pregnancy condition. However, given that in
preeclampsia the Teff response is not overwhelming, once Treg
cell therapy becomes a reality it may prove to be more amenable
than other conditions where an extreme immune deviation is
beyond rescue (37, 41).

A substantial benefit of cell therapy is that antigen-specific
Treg cells can be manipulated without systemic effects on the
immune response, with lower risk of off target effects in the
mother and fetus than with pharmacological approaches. Studies
in type 1 diabetes and other diseases show that T cell receptor
(TCR) reactivity with relevant antigens in the target tissue
improve Treg cell recruitment and capacity to persist and execute
effective suppression, with a low chance of non-specific immune
suppression (41, 196). This is a challenge for many disease
conditions that might be considered for Treg cell therapy, when
Treg cells reactive to tissue-specific antigens are rare. However,
the relevant antigens in pregnancy are paternal alloantigens
where the starting frequency is much higher. A large proportion
of naturally-occurring naïve CD4+ T cells, pTreg cells and tTreg
cells react with allo-antigens and could readily be expanded
amongst polyclonal populations. Furthermore, because of their
capacity to suppress immune responses in an antigen non-
specific manner (bystander suppression) and their capacity to
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skew T cell responses to other tissue antigens toward tolerance
(infectious tolerance), it is possible to regulate the immune
response in a whole organ using Treg cells reactive with a single
antigen (37, 41). In pregnancy, this means that Treg cells reactive
with just one or a subset of paternally-inherited fetal alloantigens,
or perhaps even a male minor histocompatibility antigen such
as H-Y, could reasonably be effective in suppressing immune
responses to a wide range of placental and fetal antigens.

Enormous potential is offered by new gene modification
developments in generating alloantigen-specific Treg cells using
chimeric antigen receptor technology. This approach overcomes
the challenge of the low frequency of antigen-reactive T
cells occurring naturally in peripheral blood, by genetically
manipulating Treg cells with self-specificity to express either a
TCR complex, or a chimeric antigen receptor (CAR) reactive to
specific antigens. Use of CAR technology can reliably generate
potent, functionally competent, and stable alloantigen-specific
human Treg cells that have utility in a wide range of human
autoimmune diseases (197). Ongoing clinical trials are showing
exciting results in Crohn’s disease and are likely to soon be
applied in the tissue transplant setting (198). There is a prospect
that in time, obstetric disorders may be amongst the range of
diseases to benefit from CAR T cell therapy—but again, this must
wait until relevant reproductive antigens are identified, and can
be targeted in a patient-specific manner.

CONCLUSIONS

Immune imbalance or “maladaptation” has been implicated
as central and causal in disease development in preeclampsia,
and Treg cells are identified as a pivotal immune cell
lineage. Their unique combination of anti-inflammatory, and
immune modulatory properties affords Treg cells a potent
capacity to support maternal vascular adaptation and placental
development, suppress inflammation and sustain maternal
tolerance of the fetus. The effects of Treg cells appear most
critical at the time of pregnancy establishment and during early
placental morphogenesis. Insufficient or dysfunctional Tregs
provides a mechanism through which environmental, metabolic,
and genetic factors can converge to increase disease risk (154),
likely interacting with clinical factors such as prior pregnancy and

immune compatibility between partners, which are known to be
important pre-pregnancy antecedents of preeclampsia (10).

Given the rapid advances in Treg cell immunology including
informative diagnostics based on flow cytometry of peripheral
blood, and development of a range of low and high intervention
treatments, the prospect of targeting Treg cells in at-risk women
to treat early placental disturbances and effectively mitigate
preeclampsia onset, warrants evaluation. It will be important to
focus on developing diagnostics and interventions for application
before or during early pregnancy, to divert the course of disease
development before placental or fetal injury occurs. Proof-of-
concept experiments in rodent models of preeclampsia already
demonstrate the utility of biological agents PF-L1 Fc (129), CD28
superligand (122), and low dose IL2 (135) to boost Treg cell
numbers and stability.

Experimental evaluation of any strategy to increase Tregs
in a human reproductive setting must take a highly cautious
approach and be founded in robust clinical trial design principles.
It is critical that safety for mothers and infants is paramount,
and the different risk-benefit ratio of reproductive and obstetric
conditions, compared to life-threatening immune diseases, is
recognized. Possible adverse consequences of artificially boosting
maternal Treg cells, including reduced pathogen defense (199)
or even reduced immune surveillance against malignancy (200)
would need to be considered. Notwithstanding the substantial
work to be done to evaluate alternative approaches and identify
responsive patient groups, there is an imperative to invest in
developing immune therapy options with the goal to reduce the
morbidity and mortality associated with preeclampsia.
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