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Mast cells (MC) are innate immune cells present in virtually all body tissues with key

roles in allergic disease and host defense. MCs recognize damage-associated molecular

patterns (DAMPs) through expression of multiple receptors including Toll-like receptors

and the IL-33 receptor ST2. MCs can be activated to degranulate and release pre-formed

mediators, to synthesize and secrete cytokines and chemokines without degranulation,

and/or to produce lipid mediators. MC numbers are generally increased at sites of

fibrosis. They are potent, resident, effector cells producing mediators that regulate the

fibrotic process. The nature of the secretory products produced by MCs depend on

micro-environmental signals and can be both pro- and anti-fibrotic. MCs have been

repeatedly implicated in the pathogenesis of cardiac fibrosis and in angiogenic responses

in hypoxic tissues, but these findings are controversial. Several rodent studies have

indicated a protective role for MCs. MC-deficient mice have been reported to have

poorer outcomes after coronary artery ligation and increased cardiac function upon MC

reconstitution. In contrast, MCs have also been implicated as key drivers of fibrosis.

MC stabilization during a hypertensive rat model and an atrial fibrillation mouse model

rescued associated fibrosis. Discrepancies in the literature could be related to problems

with mouse models of MC deficiency. To further complicate the issue, mice generally

have a much lower density of MCs in their cardiac tissue than humans, and as such

comparing MC deficient and MC containing mouse models is not necessarily reflective

of the role of MCs in human disease. In this review, we will evaluate the literature regarding

the role of MCs in cardiac fibrosis with an emphasis on what is known about MC

biology, in this context. MCs have been well-studied in allergic disease and multiple

pharmacological tools are available to regulate their function. We will identify potential

opportunities to manipulate human MC function and the impact of their mediators with a

view to preventing or reducing harmful fibrosis. Important therapeutic opportunities could

arise from increased understanding of the impact of such potent, resident immune cells,

with the ability to profoundly alter long term fibrotic processes.
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INTRODUCTION

Mast cells (MCs) are tissue-specific innate immune cells located
in sites throughout the body, including the heart (1). After

differentiation from hematopoietic stem cells along the myeloid
pathway, committed MC precursors which can be identified by

flow cytometry transiently travel through the blood and enter

into tissues to differentiate into a terminal tissue-specific MC
phenotype (2). Degranulated mast cells can be identified in

most species by their expression of c-Kit, FCεRI and mast cell
specific proteases. MCs are known as sentinel cells, surveying the
microenvironment and responding to stimuli via expression of
Pattern Recognition Receptors (PRRs) that detect Pathogen and
Damage-Associated Molecular Patterns (PAMPs and DAMPs)
(3, 4). MCs respond in several ways: (1) they can be activated
to degranulate and release stores of pre-formed mediators from
their characteristic granules, (2) they can synthesize and secrete
mediators de novo without degranulation, or (3) a combination
of degranulation and de novo synthesis can occur.

MC degranulation occurs not only in the context of
allergy (5), but also in viral infection (6, 7), skin burns (8),
fractures (9), and cardiac (10) and liver ischemia reperfusion
injury (11, 12). MC degranulation is associated with pro-
inflammatory effects, primarily due to release of histamine,
tumor necrosis factor [TNF], and proteases. MC granules
contain a plethora of mediators including, but not limited
to: MC-specific and non-specific proteases (tryptase, chymase,
cathepsin G), lysosomal enzymes (β-hexosaminidase), biogenic
amines (histamine, serotonin, dopamine), cytokines (TNF,
interleukin[IL]-4, IL-5), and growth factors (stem cell factor
[SCF], basic fibroblast growth factor [bFGF]) (13). Overall,
MC degranulation is an important contributor to inflammatory
processes in injury and infection.

MCs are multi-functional cells capable of discrete as well as
overwhelming responses and have ongoing immune regulatory
and sentinel roles. They can selectively secrete numerous
mediators that range from pro-inflammatory (IL-1β, IL-6,
interferon[IFN]-γ) to anti-inflammatory (IL-10, IL-13), as well
as pro-fibrotic (transforming growth factor-β1 [TGF-β1], bFGF)
and anti-fibrotic (vascular endothelial growth factor [VEGF], IL-
33, prostaglandin D2 [PGD2]) (14–17). Given the potential for
MCs to produce pro- and anti-fibrotic mediators, their role in
tissue remodeling is controversial. Local stimuli present after
tissue injury and during wound healing can result in vastly
different MC responses.

After myocardial infarction (MI), wound healing restores
function to damaged tissue. Fibrosis is the deposition of a
collagen-based scar mediated by fibroblasts, which differentiate
upon activation into myofibroblasts for collagen deposition.
Normally, fibrotic deposition is essential to restore proper
function, but excessive remodeling decreases contractility and
cardiac function leading to chronic heart failure (18–20). Cardiac
tissue resident MCs respond to DAMPs after injury to influence
the progression of cardiac remodeling. Yet the exact role of
MCs in cardiac fibrosis is controversial, as numerous studies
have ascribed detrimental, neutral and beneficial roles (Table 1).
Achieving a better understanding of how the multifaceted MC

response influences post-MI healing should increase the potential
to harness their activities and provide opportunities for therapy.

MAST CELLS AS ENHANCERS IN
CARDIAC FIBROSIS

MC degranulation products have important impacts on fibrosis
(Figure 1A), though exact cardiac degranulation stimuli are
not well-defined. MC chymase and tryptase generate the active
pro-fibrotic form of TGF-β1 from latent forms released by
MCs during degranulation, as well as what is present in the
microenvironment (44–51). TGF-β1 is important in fibrosis
through promotion of fibroblast activation, myofibroblast
differentiation and collagen synthesis (18, 19). MC tryptase
can directly induce these actions on fibroblasts independently
of TGF-β1 (52–57). In vitro, MC chymase induces TGF-β1
production by rat cardiac fibroblasts (58). Angiotensin II (AngII)
is a major mediator of fibrosis that activates fibroblasts to
the myofibroblast phenotype for proliferation and collagen
deposition (18, 19). MC chymase is an angiotensin converting
enzyme (ACE)-independent generator of AngII in humans, dogs
and mice (20, 47, 59–61). Studies employing ACE inhibition or
reduction of AngII show decreased cardiac fibrosis (62–65).

In addition to tryptase and chymase, MCs store bFGF in their
granules (3, 20, 45, 66), which, as its name suggests, is another
enhancer of fibrosis. MCs also serve as sources of TNF, which is
released during degranulation (13) and promotes cardiac fibrosis
via induction of cardiomyocyte apoptosis, inflammation and
MMP-9 production (67–70). Finally, MCs produce IL-1β during
degranulation (14), which promotes fibrotic remodeling of the
heart in a similar manner to TNF (70–74). Althoughmechanisms
of action are not well-elucidated, Wang et al. found that blocking
TNF and IL-1β reduced cardiac remodeling and cardiomyocyte
apoptosis following AngII-induced fibrosis (70).

Numerous studies have attempted to understand MC roles in
cardiac fibrosis in vivo (Table 1). Studies in rats, dogs and mice
have shown that inhibition of MC degranulation or chymase
activity reduces expression of fibrosis-associated genes and
collagen deposition inmodels of dilated cardiomyopathy (DCM),
ovariectomy-induced left ventricular diastolic dysfunction and
MI (22–24, 26, 29). These studies are limited in their assessment
of MC function exclusively through degranulation capacity, as
they did not assess MC involvement in fibrosis through de
novo mediator production. In a spontaneously hypertensive rat
(SHR) model, degranulation inhibition increased MC number
observed histologically, as well as myocardial IL-10 and IL-6
content, leading to improved outcomes and reduced fibrosis
compared to untreated SHR (30). MCs are well-established
sources of both IL-6 and IL-10 (14, 75). Therefore these
results could suggest a potential role for MCs independent
of degranulation.

Studies assessing MCs in cardiac fibrosis often analyze MC
density changes that occur during remodeling, concluding a
pro-fibrotic role. Studies in the mouse have demonstrated
peak increases in mast cells at 7 days post-MI which result
from increased infiltration of mast cell precursors identified as
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TABLE 1 | The role of mast cells in animal models of cardiac fibrosis.

Study Findings Confounder?

PRO-FIBROTIC

Zweifel et al. (21) Rat cardiac allograft model, fibrosis correlated to mucosal MC

density

Formaldehyde fixed tissue

Palaniyandi et al. (22) Rat dilated cardiomyopathy, degranulation inhibitor reduced

fibrosis and MC density

Formaldehyde fixed tissue, fibrosis associated with granulated MC

density

Kanemitsu et al. (23) Rat MI and left ventricular repair, chymase inhibition reduced

fibrosis-associated gene expression

None

Wang et al. (24) OVX rats, degranulation inhibition reduced collagen content and

MC density

Formaldehyde fixed, fibrosis associated with granulated MC density

Somasundaram et al. (25) Canine MI, MC density elevated 7–28 dpMI, associated with

increased inflammatory infiltration

Fibrosis associated with granulated MC density

Matsumoto et al. (26) Canine heart failure, chymase inhibition decreased type I and III

collagen gene expression

None

Luitel et al. (27) Murine pulmonary artery bypass, MC density, fibrosis, hypertrophy

increased 21 days post overload

Formaldehyde fixed, fibrosis associated with granulated MC density

Liao et al. (28) Murine transverse aortic constriction, disodium cromoglycate

reduced atrial fibrillation and associated fibrosis, reconstitution of

WT mice with W/Wv bone marrow decreased collagen content

Use of Kit-dependent MC deficient mice, formaldehyde fixed, fibrosis

associated with granulated MC density, improper use of disodium

cromoglycate

Wei et al. (29) Rat MI, chymase inhibition reduced hypertrophy, fibrosis, and

infarct size

None

Levick et al. (30) Spontaneously hypertensive rats, degranulation inhibition

decreased collagen volume fraction and improved outcomes

Telly’s fixative (contains formaldehyde and glacial acetic acid),

degranulation inhibition increased MC density and improved outcome

Akgul et al. (31) Human end stage cardiomyopathy, positive correlation between

MC and collagen content pre-LVAD that did not persist post-LVAD

Formaldehyde fixed

Dilsizian et al. (32) Human ischemic cardiomyopathy, MCs elevated in ischemic

patients

Formaldehyde fixed, fibrosis associated with granulated MC density

Batlle et al. (33) Human idiopathic dilated cardiomyopathy, positive correlation

between MC density and collagen content

Formaldehyde fixed

Roldão et al. (34) Human Chagas disease, MC chymase content positively

correlated to collagen content

Autopsy samples, no indication of fixative used

ANTI-FIBROTIC

Joseph et al. (35) Rat homocysteine-induced hypertrophy, Ws/Ws MC deficient rats

have increased fibrosis and collagen content

Kit-dependent MC deficiency, formaldehyde fixed

Shao et al. (36) Murine ischemic injury, W/Wv MC deficient mice had impaired

fractional shortening and increased scar size, MC transplantation

into the myocardium increased cardiac function, capillary density

and decreased scar size

Kit-dependent MC deficiency, no indication of fixative used

Kwon et al. (37) Rat MI, administration of low doses of MC granule content

increased capillary density and decreased fibrosis at infarct

No indication of fixative used

Nazari et al. (38) Murine MI, MCs injected into hearts of mice promoted

mesenchymal stem cell proliferation early after MI and reduced

fibrosis

No indication of fixative used

NEUTRAL

Briest et al. (39) Rat norepinephrine cardiac fibrosis, degranulation inhibition did

not impact collagen content or gene expression

None

Buckley et al. (40) Murine transverse aortic constriction, Wsh MC deficient mice had

no difference in fibrosis compared to WT

Kit-dependent MC deficiency, formaldehyde fixed (but didn’t assess

MC density)

Ngkelo et al. (41) Murine MI, Cpa3cre+/- mice had no difference in fibrosis compared

to WT

No indication of fixative used

Frangogiannis et al. (42) Human chronic ischemic LV dysfunction in LV samples from CABG

patients, no relationship between MC density and fibrosis

Formaldehyde fixed

Milei et al. (43) Human Chagas disease, no relationship between MC density and

fibrosis

No indication of fixative used nor of disease stage, controls were

autopsy samples

Lin−CD45+CD34+β7-integrin+FcγRII/III+ cells. Suchmast cell
increases were dependent on SCF (41), and are also associated
with a degree of local mast cell precursor proliferation within the
heart tissue. In canine MI and murine pulmonary artery bypass

models, increases in MC density occurred alongside increases in
inflammatory cell infiltration (25), fibrosis and cardiomyocyte
hypertrophy (27), but no mechanistic relationships were found.
Studies often only identify granulatedMC populations. Common
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FIGURE 1 | (A) Mast cell granule products are typically associated with fibrosis. Mast cell chymase converts Angiotensin I (AngI) to AngII independently of ACE. AngII

generation directly contributes to fibrosis by inducing differentiation of fibroblasts to myofibroblasts. Mast cell degranulation-derived TNF and IL-1β induce

cardiomyocyte apoptosis, MMP-9 production and inflammatory cell recruitment that enhances tissue remodeling. Mast cell tryptase can act directly on fibroblasts to

induce proliferation and differentiation to the myofibroblast phenotype. Tryptase and chymase both act on latent TGF-β to convert it to the active form, which also

induces fibroblast differentiation to the myofibroblast phenotype and collagen deposition. Additionally, mast cells release TGF-β upon degranulation, further

contributing to the activation and differentiation of fibroblasts. (B) Mast cell secretion products can protect against fibrosis. Mast cells can produce IL-13, which in the

presence of apoptotic neutrophils can induce M2c phenotype macrophages. M2c macrophages are associated with decreased fibrosis. IL-13 can also induce

proliferation of local cTRM via IL-4Rα signaling, which are known to be anti-fibrotic. Mast cells can also produce IL-10, which acts in the heart to decrease IL-1β and

TNF levels, reduce MMP-9 expression and activity, and increase capillary density to reduce fibrotic remodeling. IL-33, which is released by stressed cardiomyocytes

and fibroblasts, but can also be produced by mast cells, has been shown to protect cardiomyocytes and fibroblasts from death under hypoxic conditions. This results

in decreased inflammation and reduction in fibrosis. VEGF, which promotes angiogenesis and recapillarization of the cardiac tissue, is associated with reduced fibrosis

and is another mast cell product. Finally, CXCL10 has been shown to inhibit fibroblast migration into the myocardium and delay differentiation to the pro-fibrotic

myofibroblast phenotype. Figure created in BioRender.

immunohistochemical (IHC) techniques for MCs identify
granule-associated contents, ignoring populations of MCs that
are not granulated, either due to immaturity or recent granule
release. Additionally, MC degranulation releases SCF, a potent
growth and chemotactic factor for MCs (13, 76), resulting in local
proliferation (77) and recruitment (78). Therefore, increases in
MC density may be due to activation of MCs from degranulation
and not tissue damage.

In a transverse aortic constriction model (TAC),
reconstitution of irradiated WT mice with bone marrow
from W/Wv MC-deficient mice led to decreased collagen
content compared to WT bone marrow recipients (28). MCs
are radioresistant (79), therefore efficiency of MC removal after

irradiation must be assessed, and was not in this paper. In a rat
cardiac allograft model, fibrosis was positively correlated with
certain subsets of “mucosal” MCs (MMC) but not “connective
tissue”(CTMC) as defined by expression of mouse MCP-1
and MCP-2, respectively (21). This may reflect changes in
the maturity of MC populations at this site and the presence
of newly recruited cells. MC activation in atherosclerosis
was associated with plaque progression and destabilization
(80), which implicate MCs in promoting MI but does not
directly link them to later fibrotic changes. Overall, MCs
have the potential to promote cardiac fibrosis and increased
numbers of granulated MCs are often associated with fibrosis
in animal models, but mechanistic data is lacking. Care
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needs to be taken in experimental design to properly assess
MC contribution.

MAST CELLS AS INHIBITORS OF
CARDIAC FIBROSIS

MCs can synthesize and secrete a wide array of proteins
without degranulating, allowing them to manipulate the cardiac
microenvironment after ischemic damage or reperfusion injury
in the heart (Figure 1B). MCs produce a wide array of pro-
inflammatory cytokines and chemokines with proven roles in
the recruitment of immune cells (13, 14). Conversely, MCs
produce anti-inflammatory mediators such as IL-10 (75), IL-
13, and CXCL10. IL-10 is known to prevent excessive cardiac
remodeling via STAT3 activation and NF-κB suppression (81–
83). CXCL10 acts in the damaged myocardium independently
of CXCR3 to delay fibroblast migration and differentiation (84–
87). While not classically considered part of the anti-fibrotic
response, MCs can produce VEGF-A (13, 14), among other
important angiogenic mediators, which can increase capillary
density in damaged tissues and promote proper repair in cardiac
and hepatic fibrosis (88–90).

IL-13 is produced by MC in response to several stimuli
(14), including IL-33 (91). MCs express the IL-33 receptor
ST2 abundantly on their cell surface (92–95). IL-33 is released
by cardiomyocytes and fibroblasts after damage and also
produced by MCs themselves (14). IL-33 is known to promote
cardiomyocyte survival and reduces fibrosis after MI (96–98).
Some of these actions may be via IL-13 induction. IL-13 acts on
cardiac tissue resident macrophage (cTRM) populations, which
are seeded embryonically in the heart and display M2-associated
and anti-fibrotic phenotypes (99–102). cTRM self-renew and
expand their populations in response to sterile inflammation
and IL-4Rα signaling (103). Cardiac MC IL-13 production
could expand the cTRM population locally. IL-13 also reduces
expression of pro-inflammatory cytokines by infiltrating cells and
may impact efferocytosis, the clearance of apoptotic cells from
injured or inflamed tissues (104).

Anti-fibrotic roles of MCs have also been analyzed in vivo
(Table 1). MC-deficient rats and mice had reduced collagen
content compared to controls in models of homocysteine
induced hypertrophy and coronary artery ligation (CAL) (35),
while direct MC transplantation into the murine myocardium
post-CAL increased cardiac function, and capillary density
and decreased scar size (36). It is important to note that
traditional MC-deficient models (rat and mouse) involve
mutations in the gene for c-Kit (105), which encodes the SCF
receptor, a growth factor critical for MCs. This mutation also
reduces hematopoietic stem cells, germ cells and melanocytes,
among other effects (105). MC reconstitution experiments
should be performed to confirm observations are truly MC
dependent, though it is not practical in all models. Several
studies have focused on MC granule (MCG) contents in
fibrosis. Administration MCGS isolated from rat peritoneal
MCs to the myocardium during acute MI decreased fibrosis
and increased capillary density. In vitro MCG treatment of

cardiomyocytes promoted survival under hypoxic conditions
(37). MCG treatment of mesenchymal stem cells (MSC) in
vitro prevented TGF-β1 mediated transition of MSCs to
myofibroblasts in an alternative fibrotic pathway (38), even
though individual MC granule products chymase and tryptase
are pro-fibrotic. While there is limited evidence showing MCs
are protective during cardiac fibrosis, these studies indicate that
MC can have an anti-fibrotic role and could potentially be
targeted therapeutically.

MAST CELLS AS BYSTANDERS IN
CARDIAC FIBROSIS

Several studies suggest MCs do not influence cardiac fibrosis
(Table 1). In a norepinephrine model, rats treated with
degranulation inhibitor disodium cromoglycate had comparable
collagen and Col1 mRNA content compared to untreated rats,
therefore MCs were thought to be irrelevant (39). However,
degranulation inhibition would have little impact on MC
production of fibrosis regulating mediators. TAC of Wsh MC-
deficient mice, another Kit-dependent deficiency model, resulted
in hypertrophy and impaired cardiac function, but equivalent
fibrosis compared to WT mice (40). Ngkelo et al. compared
a newly developed MC-deficient mouse strain to a classical
c-Kit mutation-dependent model. W/Wv mice and WT mice
treated with disodium cromoglycate underwent MI, resulting
in increased fibrosis and infarct size. Upon utilization of
MC-deficient Cpa3Cre/+ mouse model, a more MC-specific
deficiency, no difference in fibrosis was observed. Rather, MCs
were important in myofilament Ca2+ sensitization and cardiac
contractility (41). It remains problematic that animal models
for cardiac fibrosis are limited in their ability to mimic chronic
fibrotic changes seen clinically. Several potential factors in
experimental design may also contribute to discrepancies in
animal models that will be discussed herein.

RELEVANCE OF RESEARCH IN HUMAN
CARDIAC FIBROSIS

Similar to animal models, data on MC involvement in human
cardiac fibrosis is inconsistent (Table 1). Several human studies
of cardiovascular disease have equated increases in MC density
to a detrimental role in fibrotic remodeling without a clear
functional relationship between the two variables (31, 32, 106).
Positive correlations were observed between MC density and
collagen content in human idiopathic dilated cardiomyopathy
(33), end stage cardiomyopathy (31), and Chagas disease (34).
It remains unclear whether this is a protective response,
epiphenomenon or pathological process. Studies also indicate
that MCs have no role in human cardiac fibrosis in data from
patients with ischemic LV dysfunction (42) and Chagas disease
(43). Overall, data varies as to the role of MCs in human
cardiac fibrosis.

Human cardiac tissue is difficult to obtain and usually received
as a biopsy or autopsy sample. Biopsy samples are limited in
their location and tissue volume, while autopsy samples are
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often delayed in being treated appropriately to preserve MC.
Normal control tissues are even more difficult to obtain than
diseased. Future human cardiac fibrosis studies should aim to
better characterize the role of MCs in disease and expand analysis
beyond histological characteristics to gain mechanistic insights
necessary to design new therapeutic strategies.

CONFOUNDING FACTORS IN MAST CELL
CARDIAC FIBROSIS RESEARCH

The role of MCs in cardiac fibrosis is contentious, although
it is clear they have the potential to modify fibrotic responses
and tissue repair. There are several potential reasons for
observed discrepancies. First, mice are not an ideal model
to study cardiac MCs. Unlike rats and dogs, mice have
low heart MC content. Dogs on average have 6.8 ± 1.6
cardiac MCs/mm2, while C57BL/6 mice have 0.6 ± 0.2
cardiac MCs/mm2 (107). Data shows that MC density increases
in murine hearts after damage (22, 28, 30, 33, 76, 108,
109), but it is unclear if statistically significant increases in
MC content have physiological relevance, or that murine
cardiac MC responses mirror those in humans. Recent
evidence suggests that the distribution of mast cells in
the hearts of mice also differs considerably from that in
humans (110).

Second, there is widespread improper use of MC stabilizing
agents. Disodium cromoglycate is used to inhibit MC
degranulation in mice and rats. However, while disodium
cromoglycate can inhibit IgE-dependent MC degranulation
in rats, it does not inhibit this response in mice at similar or
higher doses (111). This calls into question the validity of studies
in which disodium cromoglycate has been used to treat mice.
MC stabilization drugs only prevent calcium-dependent MC
degranulation, but MC secretion of mediators independently of
degranulation is not impeded.

Third, mouse models of MC deficiency involving mutations
in c-Kit result in a lack of hematopoietic stem cells, germ cells,
and melanocytes, among others (105). The advent of several Kit-
independent models of MC deficiency have allowed researchers
to determine if lack of MCs impacts the pathogenesis of various
diseases, or if differences are due to deficiencies in other areas.
Preferable models include Cpa3Cre/+ and Cpa3-Cre; Mcl-1fl/fl

mice. Discrepancies are already starting to appear (41, 112, 113),
suggesting that increases or decreases in density of numerous cell
types in Kit-dependent models contribute more to disease than
lackingMCs. Reconstitution experiments help in this respect, but
only if appropriate reconstitution can be achieved, which is not
always possible.

Finally, tissue fixation for MC staining greatly impacts the
ability to visualize MCs. The aldehyde tissue fixation does not
allow for proper visualization of MCs, but reduces detection
of MCs by 57–49% depending on the IHC method. Proper
identification of MCs via IHC requires fixation with Carnoy’s
fixative to fully visualize MCs in tissue (114). Care needs to
be taken in designing studies of MCs in cardiac fibrosis, with
consideration given to the variety of actions of these cells and the
difficulty of their experimental manipulation.

THERAPEUTIC APPROACHES

There are discrepancies as to the exact role of MCs in cardiac
fibrosis, but it is clear that these cells have the potential to
promote or protect against remodeling in the myocardium. MCs
have been reported in numerous studies to be increased at sites of
fibrosis (21, 25, 27, 33, 41, 76) and are a rich source of selectively
induced regulatory mediators, making them a powerful target for
manipulation of the remodeling myocardium. Stem cell therapies
are an emerging area of research to promote cardiac regeneration
after damage. Adenoviral gene transfer of SCF into pig andmouse
myocardium increased c-Kit+ cells following MI, and reduced
fibrosis (115, 116). Direct myocardial injection of SCF following
MI increased recruitment of Lin−/c-Kit+ cells to the heart and
promoted wound healing (117). SCF is thought to recruit and
induce proliferation of cardiac cells (CSC), c-Kit+ bone marrow
cells that regenerate damaged tissue (118, 119).

However, few efforts have been made to differentiate CSCs
from MCs in cardiac tissue, often only identifying Lin−/c-Kit+

cells and assessing CD45 expression (116). Recent evidence
suggests that in human hearts, the vast majority of c-Kit+ cells are
tryptase+ with weak/low CD45+ (120), indicating these are MCs,
not CSCs. Benefits conferred by SCF expansion of c-Kit+ cells
could therefore be due to expansion of MC populations instead.

MC degranulation products are pro-fibrotic through
several pathways (44–49, 52–57) (Figure 1A). Inhibiting
MC degranulation or actions of MC-associated proteases
promotes proper wound healing after myocardial damage
(23, 26, 29, 30). MC stabilizing drugs, such as ketotifen and
disodium cromoglycate, have been used in human subjects
(121–125). MCs express a wide array of receptors that can be
targeted for activation and secretion of chemokines, growth
factors, and cytokines (13, 14) without degranulation (3, 4, 126).
MC activation with IL-33 via ST2 results in production of
several cytokines that may protect against remodeling (91).
Examples include the aforementioned beneficial roles of IL-13
and VEGF-A. Additionally, MCs could be targeted to produce
IL-33, which is known to be present in the injured myocardium
and is associated with improved outcomes post MI (96–98, 127).
Induction of MC IL-10 production in combination with
degranulation inhibition could limit excessive production of
AngII and TGF-β1 while dampening excessive remodeling
processes through IL-10 inhibition of NF-κB and activation of
STAT3 (81, 83). Given that MCs respond to DAMPs (e.g., IL-33)
by producing mediators that are beneficial in fibrosis, blocking
degranulation alone could allow them to exert beneficial effects
without further stimulation that has the potential to be off target.
Future studies should focus on elucidating mechanisms by which
cardiac MC respond to DAMPs in situ, as well as the potential
of a dual function therapy that blocks MC degranulation and
promotes beneficial mediator production to fully harness the
power of these cells.

CONCLUSION

Overall, the role of MCs in cardiac fibrosis is still not well-
understood. Discrepancies exist within and between animal
models, and in vitro data indicates a potential for pro- and
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anti-fibrotic activity. Future studies into the role of MCs in
cardiac fibrosis should be carefully designed to use animal models
with appropriate MC content and accurate MC deficiencies with
confirmation by MC reconstitution. MC stabilizing drugs should
also be employed with appropriate species activity. Effort should
be made wherever possible to expand on the current breadth
of knowledge in human patient samples, as cardiac tissue is
underused but potentially valuable. Human in vitromodels could
also be employed more effectively since primary human MCs
can be readily generated. MCs are situated in cardiac tissue in
close proximity to the remodeling myocardium and represent
a valuable target for therapeutic manipulation following cardiac
damage when we have the necessary information to more reliably
predict the impact of such interventions in the human cardiac
setting. A better understanding of their role and activities is
urgently needed to move forward in this field.
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