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Lymphatic vessels are critical for clearing fluid and inflammatory cells from inflamed

tissues and also have roles in immune tolerance. Given the functional association

of the lymphatics with the immune system, lymphatic dysfunction may contribute to

the pathophysiology of rheumatic autoimmune diseases. Here we review the current

understanding of the role of lymphatics in the autoimmune diseases rheumatoid arthritis,

scleroderma, lupus, and dermatomyositis and consider the possibility that manual

therapies such as massage and acupuncture may be useful in improving lymphatic

function in autoimmune diseases.
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INTRODUCTION

As early as the Fourth century, Aristotle described lymphatic vessels as fibers positioned between
blood vessels and nerves, containing colorless liquid (1). While our understanding of the lymphatic
system has advanced since Aristotle’s time, the functional significance of the lymphatic network
to health and disease is still being unraveled. The lymphatic system is a network of vessels that
drains protein-rich lymph from the extracellular fluid, transports it through a series of lymph
nodes (LNs), and finally returns it to the bloodstream. Beyond their role in maintaining tissue
fluid homeostasis, lymphatic vessels are an important part of the immune system: they allow
transport of antigens from the periphery to LNs, where immune cells are primed, expanded,
and eventually transported to the site of inflammation (2, 3). In addition to ferrying lymph and
immune cells, the lymphatic system itself is directly involved in immunemodulation and induction
of tolerance to self-antigens (4, 5). Given the function of the lymphatic system in immunity,
lymphatic dysfunction may also contribute to the pathophysiology of autoimmune diseases. Here,
we review the current understanding of the lymphatic function within autoimmune disease. We
begin with a brief overview of the lymphatic system, discuss what is known about lymphatic
function in a number of rheumatic diseases, starting from the best studied to the least studied in
terms of lymphatic function, and conclude with a consideration of manual therapies as potential
approaches to improve lymphatic function in disease. Our goal is to bring more attention to this
under-explored, yet promising, area of study.

OVERVIEW OF THE LYMPHATIC SYSTEM

Lymphatic vessels form an extensive network throughout the body with the exception of only a
few tissues including bone, heart myocardium and skeletal muscles, as well as the parenchyma of
kidney, liver, and adrenal and thyroid glands. These exceptions either have little interstitial fluid or
have an alternative drainage system, such as fenestrated blood vessels (6).
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The lymphatic system is composed of initial lymphatic

capillaries that merge to form collecting lymphatic vessels. The
collecting vessels transport the lymph to and from a series of
LNs and eventually drain into the thoracic duct that connects to
the blood circulation by draining into the subclavian veins (6).
Lymphatic capillaries are blind-ended and are composed of a thin

layer of lymphatic endothelial cells (LECs) with discontinuous
basement membrane and “button-like” cell junctions, allowing
unidirectional flow of cells and fluid into the vessel (7). In
contrast to the capillaries, collecting lymphatic vessels (LVs)
have intraluminal valves that prevent backflow of lymphatic
fluid (8) and several perivascular layers of lymphatic muscle
cells, with characteristics of both smooth muscle cells and

cardiac striated muscle cells, that provide vascular tone and
rhythmic contractions of the vessels, enabling anti-gravity,
active fluid transportation (9, 10). Previously, distinguishing
blood endothelial cells from LECs was difficult. But recent
research identified several LEC-specific markers, including Lyve-
1, vascular endothelial growth factor receptor-3 (VEGFR-3),
podoplanin (PDPN), and Prox-1, among others, that enabled
tremendous advancements in the study of lymphatic vessel
development and function (11, 12).

Previous studies have shown that the systemic vasculature
can reabsorb up to 90% of extravasated water, while the
remaining 10% is absorbed by the lymphatic vessels (13).
However, congenital or acquired dysfunction of the lymphatic
system result not only in lymphedema and its sequalae such
as skin thickening, fibrosis, and adipose degeneration, but also
in poor immune function, susceptibility to infections, and
impaired wound healing, among other deleterious health effects
(8). These observations point at the greater role lymphatic
vessels have than simple fluid transportation. Literature has
shown that LECs directly affect immune cell activity in many
different ways, including secretion of transforming growth
factor-β (TGFβ) leading to suppression of dendritic cell (DC)
maturation (14); production of IL-7 to increase IL-2 sensitivity
in regulatory T cells to increase their immune-regulatory
function (15) and to sustain inflammation-induced lymphoid
follicles in disease (16); secretion of colony stimulating factor-1
(CSF-1) promoting differentiation, proliferation and survival of
macrophages that contribute to tumor growth (17). LECs also
present peripheral tissue antigens together with programmed
death-ligand-1 (PD-L1) leading to CD8+ T-cell response
inhibition (18) and modulate CD4+ T-cell response via low level
antigen presentation with MHC-II during inflammation (19).
That lymphatic dysfunction exacerbates autoimmune disease is
supported by the development of autoantibodies in mice lacking
dermal lymphatics (5). Understanding the lymphatic system
in the context of autoimmune diseases has the potential to
provide insight into disease mechanisms and new approaches
to treatment.

LYMPHATICS AND RHEUMATOID
ARTHRITIS

Rheumatoid arthritis (RA) is one of the most studied
autoimmune conditions, with regards to the role of lymphatics

in the context of disease. RA is an autoimmune systemic disease,
affecting 0.5–1% of the population, with its hallmark being
symmetric polyarthritis, usually with small-joint distribution
(20). Local lymph node enlargement was first described in
RA in 1896 (21), but it wasn’t until more specific markers of
the lymphatic system were discovered that its role could be
specifically investigated.

It is thought that together with the joint inflammation
occurring in RA, the local lymphatics undergo two stages of
alterations. As a response to the initial, pre-arthritic, synovial
inflammation, the lymphatics undergo an “expansion phase,”
whereby they increase their capacity to remove excess cellular
debris and inflammatory cells from the site of inflammation;
whether by lymphangiogenesis (22), or by increased lymphatic
vessel contraction frequency (23). This process is important to
allow for the resolution of the inflammatory process; if the
expansion process is stunted, by inhibition of lymphangiogenesis
for example, the joint inflammation becomes more severe and
clinical synovitis develops (24). Beyond the lymphatic vessel
changes, the draining lymph nodes themselves increase in size
during the expansion phase (23, 25), likely due to increased
volume and pressure of fluid within the afferent vessels (25),
intra-nodal lymphangiogenesis (23), and infiltration of a unique
subtype of IgM+CD23+CD21hiCD1dhi B cells found in inflamed
lymph nodes, known as Bin cells (26, 27). Nevertheless, while
the removal of the excess debris is important to allow for
inflammation resolution in the acute setting, the inflammatory
cells, and catabolic factors that are being removed have been
shown to directly damage the LECs and lymphatic muscle cells,
both in the afferent lymphatic vessels and the draining lymph
nodes (28). As a result of this ongoing stress on the lymphatic
system, the lymphatics progress to the “collapsed phase,” in which
the local lymphatic conduit system breaks down, and the lymph
node is no longer able to efficiently drain the fluid from the
inflamed synovium (24, 25). The lymphatic vessels are damaged,
with increased leakiness and reduced contractions, leading to
poor lymphatic clearance, and stasis of the inflammatory fluid
within the joint and the afferent lymphatic vessels (23, 28–
31). The process is thought to be mediated by several factors,
including inflammatory cytokines in the vessels triggering LEC
expression of inducible nitric oxide synthase (iNOS), as well as
iNOS-producing activated myeloid cells, now static within the
lymphatic vessels. The increased local NO production abrogates
the constitutive endothelial NOS (eNOS) activity that is an
important mediator of lymphatic vessel contraction (32, 33).
Reduced vessel contraction is likely also due to increased fluid
flow and pressure inside the vessels, beyond the vessels’ ability to
compensate (34, 35). At the same time, Bin cells in the draining
lymph node migrate from the lymph node follicles to the sinuses,
as extensively reviewed by Bouta et al. (31), leading to clogging
of lymph node sinuses and blocking passive lymphatic drainage.
The resulting impairment in lymphatic drainage contributes
to increased joint inflammation and synovial hyperplasia,
eventually leading to joint destruction (36). Importantly, known
and effective RA treatments, such as tumor necrosis factor (TNF)
inhibition and anti-CD20 therapy, have both shown to also
have a beneficial effect on lymphatic flow. Inhibition of TNF
has been shown to restore lymphatic vessel contractility (28),
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and anti-CD20 therapy, i.e., Rituximab, depletes Bin cells from
the lymphatic sinuses, thereby promoting the restoration of
lymphatic flow (37).

Preliminary work with indocyanine green near-infrared (ICG-
NIR) fluorescence imaging has been promising in providing
sensitive, real-time non-invasive means to evaluate the layout
and function of the lymphatic vasculature (31, 38, 39),
and the first study of lymphatic flow in RA patients with
this modality is currently being performed (ClinicalTrials.gov
NCT02680067). Meanwhile, the change in size of the local
draining lymph nodes has been shown to reflect joint
inflammatory activity, as well as response to therapy (40).
Even prior to clinical lymphadenopathy, evaluation of draining
lymph nodes of inflamed joints by power Doppler ultrasound
(PDUS), demonstrated hypertrophy of the lymph node cortex,
in addition to power Doppler signal amplification in cortical
and hilar regions likely indicating increased flow. Importantly,
these findings reversed with treatment (41). At the same time,
low PDUS signal at baseline despite active arthritis, likely
representing a collapsed lymph node, predicts poor clinical
response to therapy (40). Similarly, in a pilot study using contrast
enhanced MRI (CE-MRI) to monitor LN size before and after
treatment with Certolizumab in RA patients, there was an inverse
correlation between the extent of treatment-related pain relief
and decrease in LN size. The LNswith themore notable reduction
in size are the ones that are more likely to have undergone
collapse, leading to inadequate inflammation resolution and
reduced pain relief (42). Thus, in addition to providing an
important, non-invasive means by which to monitor disease
activity, response to therapy, and even predict prognosis; these
findings also support the bi-phasic lymphatic response model,
namely the “expansion phase” and “collapse phase,” seen in
murine models of inflammatory arthritis.

LYMPHATICS AND SYSTEMIC SCLEROSIS

Scleroderma is an autoimmune connective tissue disease
characterized by abnormalities in vasculature, immune function,
and extracellular matrix that ultimately manifest as fibrosis
of the cutaneous, vascular, musculoskeletal, gastrointestinal,
pulmonary, cardiac, and renal systems. Although the etiology of
the disease is poorly understood, vascular injury and abnormal
endothelial cell function are hypothesized to be among the
primary defects responsible for disease pathogenesis (43, 44).

Studies into vascular abnormalities leading to fibrosis have
generally been more focused on blood endothelial cells (BECs),
while the roles of LECs and lymphatic dysfunction have been
less well-studied. In 1999, Leu et al. first demonstrated using
lymphangiography that scleroderma lesional skin had signs of
lymphatic microangiopathy, with absence or fragmentation of
visualizable lymphatic networks and evidence of vessel leakiness
and backflow (45). Similar findings using immunohistochemical
staining of scleroderma skin recently showed a decrease in
lymphatic vessels and increased cross-sectional area of the
remaining vessels, suggesting vessel dilatation and a block
in lymphatic flow downstream (44). The changes were most
significant in the reticular dermis, with a similar trend found
in the papillary dermis. Lymphatic changes have been found in

other fibrosing conditions as well (Table 1), further supporting
the idea that lymphatic dysfunction may be a therapeutic target
in scleroderma.

LYMPHATICS AND SYSTEMIC LUPUS
ERYTHEMATOSUS AND
DERMATOMYOSITIS

Systemic lupus erythematosus (SLE) is the prototypical systemic
autoimmune disease, affecting between in 6.5 and 187 per
100,000 people worldwide, with a 9:1 female predominance and
mortality rate that is three times that of the general population
(57, 58). There have been no systematic studies of lymphatic
function in SLE to date. There are, however, hints that there
might be lymphatic dysfunction in SLE, as there are case reports
of chylous ascites or pleural effusions, lymph fluid found in the
abdomen or thoracic cavity, respectively, that can result from
lymphatic obstruction in the mesentery (59–62). Lymphedema
from peripheral lymphatic obstruction has also been described
(63). These occurrences are rare, however, and whether more
subtle problems with lymphatic flow that could perhaps result
from the lymphadenopathy commonly found in SLE (64, 65) are
not known.

Similarly, lymphatic function in dermatomyositis, a group of
autoimmune diseases primarily directed against the muscle and
skin (66), has not been systematically studied. Dermatomyositis
patients can rarely present with generalized edema, which
may reflect poor lymphatic function and lymphedema (67).
Gottron’s papules are characteristic red, raised lesions on the
knuckles of dermatomyositis patients, and one study examining
the histopathology of these papules noted dilated PDPN+

lymphatic vessels (68). Interestingly, benign lymphadenopathy
is less frequent in dermatomyositis than in SLE or RA, and,
because of the association of cancer with dermatomyositis in
adults, lymphadenopathy in dermatomyositis has to be evaluated
carefully for metastatic cancer or lymphomas (69).

POTENTIAL APPROACHES TO
IMPROVING LYMPHATIC FUNCTION IN
RHEUMATIC DISEASES: NEW AND
ANCIENT

As we begin to understand the role of lymphatic dysfunction
in autoimmune diseases, it is also time to consider how we
might improve lymphatic function as part of disease treatment.
Schwarz and colleagues have recently outlined molecularly
targeted therapies that are currently being investigated (31). In
contrast to pharmacologic approaches, manual therapies have
been used since ancient times and are currently the mainstay in
improving lymphatic flow in diseases. Below, we briefly discuss
some of these approaches to consider their potential utility in
improving lymphatic function in autoimmune diseases.

Lymphatic-directed massage techniques are used in the
treatment of primary and secondary forms of lymphedema, such
as that which occurs in the arms of 20% of breast cancer surgery
patients when axillary lymph nodes have been removed (70).
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TABLE 1 | Summary of lymphatic dysfunction in fibrosis of different organs.

Disease model Findings Mechanism/molecules involved References

LUNG FIBROSIS

Human lung Enlarged mediastinal lymph nodes (32% in SSc

vs. 2% controls)

(46)

• Increased alveolar lymphangiogenesis early

in the disease

• Lymphatic area directly proportional to the

severity of the disease

CD11b+ macrophages form LECs in

alveolar spaces of IPF patients but not

controls

(47)

Radiation-exposed mouse

lung

Progressive loss of pulmonary lymphatic

vessels

Increase in VEGF-C and D expressing

alveolar macrophages

(48)

SKIN FIBROSIS

Human Skin • Decreased lymphatic vessel counts in SSc

patients

• Inverse correlation between low vessel

counts with fingertip ulcers

(49)

Decreased density of reticular dermis lymphatic

vessels

(44)

Lymphatic microangiopathy (45, 50)

Mouse tail skin

radiation-induced fibrosis

Decrease in dermal capillary lymphatic vessels

and LEC

TGF-β signaling inhibition protects from

radiation-induced soft tissue fibrosis and

lymphatic dysfunction.

(51)

LIVER FIBROSIS

Sprague Dawley rat model Increased lymphatic diameter in CCl4 induced

fibrosis mice compared to control mice

(52)

Human liver • Increase in area of each lymphatic vessel

• Increase in number of lymphatic vessels

per section and directly proportional to the

fibrosis severity

(53)

RENAL AND PERITONEAL FIBROSIS

Human kidney • Presence of LEC in the tubulointerstitial

fibrotic lesions and not in control sample

• Lymphatic vessel proliferation in

tubulointerstitial fibrosis and inflammatory

interstitial areas, filled with mononuclear cells

in the lymphatic lumen

(54)

Unilateral Ureteral

Obstruction rat model

Increased lymphangiogenesis Increased TGF-β and VEGF-C expression (55)

Rat remnant kidney model • Massive proliferation of lymphatic vessels in

fibrotic tubulointerstitial regions.

• Mononuclear clusters in lymphatic vessels

(56)

SSc, systemic sclerosis; LEC, lymphatic endothelial cells; IPF, idiopathic pulmonary fibrosis; VEGF, vascular endothelial growth factor; TGF-β, transforming growth factor-beta.

Manual lymphatic drainage (MLD) is a specific light pressure
massage technique that moves from the trunk to the distal
portion of the affected limb to stimulate lymph flow away from
the peripheral tissue (71). Indeed, hand edema is observed in
systemic sclerosis patients in the early edematous phase, and
MLD has been shown to significantly reduce the swelling and
improve hand function in these patients (72). Similarly, a dry
brushing massage technique used in Ayurvedic medicine that
originated in India 5,000 years ago is meant to relieve lymphatic
congestion that is thought to contribute to stress and disease.
It has also been used to reduce lymphedema and inflammation
from lymphatic filariasis (73). Interestingly, the sports industry,
which has been interested in promoting post-training recovery
and reducing edema, is investigating the utility of peristaltic pulse
dynamic compression (PPDC) devices that simulate manual

lymphatic therapies. Recently, PPDC was shown to increase
the pressure-to-pain threshold in elite athletes (74) and also to
induce expression of anti-inflammatory genes (75), although it
is yet unclear whether these effects are attributable to improving
lymphatic flow. Potentially, then, lymphatic massage techniques
could be used to improve lymphatic function to help reduce tissue
inflammation in autoimmune diseases.

Interestingly, acupuncture, a component of traditional
Chinese medicine, may potentially have a lymphatic basis.
Acupoints are specific points on the body that practitioners target
in an attempt to mobilize stagnant qi, thought to be a form
of energy that flows through the meridian system and enhance
well-being (76). Recent analysis of acupoints demonstrates that
they co-localize with tissue planes rich in nerves, blood and
lymphatic vessels, and mast cells. Acupuncture involves insertion
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of metal needles into the skin and spinning the needle between
the acupuncturist’s fingers. It has been proposed that this process
disturbs local tissues and transmits a biomechanical signal
to surrounding cells and structures (77) that can stimulate
lymphatic vessels. Additionally, activation of the nerves or mast
cells in the area could result in release of vasoactive cytokines
that can then stimulate lymphatic vessels to better mobilize
fluid and inflammatory cells from the area (77–80). There
are observational trials showing efficacy of acupuncture on
breast cancer-associated lymphedema, supporting the idea that
acupuncture can modulate lymphatic function (81–83). A recent
randomized controlled trial examining the ability of acupuncture
to further reduce lymphedema on top of current standard
therapies such as lymphatic massage drainage and compression
sleeves did not show additional benefits (84). However, whether
acupuncture alone is at least as good as current standard therapies
is not yet known. It should be of interest to better study whether
acupuncture could modulate lymphatic function to aid in the
treatment of autoimmune diseases.

While the objective of these manual therapies in lymphedema
is to improve lymphatic flow and reduce inflammation and
swelling in the affected tissues, improving lymphatic flow has the
potential to also modulate immune cell activity in a number of
ways. First, as mentioned in section Overview of the Lymphatic
System, LECs can directly regulate immune cell function, and
stimulation of lymphatic flow can modulate the ability of LECs
to regulate immune cells (85). Second, lymphatic flow, by means
of transporting antigen from the periphery, can impact the
tolerance and activation of lymph node lymphocytes (5). Third,
cytokines expressed in peripheral tissues can impact immune
function in lymph nodes (86), potentially in part by lymphatic
transport to the lymph nodes (87). Here, it is possible that
cytokines transported to the draining nodes can both activate
and regulate lymph node responses, suggesting that improving
lymphatic flow can help reduce the duration and/or magnitude
of ongoing autoimmune responses. Thus, in the study mentioned
above examining the effects of MLD on hand edema in
scleroderma patients (72), it would be interesting to understand
whether MLD reduced autoantibody levels when edema was
reduced. Manual therapies to improve lymphatic flow, then,

may be a well-tolerated, relatively low-cost method to improve
many facets of lymphatic function to reduce inflammation and
autoimmunity in rheumatic diseases.

CONCLUSIONS AND FUTURE
DIRECTIONS

The lymphatic system has not been well-studied in autoimmune
diseases generally, but the existing evidence, especially in RA and,
to a more limited extent, in systemic sclerosis suggests that there
is at least dysfunction of lymphatic flow. Further studies focused
on the consequences of dysfunctional flow as well as alterations
in the direct effects of lymphatic vessels and LECs on innate
and adaptive immune cells should provide insights into how
best to target the lymphatics in autoimmune rheumatic diseases.
Additionally, understanding the causes of lymphatic dysfunction
in these diseases may help us better target upstream mediators
and perhaps reveal that lymphatic targeting is a mechanism
of action of some medications. Finally, as we consider new
approaches to targeting lymphatics in autoimmune diseases,
there may be value in better understanding older approaches in
the context of Twenty-First century biomedical understanding
of lymphatic and immune function to expand our therapeutic
armamentarium for autoimmune diseases.
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