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Herpes simplex virus type-2 (HSV-2) is a common cause of genital infections throughout

the world. Currently no prophylactic vaccine or therapeutic cure exists against the virus

that establishes a latent infection for the life of the host. Intravaginal microbivac is

a developing out-of-the-box strategy that combines instant microbicidal effects with

future vaccine-like benefits. We have recently shown that our uniquely designed zinc

oxide tetrapod nanoparticles (ZOTEN) show strong microbivac efficacy against HSV-2

infection in a murine model of genital infection. In our attempts to further understand the

antiviral and immune bolstering effects of ZOTEN microbivac and to develop ZOTEN

as a platform for future live virus vaccines, we tested a ZOTEN/HSV-2 cocktail and

found that prior incubation of HSV-2 with ZOTEN inhibits the ability of the virus to infect

vaginal tissue in female Balb/c mice and blocks virus shedding as judged by plaque

assays. Quite interestingly, the ZOTEN-neutralized virions elicit a local immune response

that is highly comparable with the HSV-2 infection alone with reduced inflammation and

clinical manifestations of disease. Information provided by our study will pave the way

for the further development of ZOTEN as a microbivac and a future platform for live

virus vaccines.
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INTRODUCTION

Herpes simplex virus-2 (HSV-2) is a neurotropic double stranded DNA virus capable of lytic
infection in multiple host cell types as well as latent infection in neuronal cells (1). The viral
DNA genome is encased in an icosadeltahedral protein capsid which is surrounded by tegument
proteins (2). The capsid and tegument are enveloped in a lipid bilayer composed of multiple viral
proteins and glycoproteins on the surface of the virus particle (3). HSV-2 entry into the host cell
primarily involves the interaction of the viral entry glycoproteins with various cell surface receptors
that facilitate virion envelope fusion with the plasma membrane of the host cell causing capsid
penetration into the cytoplasm (4). Once the genome reaches the nucleus, viral protein production
occurs in a sequential manner beginning with immediate early gene products that promote immune
evasion and neurovirulence (5). Early proteins are then synthesized which are required for viral
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DNA replication. This is followed by production of late proteins,
providing structural components of the capsid that are necessary
for viral egress. HSV spreads rapidly to neighboring cells as well
as the dorsal root ganglia where it establishes latency (6).

Primary infection of HSV-2 results in a variety of prolonged
clinical manifestations, ranging from genital ulcerations to more
severe cases like meningitis (7). While HSV-2 infection most
commonly occurs in the genitalia, it may also result in oral, ocular
and neurologic infections (8). In addition, genital ulcerations
caused by HSV-2 and viral shedding have been definitively linked
to an increased risk for acquisition of human immunodeficiency
virus (HIV) infection (9, 10). HSV-2 infects over 400 million
people worldwide and is one of the most common sexually
transmitted infections (11). Despite its high prevalence, no
cure or vaccination has been developed. Acyclovir, a nucleoside
analog, is widely used to treat primary HSV-2 infection and has
shown to be an efficacious therapeutic in most cases. However,
acyclovir resistant strains have also evolved and treatment
options are limited in those cases (12–14).

A traditional antiviral may not be the best choice since
diverse response from infected patients has been observed with
variations in episodes of viral shedding due to the varying degrees
of localized immune response among individuals. Roughly 80%
of HSV-2 seroprevalent persons are asymptomatic and report
no genital lesions even with detection of viral genomes at the
site of infection (15). Upon infection in immunocompetent
individuals, the virus is rapidly contained by a prompt innate
immune response and further suppressed by resident memory
HSV-specific T cells (16–18). For the large majority of HSV-2
infected individuals, cell-mediated immune responses are able to
control and protect against clinical recurrences and genital lesion
development (19). While the majority of currently prescribed
antivirals target the virus itself, the development of an antiviral or
immunotherapeutic that inhibits infection and at the same time,
facilitates a protective immune response can better guard the
host against the deleterious effects of primary HSV-2 infection as
well as recurrences (20–22). Alternatively, since subunit vaccines
have failed to show real promise in clinical trials, a safe live virus
vaccine may provide a better solution (23).

Previously, our group discovered a novel microbicidal and
vaccine-like (or microbivac) platform against primary and
secondary female genital herpes infections (24). The dual
microbivac platform was demonstrated through the ability of
uniquely designed zinc oxide tetrapod nanoparticles (ZOTEN)
with engineered oxygen vacancies to strongly trap HSV-2 virion,
neutralize the virus and prevent cell entry in the vaginal
epithelium (25, 26). ZOTEN showed to be an effective suppressor
of HSV-2 genital infection in female BALB/c mice with apparent
reduction of clinical signs of vaginal infection and decreased
animal mortality. ZOTEN therapy ultimately was found to
create a platform for viral antigen presentation and therefore
was presented as a novel microbivac with the potential to
prevent primary infection and viral shedding (27). Interestingly,
treatment of ZOTEN was found to have adjuvant-like properties,
enhancing immunity against the virus inmice (24). The proposed
mechanism for this is that ZOTEN acts to capture the virus,
allowing for detection by immune cells which in turn results

in enhanced T cell-mediated and antibody-mediated responses
to infection and thereby suppressing a reinfection. ZOTEN’s
ability to target the virus particle and manipulate the host
immune system demonstrates its novel and multifunctional
antiviral properties with promising prophylactic and therapeutic
effects (28).

In this article, we aim to better understand the vaginal
immune responses and antiviral benefits of a short-term acute
infection in female BALB/c mice using a ZOTEN/HSV-2
cocktail. Such a cocktail could provide more information on the
microbivac benefits of ZOTEN while demonstrating its promise
as a unique platform for live virus vaccine development. Our
tissue specific analyses show that the cocktail inhibits infection
but generates a local immune response that is highly comparable
to the infection with the virus alone. It also shows the promise
that ZOTEN can be given alongside to reduce the possibility of
infection via any live virus vaccine.

MATERIALS AND METHODS

Mouse Model of Genital Herpes Infection
Animal care and procedures were performed in accordance
with institutional and NIH guidelines and approved by the
Animal Care Committee at the University of Illinois at
Chicago. Six to Eight-weeks-old female BALB/c mice obtained
from Charles River Laboratories were injected with 0.1mL
medroxyprogesterone acetate (Depo-Provera) (Greenstone) to
synchronize estrous cycles. Seven days after injection, mice
were inoculated with HSV-2, or mock infected, with or without
ZOTEN.HSV-2 strain 333 was used for all experiments. Synthesis
and use of ZOTEN in antiviral assays have been described
previously (24, 26, 29). ZOTEN cocktail treatment consisted
of preincubating HSV-2 (or mock) in PBS for 30min at room
temperature with or without 0.1 mg/mL ZOTEN and then
inoculating female mice genitals with respective solution. Each
infected mouse received a viral inoculum of 5 × 105 pfu in a
10 µL volume. Untreated mice received virus that was similarly
incubated at room temperature.

Synthesis of ZOTEN (Tetrapod-Form ZnO
Micro-Nanoparticles)
Nanoparticles were synthesized and characterized according
to our previously published studies (24). Spherical zinc
microparticles, polyvinyl butyral (PVB) powder, and ethanol
were obtained commercially. A mixture using these materials
is prepared and burned together in the furnace at 900◦C.
Zn microparticles (in the form of Zn atoms, Zn dimers, Zn
trimers, etc.) are generated in the flame that results from the
burning of polymer PVB. In the presence of oxygen from the
surrounding environment, the unstable atomic variants of Zn
microparticles participate in nucleation and growth processes.
Initially, Zn and O combine to form a primary cluster and
once the stable nucleus has been formed, further available
Zn and O atoms contribute to conventional 1D spike growth
which results in growth of tetrapod-type structures. The process
continues as PVB decomposes completely into CO2 and O2,
resulting in an actual yield of 99.9% of ZOTEN. The formation
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of uniform ZnO tetrapods (ZOTEN) has been confirmed by
electron microscopy; as well as the size and shape by scanning
electron microscopy (30). Identical ZOTENs were used for all
experiments demonstrated in this article.

Mouse Vaginal Swabs and Detection of
Virus Shedding
At days 2 and 4 post infection, mouse vaginal canal was sampled
using calcium alginate swabs (Puritan, 25–800) previously dipped
in OptiMEM for approximately 2min. Swabs were performed by
gently streaking vaginal canal in a circular motion 5 times and
then dipping the swab into 500 µL OptiMEM. This process was
performed twice for each mouse. Collected washes were briefly
vortexed and centrifuged then plated on confluent monolayers of
Vero cells in a plaque assay.

Plaque Assay
Monolayers of Vero cells grown in DMEM + 10% FBS +

1% penicillin/streptomycin were washed once with PBS, then
overlaid with vaginal swab washes freshly collected from mice.
After incubation for 2 h, inocula were aspirated, and Vero
cells were overlaid with DMEM containing 5% methylcellulose.
72 h later, cells were fixed with methanol for 10min, media
was removed, and cells were then incubated with crystal violet
staining solution for 30min to visualize plaques.

Flow Cytometry
Mouse vaginal tissue was dissected and dissociated by incubating
in 100 µL of 2 mg/mL collagenase in PBS for 4 h at 37◦C.
The resulting mixture was triturated with a pipet tip, suspended
in an additional 1mL of FACS buffer (5% FBS in PBS)
and passed through a 70µm filter. Cells were aliquoted into
96-well round bottom plates for staining. Fc receptors were
blocked using TruStain FcX (101319, Biolegend) according to
the manufacturer’s protocol, and cells were then stained with
the following antibodies from BioLegend: APC anti-mouse Gr-
1 (108411), FITC anti-mouse CD45 (103107) APC anti-mouse
CD3e (100311), FITC anti-mouse CD49b (103503) APC anti-
mouse CD11c (117309) and PE anti-mouse F4/80 (123109). Cells
were incubated with fluor conjugated primary antibodies for 1 h
on ice, washed twice with FACS buffer, and analyzed with a BD
Accuri C6 Plus flow cytometer. 10,000 singlet non-debris events
were collected for each sample, and FlowJo X was used to process
and analyze the data.

Quantitative Polymerase Chain Reaction
Mouse vaginal tissue was dissected and dissociated by incubating
in 100 µL of 2 mg/mL collagenase in PBS for 4 h at 37◦C. The
resulting mixture was triturated with a pipet tip, suspended in
1mL of Trizol, and frozen at −80◦C until processing. RNA
extraction was performed according to Trizol manufacturer’s
guidelines. 2 µg of total RNA was reverse transcribed to cDNA
using High Capacity cDNA Reverse Transcription kit (Thermo
Fisher). Real time qPCR was performed with Fast SYBR Green
Master Mix (Thermo Fisher) with the QuantStudio 7 Flex system
(Life Technologies). The following mouse specific primers were
used in this study:

β-actin fwd 5′-GACGGCCAGGTCATCACTATTG-3′

β-actin rev 5′-AGG AAGGCTGGAAAAGAGCC-3′

IFN-α fwd 5′-CCTGCTGGCTGTGAAAT-3′

IFN-α rev 5′-GACAGGGCTCTCCAGACTTC-3′

IFN-β fwd 5′-TGTCCTCAACTGCTCTCCAC-3′

IFN-β rev 5′-CATCCAGGCGCTGTTGT-3′

IL-1β fwd 5′-GTGGCTGTGGAGAAGCTGTG-3′

IL-1β rev 5′-GAAGGTCCACGGGAAAGACAC-3′

IL-6 fwd 5′-ACGGCCTTCCCTACTTCACA-3′

IL-6 rev 5′-CATTTCCACGATTTCCGAGA-3′

TNF-α fwd 5′-GCCTCTTCTCATTCCTGCTTG-3′

TNF-α rev 5′-CTGATGAGAGGGAGGCCATT-3′

Mouse Tissue Histology and Staining
Mouse vaginal tissue was dissected and embedded in Tissue-
Plus O.C.T. (Fisher HealthCare) then frozen on dry ice and
kept at −80◦C until processing. 10 µm sections were cut with
a Cryostar NX50 microtome (Thermo Scientific). Sections were
air dried at room temperature, fixed in ice-cold acetone for
5min, and washed under running water for 2min. Slides were
then incubated in Mayer’s Hemalum solution (EMD Millipore,
109249) for 1min and then washed under running water for
1min. Slides were dipped in 70% ethanol for 2min, then in
100% ethanol for 1min, and incubated with eosin Y alcoholic,
with phloxine (Sigma, HT110316) for 1min. Slides were then
dipped in 70% ethanol for 1min, then in 100% ethanol for
1min, then xylene for 1min, and coverslipped with Permount
mounting medium (Thermo Fisher). Sections were visualized
and photographed using a Zeiss Axioskop 2 plus microscope.

Draining inguinal lymph nodes were excised from mice at
time of euthanasia and placed in 24-well plates. Lymph nodes
were then photographed using a desktop scanner at 1,200 dots
per inch. Lymph node areas in pixels were quantified using
Adobe Photoshop CC 2018.

Statistical Analysis
Errors bars denote SEM (n = 5 mice per group) unless
specified otherwise. Asterisks denote significant difference by
two-tailed unpaired Student’s t-test, ∗p < 0.05, ns or unlabeled,
not significant.

RESULTS

Antiviral Effects of ZOTEN/HSV-2 Cocktail
at the Primary Site of HSV-2 Infection
In order to maximize the virus neutralization potential of
ZOTEN and study its antiviral and immune benefits we decided
to generate a ZOTEN/HSV-2 cocktail by incubating the virus
[5 × 105 PFU of HSV-2 (strain 333)] with ZOTEN for 30min.
ZOTEN/HSV-2 was then used for the intravaginal infection of
BALB/c mice. To study the effects of the cocktail we created
4 treatment groups of mice: HSV-2 infected, mock infected,
ZOTEN/HSV-2 infected and ZOTEN/mock infected (Figure 1).
The animals were monitored daily and the antiviral effects
were measured for the next 7 days. To determine the presence
of productive virus at the primary site of infection and local
shedding of infectious virions, vaginal swabs were collected
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FIGURE 1 | Study design. 6–8 weeks old female BALB/c mice were infected with HSV-2 or mock infected in the presence or absence of ZOTEN. At 2 and 4 days

post infection (dpi), mice genitals were swabbed to detect viral shedding using a plaque assay. At 7 dpi, mice were euthanized, and vaginal tissues were extracted and

analyzed by histology, flow cytometry, and quantitative PCR (qPCR) to appreciate differences in cellular infiltration and local inflammation.

FIGURE 2 | ZOTEN treatment reduces viral shedding. (A) Plaque assay results from vaginal swabs at 2 and 4 dpi. Error bars indicate SEM (n = 5 per group). Asterisk

denotes significant difference by two-tailed unpaired Student’s t-test, *p < 0.05, ns, or unlabeled, not significant. (B) Representative images of crystal violet stained

plaque assay results. Zones of clearing are noted in samples from untreated HSV-2 infected mice, indicating presence of replicating virus.

following genital infection with the 4 groups mentioned above.
As shown in Figure 2, the viral titers recovered from these vaginal
swabs were significantly lower in ZOTEN/HSV-2 group at 2 days
post infection, with 4 out of 5 mice displaying no detectable virus.
These findings confirm the potent antiviral activity displayed
by ZOTEN and its ability to neutralize virus and decrease viral
shedding as early as 2 days post infection (Figures 2A,B).

ZOTEN/HSV-2 Infection Restricts Local
Inflammation and Cell Infiltration in Vaginal
Tissue
To assess disease development, tissue inflammation or damage
at the primary site of infection, vaginal tissue was excised
at 7 days post infection and analyzed by three methods:

histology, quantitative polymerase chain reaction (qPCR) and
flow cytometry (Figure 1). Hematoxylin and Eosin (H&E)
staining of the vaginal tissue was performed to quantify the
phenotypic development of infection as well as activation of
innate immune response (Figure 3A). It is evident that ZOTEN
treated mice exhibit decreased signs of immune cell infiltration
and inflammation, developing low or no apparent levels of
acute HSV-2 infection. The thickness of the epithelium in
ZOTEN/HSV-2 treated vaginal tissue is comparable to mock
infected, as opposed to the apparently inflamed epithelium and
increased cell infiltration in HSV-2 infected tissue. Looking
beyond the primary site of infection, draining lymph nodes were
also isolated to give an indication of the extent of the systemic
immune response generated in each group. Lymph nodes isolated
from HSV-2 infected mice were apparently larger than those of
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FIGURE 3 | Histological characterization of HSV-2 infection and ZOTEN treatment. (A) Representative images of hematoxylin and eosin stained vaginal tissue sections

harvested from mice at 7 days post infection. Tissue epithelium and stroma are indicated. Arrowhead in HSV-2 panel indicates tissue infiltration and inflammation

observed in infection. Images taken at 20X magnification. (B) Draining lymph nodes extracted at 7 days post infection. Areas of lymph nodes in pixels are quantified for

each group at right. Error bars indicate SEM. Asterisks denote significant difference by two-tailed unpaired Student’s t-test, *p < 0.05, ns, or unlabeled, not significant.

mock infected mice, regardless of whether they received ZOTEN
treatment (Figure 3B).

ZOTEN/HSV-2 Infected Female Mouse
Genitalia Show Signs of Reduced Local
Immune Response
Previously published work by our lab demonstrated ZOTEN’s
ability to exert adjuvant properties by showing increased levels
of CD4 and CD8+ T cells in isolated splenocytes in response
to ZOTEN treatment of HSV-2 infection (24). In this study,
we sought to understand the nature of the elicited immune
response at the primary site of infection and further identify
acute disease development. The isolated vaginal tissues of varying
treatment groups were subjected to flow cytometry and the
presence of various immune cells were detected (Figure 4). The
tissue was stained for CD45, Gr-1, CD3, CD49b, CD11c, and
F4/80 positive cells. CD45+, Gr-1+, and F4/80+ cells showed
trends of heightened levels in the presence of infection and
interestingly displayed a similar trend of decreased levels with
ZOTEN/HSV-2 treatment. CD45+ cells were significantly higher
in HSV-2 infected mice, in comparison to mock infected,
as well as ZOTEN/HSV-2 infected mice, in comparison to
ZOTEN/mock treatment group. Similarly, Gr-1+ cells were
detected at significantly higher levels in HSV-2 infected mice
when compared to mock infected. A decrease in infiltration
of Gr-1+ cells was observed between HSV-2 infected and
ZOTEN/HSV-2 infected mice and the amount of Gr-1+ cells
in the vaginal tissue of ZOTEN/HSV-2 infected cells were
comparable to mock and ZOTEN/mock infected mice. CD49b+

and CD11c+ cells increased upon HSV-2 infection but remained

at basal levels in the ZOTEN/HSV-2 group. Finally, relatively
similar levels of CD3+ cells were observed in the four treatment
groups. qPCR was also performed on the vaginal tissue to assess
levels of pro-inflammatory cytokine transcripts at the local site of
infection (Figure 5). While no discernible trends were observed
among IFN-α, IFN-β, TNF-α, and IL-6, there was a slight
decrease in IL-1β transcript levels in ZOTEN/HSV-2 infected
vaginal tissues further supporting the observation of decreased
local inflammation (Figure 5).

DISCUSSION

HSV-2 infection causes significant disease worldwide, putting
over 400 million people at risk of increased genital herpes
and lifelong viral persistence in latently infected cells (11).
HSV-2 most commonly results in painful ulcerations of
genital mucosa and skin as well as increased psychological
distress among carriers (19). HSV is also capable of infecting
the central nervous system resulting in more severe disease
development such as meningitis and encephalitis, which in
some cases may be fatal (31). More recently, HSV-2 has
received more attention as it has been associated with increased
risk of HIV acquisition, making it a more relevant and
critical virus to study (10, 32, 33). Current HSV-2 treatment
options are not optimal as they exhibit problematic features
such as developed drug resistance, toxicities and recurrences
of infection. The majority of FDA approved drugs target
the virus itself and are efficacious in restricting productive
viral replication, however they lack the ability to entirely
eliminate quiescent viral genomes and therefore cannot prevent
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FIGURE 4 | Flow cytometry analysis of immune cell infiltration into vaginal tissues. (A) Representative flow cytometry plots of APC anti-Gr-1 vs. FITC anti-CD45. Values

in gated regions indicate percentages of singlet non-debris events. (B) Quantification of flow cytometry analysis for CD45+ cells and Gr-1+ cells in vaginal tissues at 7

dpi. Error bars indicate SEM (n = 5 per group). (C) Quantification of flow cytometry analysis for CD3+, CD49b+, CD11c+, and F4/80+ cells in vaginal tissues at 7 dpi.

Error bars indicate SEM (n = 5 per group). Asterisks denote significant difference by two-tailed unpaired Student’s t-test, *p < 0.05, ns, or unlabeled, not significant.

reactivation from latency. Evidently, there is a critical need for
a protective vaccine or an immunotherapeutic with a novel
antiviral mechanism.

Viral survival in the host relies on the ability of the virus
to evade host detection of viral determinants, block immediate
host antiviral responses and induce responses favorable for its
replication and shedding (16, 17). HSV is known to subvert
various pathways in the cell such as DNA repair process,
type I interferon (IFN) signaling, cell death and proliferation
(17). Highly dynamic interactions between replicating HSV-
2 and host mediated processes, like local immune responses
in genital tissue, contribute to observed disease manifestations
and viral persistence. An example observed is the host enzyme,
heparanase, which has been identified as a key host protein
that drives tissue destruction and viral pathogenesis (34–37).
Exploiting tactics used by the virus in the host can provide an
effective anti-HSV microbicide.

A microbivac like ZOTEN demonstrates unique and diverse
antiviral mechanism that make it a great candidate for further
development into a treatment/vaccination for HSV-2 genital
infection. We have previously shown that ZOTEN traps the
virus, inhibiting viral entry into the cell and simultaneously
allowing for detection by immune cells such as antigen presenting
cells. ZOTEN enhances anti-HSV-2 immunity and T cell
responses and facilitates the development of memory T cells
as well as neutralizing antibody response, acting as an immune
booster (24, 38).

In this proof-of-concept study, we sought to elucidate short-
term tissue specific antiviral efficacy and immune effects of
a ZOTEN/HSV-2 cocktail. The cocktail helps to address two
important questions. It sheds light on the virus neutralization
potential of ZOTEN and more innovatively, shows its promise
as a live virus vaccine platform, which reduces infection
without compromising local immune responses. We studied
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FIGURE 5 | Local cytokine expression in infection and ZOTEN treatment. Quantification of key antiviral type I interferon and pro-inflammatory cytokine transcripts in

mice vaginal tissues. Copy numbers relative to b-actin are shown. Error bars indicate SEM (n = 5 per group).

the phenotype of infection, pathogenesis and resulting local
immune response following genital infection of female BALB/c
mice. The elicited immune response by ZOTEN/HSV-2 acts to
decrease local cell infiltration and inflammation and therefore
results in a global decrease of pathogenesis. To confirm this,
we created 4 treatment groups of mice: HSV-2 infected, mock
infected, ZOTEN/HSV-2 infected and ZOTEN/mock infected.
To maximize our understanding of the events occurring at the
primary site of infection, the excised vaginal tissue at 7 days post
infection was divided in to 3 equal pieces and each section was
subjected to different analysis.

First, we looked at the phenotype of infection by H&E
staining (Figure 3A). Representative images of each animal
group are shown with evident increased levels of cell infiltration,
tissue inflammation and damage in HSV-2 infected mice as
opposed to the other treatment groups. The vaginal epithelium of
ZOTEN/HSV-2 infected mice was comparable in thickness and
morphology as mock infected mice. Interestingly, ZOTEN/HSV-
2 infected mice exhibited significantly larger draining lymph
nodes than mock infected, comparable to HSV-2 infected mice
without treatment, leading us to believe that presence of ZOTEN
mediates an immune response similar to non-treated infection.
However, ZOTEN treatment more so triggers the development
of adaptive immunity and memory against the pathogen
(Figure 3B). While further studies are needed, it appears that
ZOTEN equips the host with heightened immune surveillance

against the virus, allowing it to fight off the infection while
minimizing the inevitable side effect of disease development by
innate immunity.

In hopes of better understanding the key players contributing
to the changes in local immune response upon ZOTEN
treatment, we looked at the different types of cells infiltrating
the vaginal tissue by flow cytometry. CD45, Gr-1, CD3, CD49b,
CD11c, and F4/80 were used as markers for leukocytes,
neutrophils, T lymphocytes, natural killer cells, dendritic
cells, and macrophages, respectively. A trend of decreased
infiltration of CD45+, Gr-1+, and F4/80+ cells was observed
in the vaginal tissue upon ZOTEN/HSV-2 genital infection.
ZOTEN also restored basal levels of CD49b+ and CD11c+

cells. It is understood that neutrophils (expressing Gr-1) are a
major component of the innate inflammatory infiltrate at the
primary site of herpes infection (18). The observed trends of
decreased CD45+ and Gr-1+ infiltrating cells in the vaginal
epithelium in addition to lower levels of proinflammatory
IL-1β transcripts further demonstrates the decreased local
inflammation observed in ZOTEN/HSV-2 infected mice
(Figures 4A,B, 5).

Tissue specific analysis of the application of ZOTEN has
allowed for better understanding of how the infection is
processed in the local tissue environment. HSV-2 infected mice,
in the presence or absence of a prior ZOTEN treatment,
demonstrate similar levels of activation of the immune system
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however differ drastically in phenotype of local infection. This
leads us to believe that while the immune response is activated
in the presence of ZOTEN, local inflammation is limited and
therefore clinical manifestations of infection are suppressed.
Therefore, ZOTEN acts to bolster the immune system and equip
the host with a better response to infection. ZOTEN shows to
be a practical solution for instant benefit as a microbicide and
future development of vaccine against HSV. In addition, our
studies show the promise that ZOTEN can be developed as a
live virus vaccine platform whereby the viral candidates for the
vaccine can be preincubated with ZOTEN and then delivered via
intravaginal or other routes. An optimized combination will not
cause infection but elicit a protective and/or therapeutic immune
response. While more studies are definitely needed, ZOTEN as
a live virus vaccine platform is another out-of-the-box strategy,
which may lead to new and more effective vaccine strategies.
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