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Group 2 innate lymphoid cells (ILC2s) were first discovered in experimental studies of

intestinal helminth infection—and much of our current knowledge of ILC2 activation and

function is based on the use of these models. It is perhaps not surprising therefore

that these cells have also been found to play a key role in mediating protection

against these large multicellular parasites. ILC2s have been intensively studied over

the last decade, and are known to respond quickly and robustly to the presence

of helminths—both by increasing in number and producing type 2 cytokines. These

mediators function to activate and repair epithelial barriers, to recruit other innate cells

such as eosinophils, and to help activate T helper 2 cells. More recent investigations

have focused on the mechanisms by which the host senses helminth parasites to

activate ILC2s. Such studies have identified novel stromal cell types as being involved

in this process—including intestinal tuft cells and enteric neurons, which respond to

the presence of helminths and activate ILC2s by producing IL-25 and Neuromedin,

respectively. In the current review, we will outline the latest insights into ILC2 activation

and discuss the requirement for—or redundancy of—ILC2s in providing protective

immunity against intestinal helminth parasites.
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INTRODUCTION

Intestinal helminths have co-evolved with mammals and constitute a diverse but extremely
successful group of pathogens infecting over one billion people worldwide, mostly in impoverished
countries (1). Three main laboratory models of intestinal helminth infection have been
used to study Group 2 Innate Lymphoid Cells (ILC2s). Two of these are rodent parasites
(namelyNippostrongylus brasiliensis (Nb) andHeligmosomoides polygyrus (Hp)), thatmodel human
hookworm infection (2). Nb has a short life-cycle, that unlike its human counterpart causes
only an acute infection, but nicely mimics the infectious lifecycle of the human hookworms by
migrating from the skin to the lungs by the bloodstream, before being coughed up to finish its
life cycle in the small intestine (2). Hp in the contrary, is a strictly enteric parasite, however like
most human helminths this parasite establishes a chronic infection in its host and is strongly
immuno-modulatory (2). The third model species, Trichuris muris (Tm) is used as a model of
human whipworm infection, and is a non-migrating parasite that resides in the lumen of the large
intestine (3).
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Despite the diversity both in terms of biology of helminths,
and their lifecycle within their host, the mammalian immune
response against these parasites is remarkably conserved and
is dominated by a type 2 cell mediated response, which
is characterized by IgE antibody production, eosinophilia,
mastocytosis, and the differentiation of type 2 macrophages (M2,
activated either by IL-4 or IL-13) in response to the production of
the canonical type 2 cytokines interleukin-4 (IL-4), IL-5, and IL-
13 (4). More recently, the discovery of ILC2s, has forced us to re-
evaluate the paradigm of what constitutes a protective immune
response against these parasites.

ILC2s were first identified in 2010 as non T cell receptor
(TCR) non B cell receptor (BCR) bearing cells that are enriched
at mucosal sites of Nb infected mice (5). These innate cells
were initially described as IL-25 responsive, and subsequently
called ILC2 in a series of later publications that showed the
importance of ILC2s for immune protection against helminths
in primary infection (6–8). ILC2s are now understood to form
part of a greater population of innate lymphoid cells, which
also encompasses ILC1s and ILC3s, and are defined as lacking
lineage markers (markers that define T cells, B cells, NK cells,
myeloid cells, granulocytes, dendritic cells, and hematopoietic
stem cells) in addition to expressing the transcription factors
Gata-3 and (Retinoic Acid Receptor- Related Orphan Receptor
Alpha) ROR-α (9). ILCs all originate from a common helper-like
innate lymphoid precursor (CHILP) (10), whose development
is regulated by Notch signaling and IL-7 (8, 11, 12). Id2, an
inhibitor of E protein transcription factors, was been shown to be
indispensable for ILC differentiation (6, 13). The factors driving
the specific differentiation of ILC2s is still unclear, however it
involves passage through an intermediate stage termed an ILC2-
specific progenitor (ILC2P) (9). ILC2s express a variety of surface
markers—most notably Chemoattractant Receptor-homologous
molecule expressed on TH2 cells (CRTH2) (14), suppression of
tumorigenicity 2 (ST-2), IL-17RB, CD127, CD80, MHCII and
CD25, and produce the type 2 cytokines IL-13 and IL-5, as well
as amphiregulin (8, 15).

Although early studies referred to ILC2s as a single
population, these cells have more recently been described to
exist as several subsets, termed natural (or tissue resident) ILC2s
(nILC2s) and inflammatory ILC2s (iILC2s) (16). nILC2s are IL-
33 responsive, express high levels of ST-2 and are not found
in the circulation. By contrast iILC2s express high levels of
Killer cell lectin-like receptor G1 (KLRG1) and IL-17RB, but low
levels of ST2, and arise in response to IL-25 (16). Functional
differences between iILC2s and nILC2s also exist, with iILC2s
being described to produce more IL-13, whilst nILC2s exhibit a
pro-repair phenotype and release IL-9 (16, 17). Plasticity between
these subsets have been described with Notch ligands shown to
promote the switch from nILC2 to iILC2 (12). Interestingly, the
local microenvironment of the tissue or organ may influence the
subset of ILC2s present. This hypothesis was recently confirmed
by Huang and colleagues who reported that iILC2s expanded
in the small intestine in response to helminth infection or
exogenous IL-25 delivered intraperitoneally, but that intranasal
administration of exogenous IL-25 did not induce iILC2s in
the lungs (18). The authors hypothesized that iILC2s precursors

are present in the small intestine, but not the lungs (18).
Nevertheless, those iILC2s generated in the intestine were able to
migrate to other organs, including the lungs, as demonstrated by
elegant parabiosis experiments by the same authors (18). ILC2s
from various tissue have a unique signature at steady state, as
shown by single cells transcriptomic of ILC2s from gut, lung,
skin and bone marrow (19). Furthermore, that different ILC2
subsets, or precursor subsets, may reside in different organs is
supported by a recent study which intranasal administration
of a unadjuvanted Fowlpox virus (FPV)-HIV vaccine caused
nILC2s expansion locally within the lungs, whilst intramuscular
administration of the same vaccine caused an expansion of
iILC2s (20). Given that the existence of distinct ILC2 subsets is
a relatively new finding we still have much to learn about its
functional relevance and the majority of the literature discussed
in this review reports work investigating ILC2s as a whole
population rather than as distinct subpopulations.

Whilst the expansion and activation of ILC2s is likely to be
beneficial for those living in regions endemic for helminths, their
activity is more commonly associated with immune pathologies
for those living in developed countries. These pathologies include
airway hyperreactivity (21), allergen-induced lung inflammation
(22, 23), and atopic dermatitis (24). Thus, an improved
understanding of ILC2 activation and regulation is of great
importance for human health. As a consequence, progress in this
field demands that we understand the mechanisms involved in
the activation and regulation of ILC2s as well as elucidating their
full function. This review will focus on outlining the known role
of helminth infection in promoting ILC2 activation, in addition
to discussing their known functions during helminth infection.
Specific attention will be given to the array of recent advances
that have been reported using helminth models to study ILC2
function. Lastly, we outline what we believe are the most pressing
questions for future research in this area.

THE ACTIVATION AND REGULATION
OF ILC2S

Early and recent studies described the activation of ILC2s by a
surprising array of stimuli including helminths, allergens, certain
bacteria and even endogenous host molecules (8, 25–27). This
is perhaps not surprising as it is now clear that ILC2s become
activated in response to factors released by both stromal and
immune cell populations in response to stress or tissue damage
(as outlined below and in Figure 1). In the following paragraphs,
we will discuss those pathways associated with the activation or
regulation of ILC2 function to date.

Epithelial Cell Production of Alarmins
Alarmins, namely Interleukin-33 (IL-33), IL-25, and Thymic
stromal lymphopoietin (TSLP), can be released from a variety of
cells, but are especially rich within epithelial cells present in the
skin and mucosal tissues (28–32). These cytokines cause both the
proliferation and activation of ILC2s and are particularly good at
eliciting the production of IL-13 and IL-5 (33), with some reports
also detailing release of IL-4 or IL-9 in mice (17, 27, 33, 34). The
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FIGURE 1 | In response to various stimuli such as infection or injury, mucosal epithelial barriers express a range of signals that ILC2s can integrate. The most studied

and thought to be of utmost importance pathway of activation of ILC2 is formed by the “alarmins,” IL-33, TSLP, and IL-25 that cause release of the canonical IL-13,

IL-5, and amphiregulin cytokines expression. Upon damage, necrotic epithelial cells can release IL-33 while apoptotic epithelial cells, can release ATP, that further

activates mast cells to release IL-33. Alternatively, epithelial cells can release TSLP or the newly identified and specialized chemosensory epithelial cells, namely tuft

cells, can release IL-25. Recently mucosal sensory nervous system has been shown to detect helminths and protists and release in response Neuromedin (Nmu) or

vasoactive intestinal polypeptide (VIP) that can both activates by themselves ILC2s or synergise with alarmins to potentiate ILC2 response. Finally, some cytokines and

lipid mediators have emerged as potential controllers of ILC2s, with the prostaglandin PGI2 and the lipoxin LXA4 limiting ILC2 cytokines release, while the prostaglandin

PGD2 and the leukotriene LTD4 can potentiate the same cytokine expression. The regulatory IL-27 cytokines as well as Interferon (IFN)g can dampen ILC2 activation.

relative importance of each alarmin in ILC2 activation has been
extensively studied, but still forms an incomplete picture. Studies
suggest that IL-33 is more potent that TSLP or IL-25 at inducing
ILC2s in the context of allergic airway inflammation (35).
However, in the context of atopic dermatitis both TSLP and IL-
33 have been shown to play a crucial role in ILC2 activation and
pathology development, with TSLP specifically controlling the
itch response (29) and IL-33 being more important for causing
the “atopic march” (typical progression of allergic disease going
from atopic dermatitis, to food allergy, rhinitis, and asthma) (36).
Lastly, redundancy between all three cytokines has been observed
in the context of fibrosis and chronic intestinal inflammation
(37). Interestingly, TSLP and IL-33 can act in a synergistic
manner during the host response to chitin stimulation, with the
combination of alarmins acting to potentiate type 2 cytokine

production by ILC2 (35). Such synergy was also observed for
human ILC2s cultured in vitro, where the presence of two or three
alarmins together promoted ILC2 proliferation and survival, and
cytokine production (38). The presence of TSLP as a member of
the “alarmin cocktail” was deemed to be of particular importance
(38). Although the ability of all three alarmins to participate in
ILC2 activation may at first be confusing, it has been proposed
that the relative importance of each alarmin is related to the
specific tissue, infection or pathology in which the ILC2 response
is involved (39). This view suggests that the three alarmins do
not act in a purely redundant, or even synergistic manner, but
that the relative levels of each alarmin found within a given tissue
may act to match the ILC2 response to environment in which it is
present. In line with this view, IL-33 has been reported to mediate
the activation nILC2s, whilst IL-25 preferentially elicits iILC2
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activation (16). However, to date the full implications of these
findings in terms of protective immunity or immune-pathology
remain unclear.

All three alarmins are released by epithelial cells, although
to varying amounts within distinct mucosal tissues. TSLP and
IL-33 can be released by alveolar epithelial cells type II in the
respiratory tract, by keratinocytes in the skin or by epithelial cells
in the intestine. IL-33 is expressed by fibroblast reticular cells
(28, 40) in lymphoid organs and myofibroblasts in the intestine
(33). Endothelial cells in the spleen and lymph-nodes, as well as
in the intestine under inflammatory conditions have been shown
to be another source of IL-33 (28, 40). In human, it has recently
been described that endothelial cells, rather than epithelial cells
in the lungs release IL-33 (41, 42).

By contrast IL-25 production appears to be restricted to a
specialized chemosensory epithelial cells, called tuft cells (30, 32,
43). These cells, which are also commonly referred to as “brush”
cells, are found in the epithelium of various organs including
the intestine and respiratory tract (44). In the intestine, tuft-
cell-derived IL-25 elicits IL-13 release by ILC2s, which in turn
promotes the further expansion of IL-25 producing tuft cells, in a
feed-forward amplification of the type 2 immune response (32).
Of note, expansion of intestinal tuft cells in response to Tm and
Nb infection has been shown to be dependent on chemosensory
taste receptors, most notably on the transient receptor potential
cation channel, subfamily M, member 5 (Trpm5) (30, 45) which
causes release of acetylcholine and activation of nearby vagal
nerve fibers (46). Employing a single cell RNA sequencing
approach, Haber and colleagues recently showed that intestinal
tuft cells constitute a heterogeneous population, with two main
subtypes identified (47). Both subsets expressed IL-25, but only
one also expressed TSLP (andwas also CD45+). Interestingly, the
TSLP+ tuft cell population was specifically expanded following
Hp infection (47). These data raise the question as to whether
tuft cells respond differently to distinct stimuli and whether they
can also promote ILC2 activation via TSLP. In the respiratory
tract brush cells were shown to be activated by leukotrienes in
response to Alternaria to release IL-25, which in turn activated
ILC2s (48, 49). Unlike what has been described for intestinal
tuft cells (30), respiratory brush cell hyperplasia was found to
be STAT6 independent (48). Whether this difference is due to
the tissue location of the cells, or to the source of the stimuli
remains unclear.

The tuft cell/ILC2 expansion loop in helminth infection is now
well established, but what triggers helminth recognition by tuft
cells remains unclear. Recent work elegantly demonstrated that
protists can be detected by tuft cells by virtue of their secretion of
the metabolic product succinate (50). Surprisingly, however, even
though Nb was shown to produce succinate, the tuft response to
Nb infection was succinate independent, indicating the presence
of an alternative stimulatory signal from this parasite (32, 50, 51).
Another open question is whether negative regulators of the tuft
cell-ILC2 feed-forward loop exist. In this regard, it was recently
described that A20 (Tnfaip3) expression by ILC2s is a negative
regulator of their expansion in response to IL-25 release by tuft
cells in the intestine (50). Of interest, mice deficient for A20
within ILC2s exhibited intestinal crypt hypertrophy, thickening

of the surrounding muscularis and an increased frequency of
secretory cells, which are all features observed following helminth
infection of wildtype mice (50).

Nervous System
Sensory neurons have recently been shown by several groups
(10, 52, 53) to contribute to the activation of an ILC2 response.
The possibility that neurons may play a role in ILC2 activation
was first raised by the finding that ILC2s expressed high levels
of the Neuromedin U receptor 1 (Nmur1) (52). Nmur1 can
be stimulated by its ligand, Neuromedin U (Nmu), which is
typically expressed by cholinergic enteric neurons. Moreover,
ILC2s have been reported to form close associations with Nmu+
neurons in both the lungs and intestine (52). Stimulation of
ILC2s with Neuromedin U caused their prompt proliferation as
well as eliciting expression of the type 2 cytokines IL-5, IL-13,
the growth factors amphiregulin and colony stimulating factor
2 (Csf2) (10, 52). Interestingly, the response of ILC2s to Nmu
was found to be more rapid than that observed for IL-33 or
IL-25, suggesting that the neuronal/immune pathway could be
a precocious threat sensor, activated even before the onset of
tissue damage. In keeping with this hypothesis enteric neurons
were shown to directly release Nmu in response to helminth
products (52). That neuronal-ILC2 interactions play a functional
role in helminth immunity was demonstrated by the more rapid
expulsion of adult worms in Nb infected animals administered
exogenous recombinant Nmu. NmU administration was also
found to potentiate the response of ILC2s to IL-25, and to a
lesser extent IL-33, as determined by IL-13 and IL-5 production
in vitro (54). Synergy between Nmu and IL-25 was confirmed
in vivo using an allergic airway inflammation model, with co-
treatment increasing IL-13 and IL-5 level and eosinophils in the
bronchoalveolar lavage (54). Furthermore, an in vivo synergistic
role for IL-33 is also likely as Nmu deficient mice failed to
exhibit increased numbers of ST2+ ILC2s (or nILC2s) in the
lung of allergen challenged animals (54). Nmu release is not
the only means by which neurons interact with ILC2s as a
study investigating experimental allergic airway inflammation
demonstrated a role for vasoactive intestinal peptide (VIP)
in stimulating IL-5 release from ILC2s. VIP is produced by
pulmonary neurons and can bind to the vasoactive intestinal
peptide receptor 2 (VPAC2) present on ILC2s (53). Interestingly,
IL-5 can in turn stimulate the release of VIP by sensory neurons,
in yet another example of a feed-forward loop acting to amplify
the type 2 immune response (53).

Cytokines Other Than Alarmins
In both mouse and human, ILC2s express high levels of the
tumor necrosis factor (TNF)-receptor superfamily member DR3
(TNFRSF25). Administration of recombinant TL1A, a DR3
ligand, induced ILC2 expansion and DR3 deficient mice are
unable to expel Nb -highlighting this cytokine as a possible
positive regulator of ILC2 function (55, 56). ILC2s can also
respond to Transforming growth factor (TGF)-β, however the
outcome of the response remains unclear. Epidermal-derived
TGF-β has been shown to enhance ILC2 recruitment and IL-
13 expression in the lungs after house dust mite exposure (57).
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By contrast TGF-β and IL-10 release by Tregs can suppress the
production of type 2 cytokines by ILC2s in vitro and in vivo in
an ovalbumin model of pulmonary allergy—although it did not
impact on the proliferation and survival of these cells (58, 59).
Given the contradictory nature of these reports more studies
will be required to fully understand the impact of TGF-β on
ILC2 function. Recently, skin ILC2s have been shown to be IL-
18 responsive in vitro, causing IL-5 and IL-13 expression in these
cells. This finding was further confirmed in vivo in an MC903
atopic like skin inflammation model, in which IL-18 deficient
mice exhibit decreased ILC2s and eosinophils recruitment in the
skin (19).

In terms of negative regulation, it is interesting to note
that ILC2s can express the receptors for the anti-inflammatory
cytokine IL-10, as well as for classical type 1 cytokines, such as
Interferon (IFN)- γ and IL-27 (6, 60, 61). These cytokines are
all able to suppress Th2 responses (62–64) and in vitro studies
in which ILC2s were stimulated with IFN-γ, IFN-β, or IL-27
demonstrated that each of these cytokines could individually
suppress the secretion of IL-13 and IL-5 by ILC2s (60, 65–
68). A role for type 1 cytokines in restraining ILC2 function in
vivo was demonstrated by adoptively transferring ILC2s isolated
from the lung of wild type or IFNgr1−/− Rag2−/− mice into
IL2rg−/−Rag2−/− recipient mice (which lack endogenous ILC2
populations). Recipient mice were then given an intra-tracheal
inoculation of recombinant IL-33 to activate the transferred
ILC2s and the authors reported that ILC2s derived from
IFNgr1−/− Rag2−/− mice produced higher quantities of type 2
cytokines compared to their WT counterparts (60). Mchedlidze
and colleagues showed similar results using animals deficient
in the IL-27 subunit Epstein-Barr virus induced gene 3 (Ebi3).
Ebi3−/− mice infected with Nb exhibited higher numbers of
lung ILC2s and higher levels of circulating type 2 cytokines.
The authors further confirmed that IL-27 regulation of ILC2
activation was direct by in vitro stimulation (68).

Interaction With Innate Cells
Various innate cells have been shown to participate in the
activation of ILC2s. IL-25 is known to be produced by eosinophils
and mast cells (69), whilst IL-33 can be produced by mast cells
(70, 71), and macrophages (72) indicating that these cells may
be able to directly activate ILC2s. The activation of ILC2s can
also result from interactions between innate cells and epithelial
cells. IL-33—which is typically released as a procytokine—can
be cleaved into its bioactive form by proteases released from
mast cells and neutrophils (73, 74). This cleavage increases the
potency of IL-33 by up to 10-fold, thus enhancing its ability
to activate ILC2s (73, 74). In another example of epithelial
cell-innate cell collaboration, intestinal epithelial cells release
ATP that can activate mast cells, to secrete IL-33 and activate
ILC2s (70, 75). More specifically, ATP activates mast cells
by interacting with the adenosine receptor, P2X purinoceptor
7 (P2X7R) (70). Of note, ILC2s also express adenosine
receptor and stimulation of bone marrow-derived ILC2s with
the nonselective adenosine receptors agonist, 1-(6-samino-9H-
purin-9-yl)-1-deoxy-N-ethyl-β-d-ribofuranuronamide (NECA),
resulted in decreased type 2 cytokine production by these cells
(70, 76). In response to Nb or Hp infection, blockade of the

A2B adenosine receptor (A2BAR) inhibited ILC2 expansion
and treated mice failed to expel the adult worms. However,
whether the cells targeted by A2BAR blockade were ILC2s
or epithelial cells was unclear (77). Altogether these studies
highlight an interesting role of adenosine receptors in regulating
ILC2 responses—but the exact molecular mechanisms by this
occurs will require further study.

Lipid Mediators
Arachidonic acid derivatives, including the cysteine leukotrienes
LTC4 and LTE4, the prostaglandin PGE2, are well characterized
for their role in the induction and control of type 2 inflammation
(78). Not surprisingly, ILC2s have been shown to respond to
various lipid mediators, which act either to activate or suppress
the activity of these cells. Prostaglandin D2, a product of
Prostaglandin D2 synthase, has been shown to promote ILC2
migration and IL-13 production both in humans and in mice
(14, 79, 80). Indeed, the receptor for PGD2, CRTH2, has been
highlighted as a useful marker of human ILC2s (81). Murine
ILC2s express both CysLTR-1 and-2 and their ligands, LTC4,
LTD4, and LTE4 have been shown to induce IL-13 and IL-5
expression by these cells (82, 83). In contrast, other eicosanoids,
including lipoxin A4 (LXA4) and Prostaglandin I2 (PGI2) limited
the activation of ILC2 and inhibited the production of type 2
cytokines (84, 85). Similar to the synergy noted between Nmu
and alarmins, some leukotrienes (namely LTB4 and LT C4), have
been shown to enhance the ability of IL-33 activate ILC2s in the
context of lung inflammation (86) or helminth infection (83).

In summary, ILC2s are able to be activated by a large array of
stimuli—a finding that, at least in part, explains the diversity of
environmental triggers that can elicit a type 2 immune response.
Further research as to how different stimuli co-operate to activate
ILC2 and their possible relevance to different tissues and/or
pathological settings will no doubt lead to the development of
better therapeutics for type 2 mediated diseases. Last but not least
it is likely that we have only exposed the “tip of the iceberg” in
terms of identifying possible positive and negative regulators of
ILC2 activation, and it is certain that this area will continue to
yield exciting and novel insights into type 2 immune responses.

ILC2 FUNCTION DURING INTESTINAL
HELMINTH INFECTION

The extensive research dedicated to the activation and regulation
of ILC2s (outlined above) has provided many answers related
to the possible function of these cells and has also raised many
questions. One key question is what is the relative role of these
cells in mediating protective immunity and tissue repair in
response to helminth infection. The following section will discuss
the current state of the art in terms of our understanding of ILC2
function during intestinal helminth infection.

A Role for ILC2s in Driving the Expulsion of
Adult Worms
The expulsion of adult worms from the intestinal lumen has
long been known to be associated with strong type 2 cytokine
production, with IL-13 acting as a potent activator of epithelial
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cell turnover, goblet cell hyperplasia and mucus secretion,
and increased muscle contractility—culminating in what is
commonly referred to as a “weep and sweep” response (87).
Although much of the early work on this response centered on
the contribution of Th2 cells, we now understand that ILC2s
are an important contributor of IL-13 produced early on during
infection (88). Indeed, one of the founding papers reporting the
existence of ILC2s, demonstrated that adoptive transfer of ILC2s
into the normally susceptible IL-13 deficient mice was sufficient
to promote the expulsion of Nb (8). This proved that although
ILC2s are a rare cell type, they can actively contribute to anti-
helminth immunity. ILC2s also produce IL-5 (and are considered
as the main source for this cytokines in allergies) and canmediate
an early Th cell-independent tissue eosinophilia (8). However,
although eosinophilia is a hallmark of helminth infection, they
have been described to exhibit diverse, even contrasting, roles in
terms of protective immunity and thus their full function remains
unclear (89).

To date, ILC2s have been shown to contribute to the timely
expulsion of a variety of helminths including Nb and Tm (8, 90,
91). Amongst these parasites, Nb is the most potent elicitor of
the ILC2 response, and both the recruitment and activation of
ILC2s by IL-33 has been shown to be required for the expulsion
of this parasite. Of note, whilst IL-25 is not required for the
eventual expulsion of Nb (8), it is important for the expulsion
of Hp (92). Intriguingly however, in Hp primary infection,
enhanced ILC2 numbers caused by IL-2 treatment (up to 5
times their basal level) were not sufficient to cause adult worm
expulsion (34). However, this treatment resulted in reduced adult
worm burden with increased numbers of L4 larvae trapped in
the submucosa (34). Similarly, treatment of Tm infected mice
with recombinant IL-25 treatment promotes parasite expulsion,
however this study was completed before the discovery of ILC2s
(93). All in all, IL-25-induced ILC2 expansion and activation
appears to play an important role in promoting the expulsion of
adult helminth parasites, but the relative contribution, of these
cells to host immune responses against distinct parasites remains
unclear. Nevertheless, alarmin release and nervous recognition
of helminths resulting in increased Nmu expression all seem to
be a general feature in the host response to intestinal helminth
infection (10, 94).

Although ILC2s have createdmuch excitement, it is important
to note that in natural settings the activation of ILC2s alone is
not sufficient to mediate protection against helminths. Indeed,
Neill and colleagues demonstrated that transfer of ILC2s into
Rag2-deficient mice (which lack B and T cells) was not sufficient
to mediate worm expulsion (8). In this setting, ILC2 numbers
were not sustained for long enough (more than 2 days) to allow
expulsion of the worms and the authors suggested that Th2 cells
might support ILC2 maintenance (8). Indeed, a series of later
reports identified an interplay between ILC2s and the adaptive
immune response, and this will be discussed later in the review.

The Contribution of ILC2s to Tissue Repair
Intestinal helminths are large multicellular pathogens that cause
extensive tissue damage as they migrate through host tissues
as larvae stages, and whilst they dwell within the intestine as

adult worms. In recent years, is has become evident that type 2
immune responses evolved not only to limit parasite burdens,
but also suppress excessive inflammation and to mediate the
rapid repair of damaged tissues (95). To date, many of the
investigations addressing the contribution for type 2 immunity
to tissue repair have focused on IL-4 activated macrophages (95).
However, studies addressing the possible contribution of ILC2s
to repair are beginning to emerge. Amphiregulin (an epidermal
growth factor) has long been known to be required for protective
immunity following Tm infection (96), and ILC2s were later
reported to represent a potent source of this cytokine (97).
Studies investigating the role of IL-9 in helminth immunity noted
that IL-9 deficient mice infected with Nb exhibited enhanced
lung damage and delayed worm expulsion (17, 33, 98). The same
authors demonstrated that IL-9 functioned as a survival factor
for ILC2, which in turn provided the amphiregulin required for
efficient lung repair following parasitic migration through this
organ (17, 33). Similarly, nILC2s have been shown to secrete
amphiregulin leading to the differentiation and proliferation of
epidermal growth factor receptor (EGFR) expressing epithelial
cells following respiratory virus infection (97). ILC2s may also
promote intestinal protection against damage as the transfer of
ILC2s in an experimental model of colitis was shown to attenuate
disease severity, through enhanced mucin production (99). IL-
9 production by ILC2s has also directly been shown to limit
type 1 inflammation in a sepsis induced model of acute lung
inflammation (27). In this study, it was further shown that IL-
33 activated ILC2 present in the lung produced IL-9 which acted
to prevent lung endothelial cells from undergoing pyroptosis (a
form of cell death), by virtue of its ability to limit caspase-1
activation (27).

Together these studies indicate that ILC2s can contribute to
the modulation of inflammation and the promotion of tissue
repair following a variety of environmental insults. However, it
is possible that these cells also contribute to the pathology that
can result from exaggerated or prolonged type 2 inflammatory
responses. On this note nILC2s have recently been shown
to constitutively express arginase-1 (Arg-1), and the selective
absence of this gene within ILC2s resulted in an exacerbated
emphysema in response to Nb infection (100). Similarly, IL-13
secretion by ILC2s present in the lungs has been demonstrated to
in the disrupt tight junctions in asthmatic patients (101).

Adaptive Immune Response
Priming of Type 2 Immune Response

The cellular and molecular mechanisms that lead to the
differentiation of naïve CD4+ T cells into type 2 cytokine
producing T helper 2 (Th2) cells are still not fully understood.
To date most of the work in this area has focused on the
importance of dendritic cell (DC)—T cell interactions, however
the discovery of ILC2s has widened our view of a DC centric
world to appreciate the possible importance of ILC2s in initiating
or modulating the Th2 response.

Studies using experimental mouse models in which ILC2s
were preferentially depleted have revealed that ILC2s are required
to promote Th2 cell responses in response to infection with Nb,
or following the intranasal administration of the allergen papain
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(102–104). More recently, tissue-specific ILC2s were shown
to represent a critical source of the co-stimulatory molecule
OX40 ligand (OX40L) in response to IL-33 stimulation (105).
Binding of OX40L to OX40 on CD4T cells was required for
the development of both Th2 and GATA3+/– Treg responses
in the lungs after Nb infection (105). In keeping with these
findings, ICOS-ICOSL interactions between ILC2s and CD4T
cells have been shown to be required for optimal Treg expansion
in response to IL-33 stimulation or Nb infection (67). ILC2s can
also contribute to the development of Th2 cells in response to
the murine helminth Hp infection by releasing IL-4 (34, 103).
Although most studies indicate that murine ILC2s make little IL-
4, this is in contrast to human ILC2s which can produce large
quantities of this cytokine in response to combined stimulation
with IL-33 and TSLP (106).

In addition to direct ILC2-T cell interactions, ILC2s can
impact on DC function and have been shown to promote the
migration of DCs from the tissues to the lymph node by virtue
of producing IL-13 (102). Last but not least, ILC2s can present
antigen directly to CD4T cells (103) and CD4T cells have been
shown to support the continued survival of ILC2s by providing
IL-2 (107, 108). Altogether, these studies highlight a complex
interplay between ILC2s, DC and CD4T cells that promotes the
development of optimal adaptive type two immune responses.

Memory Immune Responses

ILC2s have now been reported to contribute to the amplitude of
memory type 2 immune responses in a variety of models. In the
first report, Halim and colleagues investigated the contribution
of ILC2s to recall responses against papain (109). Here, DCs
play a critical role by producing CCL-17 and CCL-22 to attract
CCR4+ memory CD4T cells. Interestingly the expression of
CCL-17 andCCL-22 was triggered by type 2 cytokines released by
ILC2s - and ILC2 ablation prior to papain re-challenge attenuated
the number of Th2 cells present (109). In another example
of ILC2 potentiation of memory type 2 responses, these cells
were reported to critically contribute to the production of IL-
13 in response to challenge infections with Nb allowing the
rapid activation of M2 macrophages which were able to mediate
both parasite killing and tissue repair (108). In this model, Th2
cells also contributed to the activation of M2 macrophages by
producing IL-4, and were additionally found to promote the
maintenance of ILC2s following challenge infection with Nb in
an elegant example of ILC2-Th2 cell co-operation (108). Of note,
short term treatment with recombinant IL-33 has been reported
to induce the sustained activation (for over 1 year) of ILC2s both
in helminth and glomerulosclerosis models indicating that—
like memory cells—some ILC2s could be long lived cells (110,
111). Lastly, previously activated ILC2s were able to produced
increased amounts of IL-13 when re-exposed to the same antigen,
or even to an unrelated allergen or to IL-33 (110).

Humoral Immune Responses

The role of ILC2s in humoral immunity has just begun to
be addressed. Recently, ILC2s isolated from the lungs of naive
wild type mice were shown to promote the proliferation of B1-
, as well as B2-, type B cells in vitro. ILC2-activated B cells

produced IgM, IgG1, IgA, and IgE, with the production of
IgM being IL-5 dependent (112). Given that antibodies, and
in particular IgE and IgG have been implicated in protective
immune responses against challenge infections with a variety of
helminths (113, 114), the impact of ILC2 on B cell responses
could be of great importance to helminth protection. Moreover,
one of the functions of IgE is to arm basophils and mast cells,
that in turn function to potentiate Th2 responses (115), or release
inflammatory mediators (116) potentiating type 2 inflammation.

Helminth-Mediated Regulation of the
ILC2 Response
Helminths have co-evolved with their host and typically form
chronic infections in their host. These parasites are often
described as masters of immunomodulation and a multitude of
parasite-derived products have been identified that interfere with
host immune responses (117). It is noteworthy that Nb, which is
a potent elicitor of ILC2 responses, is expelled rapidly from its
murine host, whilst Hp and Tm, which elicit only modest ILC2
responses, form chronic infections. Interestingly, resistant SJL
mice have higher ILC2 responses to Hp than susceptible B6 mice
(118). This raises the possibility that some helminthsmay attempt
to evade host rejection by modulating ILC2 responses, and in
line with this idea McSorley and colleagues recently reported
that secretory products from Hp can attenuate allergic airway
inflammation by blocking the release of IL-33 from epithelial
cells (119). The authors went on to identify one of the proteins
responsible, and termed this protein Hp-derived Alarmin Release
Inhibitor (HpARI) (120). HpARI selectively binds to IL-33 and
traps it in the nucleus, preventing its release during cell apoptosis.
This was associated with a reduction in IL-13+ and IL-5+ ILC2s
in lungs of mice exposed to Alternaria. Hp has also been shown
to alter the composition of the intestinal microbiome increasing
the availability of the bacterial metabolites, short chain fatty acids
(SCFA). The authors went on to demonstrate that Hp-induced
production of bacterial SCFAs was able to attenuate house dust
mite-induced allergic asthma in mice (121). However, it would
also be interesting the determine the impact of SCFAs on the host
response to the parasite as butyrate, a SCFA, has recently been
shown to directly block IL-13 and IL-5 expression by ILC2s (122),
which have been associated with the weep and sweep response.

ILC2 RESPONSES AND HUMAN
HELMINTH INFECTION

To date, the markers used to identify the various ILC populations
in humans remain poorly defined, and very few studies have
characterized ILC responses in the context of any human
infection (123), let alone helminth infection. Instead most of
our knowledge about human ILC2s are derived from studies
of inflammatory diseases where ILC2s play a pathological role
(i.e., chronic rhinosinusitis, COPD, dermatitis, asthma) (124).
Importantly however, these studies have revealed that ILC2s are
present in various mucosal tissues of humans including the lungs,
the gut and the skin—the same sites where helminths are typically
found. In addition, many of the activation pathways described for
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murine ILC2s, have now been confirmed in humans including
the three alarmins (IL-33, IL-25, and TSLP), leukotrienes and tuft
cells (38, 69, 125–129).

In terms of helminth infection, Boyd et al. (130) reported
an increase of c-kit+ ILCs (similar to ILC2s and ILC3s in
mice) in the circulation of people infected with helminth filariae
(Loa loa or Wuchereria bancrofti or Onchocerca volvulus). These
cells expressed IL-13 and were identified as Lineage (Lin)-
/CD45+/cKit+/CD127+, but additionally expressed IL-10 and
IL-17 (130). Both Wuchereria and Onchocerca helminths harbor
the bacterial endosymbiont Wolbachia, which may bias the host
immune response away from a type 2 response and toward a type
17 response and would explain the observed increase in both IL-
13 and IL-17 expression. Yet, most of the patients studied were
infected only with Loa loa (130), which unlike its relatives does
not harborWolbachia. An alternative explanation could therefore
be that the increased c-kit ILCs reported in infected patients may
be largely LTis rather than ILC2s.

A second study assessed the ILC response in children
infected with Schistosoma haematobium (131). Younger children
exhibited lower numbers of circulating ILC2s, identified as
Lin-CD45+CD127+CD294+CD161+, whilst ILC2 numbers
in older children were similar between infected and control
individuals. Following anthelmintic treatment, the number of
ILC2s present in young children was restored to levels apparent
in uninfected patients, suggesting that Schistosomamay suppress
the ILC2 response (131). In Schistosoma infection, protective
immunity is known to build up over time, and the “older”
children had antibody titers indicative of the acquisition of
immune protection (131). Determining whether the positive
correlation between ILC2 numbers and increasing age simply
reflects the slow acquisition of protective type 2 immunity against
endemic helminths, or whether these cells actually play a causal
role in promoting such protection will be an important question
for the future.

Other unanswered questions include: Does the ILC2 response
differ following infection with different families or species of
helminths? Are there fundamental differences in the ability
of young children or adults to generate ILC2s? Do ILC2

numbers correlate with disease phenotypes including resistant
(non-infected but exposed), susceptible (clinically symptomatic,
infected), or controller (clinically asymptomatic, infected)
individuals? These questions may have fundamental importance
for the design of successful vaccines against these widespread, and
often debilitating, parasites.

CONCLUSIONS AND PERSPECTIVE

Our understanding and knowledge of ILC2s has expanded
tremendously over the recent decade, yet much remains to be
determined. Whilst the majority of existing research related
to human ILC2s have focused on the “first-world” diseases
related to allergic inflammation, we would argue that attention
should also be given to the role of these cells during human
helminth infection given the clear need for improved control
of these parasites amongst developing societies. In addition to
this, ongoing studies of ILC2s in the context of host-helminth
interactions—either in mice or humans—are highly likely to
continue to shed light on the activation, regulation, and function
of these cells. In terms of allergic disease, mining helminths
for molecules that suppress ILC2 responses could represent a
promising avenue for the identification of novel therapeutics.
Lastly, at a time when we are just beginning to understand the
full importance of ILC2s in anti-helminth immune responses,
Maizels and colleagues recently described the existence of
another, as yet undefined but very rare innate immune cell, that
is important for the expulsion of Hp (132). This report highlights
that our understanding of type 2 immune responses and of host-
helminth interactions is continually evolving. Although studies
performed over the last decade led to the discovery of ILC2s,
it is likely that continued efforts in this area will reveal many
interesting, and perhaps even surprising, facets of the type 2
immune response.
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